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Summary

Post-treatment decision-making is a process that depends on longitudinal studies of pa-

tient cohorts, in which identifying the risk of adverse treatment outcomes is critical to improv-

ing personalized care. This process benefits from visual analytics because it can overcome

many of the challenges that arise with complex patient cohort data. Visual analytics can

help to interpret treatment progressions and outcomes, and stratify cohorts by risk cate-

gories, which are crucial for improving treatment decision-making. However, post-treatment

cohort analysis uses large-scale, heterogeneous, temporal, multivariate datasets with associ-

ated attributes and missing values. Visualization needs to provide scalable, effective methods

for cohort analysis at different levels of detail that can uncover patterns and associations

among patient attributes that correspond to negative treatment outcomes. Moreover, post-

treatment care planning relies on computational cohort data modeling and, as a result, uses

both objective and subjective evidence, namely, the clinician’s interpretation of the model-

ing results. Consequently, cohort modeling and analysis depend on collaborations between

clinicians and data modelers. Therefore, visual analytics solutions need to facilitate these

collaborations and the interpretation and evaluation of modeling results in a clinical context.

This dissertation explores visual analytics techniques for cohort modeling and analysis

and applies these techniques to post-treatment decision-making. This work addresses the

challenges identified above by designing, developing, and evaluating four application-specific

visualization systems in collaboration with clinical researchers and data modelers. I first iden-

tified the design requirements for a family of cohort modeling problems in cancer symptom

and digital biomarker research. Next, I design several systems that integrate unsupervised

modeling for the computational back-end and data visualization for the front-end. I propose

novel, custom visual encodings for multivariate temporal cohorts that enable iterative risk

assessment across cohort stratifications. A first system, OpenDBM, uses visual analytics

for behavioral risk assessment in digital biomarker research, using cohorts with hundreds of

modeled attributes, and it was designed for the open-source community. This work proposes

xi



a novel encoding that aggregates multivariate, spatial, and non-spatial temporal attributes

on anatomical locations to explain behavioral biomarkers. A second system, THALIS, shifts

the focus to clinician-modeler collaborations in head and neck cancer cohort modeling, and

to a multi-stage patient monitoring process, namely, during and post-treatment. This sys-

tem uses scalable visual encodings to interpret attribute associations and introduces a new

encoding for evaluating patient outcomes in multivariate, multi-stage time series. A third

system, Roses, builds on the previous work, using custom visualizations for the interpre-

tation and evaluation of outcome risk predictions, this time accommodating configurable

analytical workflows for clinicians and modelers. The system introduces a visual encoding

to summarize multi-stage networks, with temporal nodes, which helps to evaluate patterns

and associations in modeled outcome risk components. A fourth system, L-VISP, explores

visual analytics for understanding and assessing black-box models in cohort risk prediction,

with an emphasis on the design requirements for data modeler activities. To support model

evaluation, the system visualizes results for machine-derived (cluster) or user-specified cohort

stratifications and introduces custom encodings for weighted associations in multivariate at-

tributes. Together, these systems contribute to data visualization and modeling solutions

for the challenges that data modelers and clinicians face during collaborations.

Patient records were used for the cancer research projects. These records contained de-

mographic and diagnostic details, as well as longitudinal symptom ratings. The records were

anonymized by our clinical expert collaborators and stored on a private institution cloud.

Access was limited and given by our collaborators on a case-by-case basis. For the digital

biomarker project, the collaborators provided longitudinal biomarker records. These records

were extracted from actor, not patient, videos using a feature-extraction toolkit and stored

in a private cloud. There were no personal identifiers in these data, and no research involving

human subjects was conducted in this dissertation.
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Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Simplified framework for patient cohort post-treatment decision-making and dissertation contributions
(i.e., OpenDBM, THALIS, Roses, and L-VISP) within the framework.

Post-treatment care is an important approach to ensure a better quality of life in patients

and to combat health relapses after treatment implementation. The one-size-fits-all approach

to post-treatment care delivery, based on data from an average patient, does not work

well for most health conditions [167]. Post-treatment care research categorizes patients by

clinical and demographic factors, as well as treatment progression and outcome, to help tailor

personalized plans and anticipate adverse clinical outcomes. This research typically relies on

longitudinal studies of existing cohorts, following patients’ pathways from initial assessment
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and diagnosis through treatment planning, implementation, and outcome evaluation, and

even into longitudinal post-treatment evaluations ( Fig. 1.1). Consequently, it uses a big

data, cohort-based approach, and patient data are generally extracted from multiple sources

and have a variety of attributes that must be considered concurrently. In particular, post-

treatment cohort analysis is a multidisciplinary, two-step human-machine approach that uses

a mix of objective data and subjective clues. More specifically, the first step relies on cohort

data modeling and thus on data scientists/modelers’ expertise, while the second step depends

on clinicians’ interpretation of the modeling outcomes (see Fig. 1.1). Thus, this is a complex

process, and advanced analytical tools, such as visual analytics tools, that can overcome the

challenges mentioned earlier, are in high demand.

