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Figure 1. Gaussian noise image (left), our denoised image (middle) and ground truth photorealistic image (right).  

 

Abstract—Animation studios render 3D scenes using a 

technique called path tracing which enables them to create 

high quality photorealistic frames. Path tracing involves 

shooting 1000’s of rays into a pixel randomly (Monte Carlo) 

which will then hit the objects in the scene and, based on the 

reflective property of the object, these rays reflect or refract or 

get absorbed. The colors returned by these rays are averaged 

to determine the color of the pixel. This process is repeated for 

all the pixels. Due to the computational complexity it might 

take 8-16 hours to render a single frame. We implemented a 

neural network-based solution to reduce the time it takes to 

render a frame to less than a second using a generative 

adversarial network (GAN), once the network is trained. The 

main idea behind this proposed method is to render the image 

using a much smaller number of samples per pixel than is 

normal for path tracing (e.g., 1, 4, or 8 samples instead of, say, 

32,000 samples) and then pass the noisy, incompletely rendered 

image to our network, which is capable of generating a high-

quality photorealistic image. 
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I. INTRODUCTION 

Computer-generated imagery is a core component of 
movies, video games, and commercials. From the early stage, 
efforts are made to enhance the production of 3-dimensional 
images and many algorithms are proposed to efficiently 
render 3D scenes. During the 1960’s and early 1970’s, 
algorithms are proposed to render 3D scenes with enhanced 
realism. For example, algorithms like hidden-surface and 
hidden-line are proposed to resolve the visibility problem. 
Many other algorithms have been proposed over the years 
for photorealistic rendering [1]. Nowadays, animation movie 
studios, such as Pixar and Dreamworks, render their 3D 
scenes using a technique called path tracing, which generates 
high-quality photorealistic frames. Path tracing involves 
shooting 1000’s of rays into a pixel randomly (Monte Carlo), 
which will then hit the objects in the scene and, depending 
upon the reflective property of the object, will reflect or 
refract or become absorbed. The colors generated by these 
rays are averaged to obtain the color of the pixel, and this 
process is repeated for all pixels. Rendering scenes frame by 
frame is computationally expensive and time consuming, as 
thousands of rays per pixel are needed in order to render a 
photorealistic image. GPU technology and efficient software 
APIs have increased rendering speeds, but path tracing is still 
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nowhere close to real-time rendering. Due to the 
computational complexity it can take hours to render even a 
single frame.  

Motivated by this problem, several attempts are being 
made to speed up the process of obtaining high quality 
images. Using a few samples to render a 3D scene can be 
quickly evaluated, but the inaccuracy of this estimate appears 
as noise in the final image. This problem can be addressed 
using a denoising mechanism to generate a high-quality 
noise-free image. Image denoising methods are applicable to 
any noisy images either CGI, scanned images or images 
taken by a camera. Limitations in signal transmission 
equipment like cameras and scanners are the main source of 
noise in images. Enhancing the quality of images is 
important in many applications including, but not limited to, 
medical images and geographical pictures. In addition, a 
decent visual level is important for a better user experience 
in all applications.  

The most recent promising results for many problems in 
image processing, including image denoising, are 
accomplished in particular by convolutional neural networks 
(CNNs). Deep learning networks generate astounding results 
in solving different tasks across a wide range of domains, 
often outperforming traditional methods. CNNs have a 
similar architecture as conventional deep learning neural 
networks, but they explicitly assume the input is an image. 
They have been used as an underlying architecture for image 
processing such as in image classification, image denoising, 
and super resolution. Dong et al. [2] claims that an image-
denoising pipeline that uses example-based Super Resolution 
methods, such as the sparse-coding-based method, could be 
equivalent to the convolutional neural network procedure. 
However, sophisticated results depend on the power of the 
network design and training process. With respect to visual 
recognition tasks, the depth of the network is of central 
importance. The deeper the network, the better the result. 
Although training deep networks is very hard because of the 
emergence of the vanishing gradient problem, some network 
designs have been proposed to address this issue. Residual 
nets [3] are powerful networks that can handle very deep 
depths by heavy use of skip connections and batch 
normalization.  

In this work, we propose a neural network-based solution 
for reducing 8-16 hours to a couple of seconds using a 
Generative Adversarial Network. The main idea behind this 
proposed method is to render using a small number of 
samples per pixel, which creates a noisy output image, and 
then pass the noisy image to our network, which generates a 
photorealistic image, in effect denoising the image. Our 
proposed network is based on ResNet [3]. The key for our 
work is the defined loss function and the very deep GAN. 
We define a refined perceptual loss that preserves not only 
color and texture, but also properties of the scene like motion 
blur and depth of field. 

The rest of the paper is organized as follows. We provide 
an overview of the most related work in section 2. Section 3 
shows the architecture of our proposed GAN. In Section 4, 
we discuss our experiments and achieved results. Finally, we 
conclude in Section 5.  

II. RELATED WORK 

Artificial neural networks have been widely used for 
regression problems that map continuous vectors of input to 
another continuous vector of output by minimizing an 
optimization function. In [4], a multi-layer perceptron neural 
network is learned for image denoising formulated as a 
regression problem. Pairs of noisy and clean patches are used 
to estimate the network parameters that minimize the 
difference between the noisy and clean patches. Each layer 
applies weights to patches, which are then sent to the next 
layer before outputting a new image. This output is 
compared to ground truth value. To update the network 
parameters, backpropagation is used and the mean squared 
error is minimized. The learned MLP network is used then to 
denoise images by dividing the image into overlapping 
patches as continuous input vectors. Each patch is denoised 
and the average of overlapping patches is calculated to 
produce the denoised image.  

MLP is also used in [5] to filter out Monte Carlo noise 
from images. Monte Carlo rendering can produce high 
quality images but requires calculating many expensive rays 
resulting in lengthy render times. A few samples can be 
quickly evaluated but will produce a noisy image. They 
addressed this problem by applying a denoising filter to 
produce a pleasing high-quality image. To achieve that, they 
observed that the noisy image and the ideal filter parameters 
have a complex underlying correlation. The rendered image 
is a set of primary features at each pixel like screen position, 
color, shading, etc. A set of statistical secondary features of 
each pixel in relation to other pixels is achieved by 
processing the pixel local neighborhood. Then, an MLP 
network is learned with these features to output a set of filter 
parameters. The filter module applies the learned parameters 
to the noisy rendered image to filter the pixels and generate 
the filtered image.  

Convolutional networks have been used as architecture 
for the image denoising process. Jain and Seung [6] proposed 
an unsupervised learning approach for image denoising using 
the convolutional network. In contrast to the typical structure 
of a convolutional network that outputs a single score, their 
network restores a denoised image from an input that is 
subjected to the Gaussian noise model. The network 
outperformed previous approaches with 4 hidden layers and 
24 feature maps per hidden layer. During the unsupervised 
learning, the network is trained with the Berkeley 
segmentation dataset. This dataset contains noise free images 
and therefore they formulated the denoising problem as an 
unsupervised learning process. During the training, a noise 
function with different variations is integrated into the 
training process to synthesize noisy training samples from 
noise free images. The network is then trained to denoise 
images by minimizing the reconstruction error of noisy 
samples as a loss function. That is, it’s trained to minimize 
the difference between the free noise image and the noisy 
reconstructed image.  

Another related problem that is solved using 
convolutional networks is the single image super resolution. 
Super resolution processes a low-resolution image to 
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estimate its high-resolution counterpart. The convolution 
network is proposed in [2] for single image super resolution. 
Similar to [6], the input image is divided into overlapping 
patches. Using two convolution operations, conceptually 
high-resolved patches are computed and then aggregated to 
compose a high-resolution output image. Due to the 
difference in resolutions, the input image is upscaled first to 
the desired resolution as a preprocessing step. The 
parameters of the mapping function are learned during the 
training by minimizing the mean squared error between the 
reconstructed image and the ground truth image.  

SRGAN [7] introduces an approach similar to ours. 
Unlike previously proposed convolutional networks for 
image super resolution that are based on the mean squared 
error as an optimization function, they propose a new loss 
function that resolves perceptually satisfying high-resolution 
image. The architecture consists of a very deep residual net 
architecture, which is a GAN-based network consisting of 
discriminator and generator networks. The generator 
network is trained to generate an indistinguishable image 
from the ground truth, fooling the discriminator with the 
reconstructed image. Similarly, the discriminator is trained to 
distinguish reconstructed images from real images. The 
training of the network is achieved by minimizing the 
perceptual loss function, that is, by minimizing the weighted 
sum of its components: content loss and adversarial loss. 
Instead of relying on pixel-wise error measures such as 
MSE-based optimization, they proposed a novel perceptual 
loss function consisting of content loss and adversarial loss. 
The goal of adding content loss is to handle the solution with 
respect to perceptual high-level features. The content loss is 
based on perceptual similarity. Using pre-trained 19-layers 
VGG network, feature maps are obtained for the 
reconstructed and reference images. The feature map is 
computed by encoding each image vector by layer filters.  

The difference between features maps of reconstructed 
images and reference images is computed as a Euclidean 
distance to define the content loss. The adversarial loss 
makes the discriminator and generator push the solution to 
the natural image space in which the generator tries to fool 
the discriminator with the reconstructed image and the 
discriminator tries to distinguish the reconstructed image 
from the real image. The architecture is based on the ResNet 
[3] deep convolutional network. ResNet is defined to 
enhance the training of very deep networks by adding 
―shortcut‖ connections that feed the input to deep layers. The 
residual layers then retain spatial information and tune the 
output with reference to the input.  

Recent work by  Chaitanya et al. [11] and Bako et al. [12] 
also explores the application of deep learning to denoising 
images, but our approach differs in that it utilizes a GAN 
architecture. 

III. METHOD 

We built a GAN network structure for image denoising, 
which, like SRGAN, is based on ResNet [3]. A generator 
network is trained to generate noise free images through 
competing with a discriminator network, using ground truth 
reference images to improve the quality of the generated 

images. Our architecture makes use of residual blocks, skip 
connections, and batch normalization. In our initial 
implementation, due to training time limitations, we used 
three residual blocks. Having a larger number of residual 
blocks would increase the training accuracy significantly, but 
at with the incurred expense of requiring longer training 
times. 

A. Generator Network 

The goal of single image denoising is to generate a 
photorealistic image with high quality. The generator should 
be able to fill in the noises with neighboring pixel colors 
without losing any information present in the original image. 
We adopt a symmetric structure, similar to traditional CNN 
frameworks, that directly learns an end-to-end mapping from 
input noisy images to their corresponding ground truth. A set 
of three convolutional layers, using batch normalization and 
Lrelu activation, are stacked in the front of the network, 
which extract semantic attributes from the input image.  

Three residual blocks each containing two convolutional 
layers are used to increase the depth of the network. We 
involve symmetric skip connections in this sub-network to 
improve efficiency in training and to promote faster 
convergence. The skip connections feed the input to the deep 
layers so each residual layer tune the output with reference to 
input and retain spatial information. These are followed by 
three sub-pixel convolutional layers, each corresponding to 
the convolutional layers in the front of the network. Each 
sub-pixel convolutional layer consists of a resized image 
block followed by convolutional layer. The images are 
resized from 64x64 to 128x128, and the final image output is 
of size 256x256. We use sub-pixel convolutional layers 
instead of deconvolutional layers to avoid checkboard like 
patterns in the image. Since the sub-pixel convolution is 
similar to deconvolution, we will refer to those layers as 
deconvolutional layers in this paper. The first two 
deconvolutional layers have Lrelu activations and the final 
deconvolutional layer providing the denoised output has a 
sigmoid activation. For all layers we use stride of 1. The 
generator network is as follows:  

 
 
 
 
where CBL(K) is a set of K-channel convolutional layers 

followed by batch normalization and Lrelu activation, and 

DBL(K) is a set of K-channel deconvolutional layers 

followed by batch normalization and Relu activation. Skip 

connections are added via every two layers.  

B. Discrimintator Network 

The goal of denoising a noisy image is not only to make 
the denoised result visually appealing and quantitatively 
comparable to the ground truth, but also to be of 
photorealistic high quality. Therefore, we included a learned 
discriminator sub-network to classify if each input image is 
real or fake. We use five convolutional networks with Batch 
Normalization and Lrelu activation throughout discriminator 
network.  

CBL(K) – CBL(K*2) – CBL(K*2*2) – CBL(K*2*2) – 
CBL(K*2*2) – CBL(K*2*2) – DBL(K*2) – DBL(K) – DB(3)-Tanh 

 

(1) 

128



 
Figure 2. Generator network.  

 
Figure 3. Discriminator network.  

Once we calculate the learned feature from a set of these 
Conv-BN-Lrelu, a sigmoid function is stacked at the end to 
map the output to a probability score normalized to [0,1]. 
The structure of the discriminator sub-network is as follows:  

 
 
where CB(K2) is a set of K2 channel convolutional layers 
followed by batch normalization and C(1) is a set of 1- 
channel convolutional layers.  

C. Refined Loss Function  

To ensure that the results have good visual and 
quantitative scores along with good discriminatory 
performance, we combine pixel-to-pixel Euclidean loss 
(pixel loss), feature loss, smooth loss and adversarial loss 
together with appropriate weights.  

Adversarial loss helps the generator to produce better 
output to fool the discriminator. Pixel loss helps to correctly 
fill the noise with colors by comparing every pixel of 
generated image with the ground truth image (Euclidean 
distance). Feature loss helps to extract features accurately 
and is calculated in the same way that pixel loss is, but is 
determined by examining the image data extracted from the 
Conv2 layer of VGG16 network. We add a smooth loss 
function to the existing loss functions. The intuition behind 
this is to prevent ―checkboard‖ artifacts across neighboring 
pixels in the image. To determine the smooth loss, we slide a 
copy of the generated image one unit to the left and one unit 
down and then calculate the Euclidean distance between the 

shifted images. The new loss function is then defined as 
follows:  

  (3) 

where LA represents adversarial loss (loss from the 
discriminator D), LP is pixel loss (pixel-to-pixel Euclidian 
distance between generated image and ground truth image), 
Lf is feature loss (pixel-to-pixel Euclidian distance between 
generated image and the ground truth image from the Conv2 
layer of VGG16), and Ls is smooth loss. λa, λp, λf and λs are 
pre-defined weights for adversarial loss, pixel loss, feature 
loss and smooth loss, respectively.  

IV. EXPERIMENT AND RESULTS 

In this section, we present details of our experiments 
investigating our denoising network and discuss the dataset 
and training details.  

A. Dataset and Training 

Due to the lack of availability of large size datasets for 
training and evaluation of single image denoising, we 
synthesized a new set of training and testing samples in our 
experiments. We downloaded 40 Pixar movie image frames 
and added Gaussian noise to create the dataset, which 
included different standard deviations to generate a diverse 
training and test set— each image was denoised with five 
different amounts on noise. The training set consists of a 
total of 1000 images and the test set has 40 images. The 
images with noise form the set of observed images and the 
corresponding original images form the set of ground truth 

CB(K2)-CBL(K2*2)-CBL(K2*2*2)-CBL(K2*2*2*2)-C(1)-Sigmoid 

 
(2) 
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images. All the training and test samples are resized to 
256×144.  

B. Model Details and Parameters 

The entire network is trained on AWS p2.xlarge GPU 
using the TensorFlow framework. We used a batch size of 7 
and the performed 10,000 training iterations. During training, 
we set λa=0.5, λp=1.0, λf=1.0 and λs=0.0001. We set K=32 
and K2=48 for the generator and discriminator networks. 

The first convolutional and deconvolutional layer of the 
Generator (G) is composed of kernel of size 9 with stride 1. 
All the other convolutional and deconvolutional layers in the 
Generator are composed of kernel of size 3x3, also with 
stride 1. All convolutional and deconvolutional layers in the 
first three layers of the discriminator (D) are composed of 
kernels of size 4×4 with a stride 2 and zero-padding by 1. 
The last two layers in D are composed of kernels of size 4x4 
with a stride 1 and a zero-padding of 1. 

  

 

 

 

 

 

 
 

                                                        Input               Output                   Groundtruth 
 

Figure 4. Here we show resulting denoised output images using our approach using a test set of images 
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       Input            Output             Input              Output 

Figure 5. Here we show resulting denoised output images using our approach, here using a test set of noisy photographs under natural light (which our 

network was not trained on). 

 

 
  Input                        Output 

 

Figure 6. Here we show a resulting denoised output image using our approach, here using a test CT-scan (which our network was not trained on). 
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V. CONCLUSION 

In conclusion, we developed a technique to perform 
image denoising using a generative adversarial network. Our 
network inputs a noisy image and generates a denoised 
version in less than a second, preserving edges and avoiding 
blurriness. Fig. 4 shows examples of output images in 
comparison to the ground truth. In our initial implementation, 
we trained our network with Gaussian noise, but we believe 
our generative adversarial network can be extended to handle 
both uniform and non-uniform noise, given an appropriate 
training dataset. Interestingly, we found that our network, 
trained with only 40 images from a specific domain for only 
10,000 iterations, was successful at generating denoising 
images outside the domain it was trained. The network gave 
impressive results for grainy photos (Fig. 5), CT scans (Fig. 
6), as well as frames from a noisy video capture.  

In the future, we plan to include noise produced by 
Monte Carlo rendering. This is will allow us to investigate 
whether our technique can be used for making an efficient 
real-time path tracer which can be used for games or medical 
visualization applications. Currently, we generate the 
denoising image based on the available pixel color 
information. However, we would like to investigate whether 
or not our network can be modified to fill in noisy areas 
based on the semantics of the neighboring pixels, or by 
providing the network with additional information, such as a 
depth map of a 3d scene. Finally, we would also like to 
investigate whether our network can perform denoising with 
motion blur, depth of field, shadows, caustics, and global 
illumination [10].  

The work described in this paper was initially developed 
as  a  class  project  for a  graduate seminar  in  applied deep 
learning in the Electronic Visualization Laboratory at the 
University of Illinois at Chicago in early 2017. All code and 
instructions for running the code are available on GitHub at: 
http://github.com/CreativeCodingLab/ImageDenoisingGAN. 
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