An example of an application for post-treatment care is symptom risk research in head and

neck cancer. At the MD Anderson Cancer Center in Texas, patients prescribed with radiation

therapy often suffer from treatment-induced symptoms. The domain experts who help treat

this cohort collect patient-reported outcomes to understand the risk of symptom appearance

and severity during and after oncological treatment. After data collection, modeling is

used to estimate each patient’s risk of symptom relapse, after which data modelers and

clinicians assess this information alongside relevant patient details and similarities to other

patients, thereby stratifying cohorts by risk levels of adverse outcomes. This helps to better

understand health problems and needs in different patient populations. However, patients

are not stratified a priori into risk groups, but rather through an iterative, interactive process.

This process can be aided by visualizing modeling outputs stratified by attributes of interest

within cohorts. Therefore, there is increasing interest in visual analytics tools that support

cohort analysis for post-treatment hypothesis generation.

Data challenges. Visual analytics looks for the tight integration of visualization, com-

putational analysis, and interaction for exploratory analysis of complex data, which can be

heterogeneous, large-scale, multivariate, and temporal. Such data is extracted from patient

records, where many attributes are often associated with each other, are collected at different
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stages within patient monitoring protocols, and may contain missing values. Visual analytics

can overcome many data challenges, for example, through compact but effective encodings

for cohort summarizations or custom encodings that highlight associations and patterns in

cohort attributes. More importantly, visual analytics can support interactive methods for

inspecting different levels of detail within patient cohorts, by visualizing the cohort overview

and detail, the patient of interest within the cohort, and iteratively stratifying the cohort.

Thus, through carefully designed visualizations that integrate multiple data facets, clinical

researchers can better understand patient health distributions and improve post-treatment

decision-making.

Modeling challenges. Modeling cohorts by risk, such as predicting the outcome of

a treatment plan, frequently employs machine learning and statistical methods. However,

modeling results need to be actionable in a clinical setting. Thus, post-treatment care plan-

ning is a multidisciplinary field where clinicians collaborate with data modelers. Visual

analytics can support the interpretability of modeling outputs in a clinical setting through

mixed-initiative workflows that enable human analysis of machine-derived (modeled) results.

At the same time, visual analytics techniques need to consider differences in the mental mod-

els of the users; e.g., clinicians are more interested in the clinical, actionable interpretation

of the modeling outcomes, which can be applied when treating new patients, while data

modelers are interested in the modeling activity and in tools that help them refine modeling

approaches. As a result, visual design choices need to account for these aspects and align

with domain-specific user activities in multidisciplinary collaborations.

In this dissertation, I claim that visual analytics can offer effective ways to improve

risk detection in post-treatment care and to understand outcomes in patient cohorts. To

this end, I use an Activity-Centered Design (ACD) [129] methodology to collaborate with

domain experts in clinical research and propose four visual analysis systems. ACD is used

in the building of these systems to gather tasks, design, and develop software with regular

feedback. The systems are evaluated with the collaborators using a pair analytics-based
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approach, through case studies and demonstrations, with thematic analysis applied on the

feedback to extract lessons learned for future research. This body of work addresses several

challenges in visual analytics for cohort analysis in post-treatment research, specifically:

Q1. How can visualization support cohort analysis?

Q2. How to visually represent cohorts and their characteristics, and what interactions to

support?

Q3. What system implementations work for post-treatment decision-making?

Q4. What makes a visual analytics system valuable to biomedical users?

1.2 Contributions

In this section, I present the contributions of this dissertation, which focus on visual analytics

methods that facilitate the analysis of heterogeneous patient cohorts and support knowledge

discovery, hypothesis generation, and decision-making for post-treatment care. Taking into

account the official IEEE area model for VIS, the contributions of this work are:

C1. Domain Characterization (Q1) First, I describe the domain characterization for

two medical application domains, symptoms in head and neck oncology and digital

behavioral biomarkers in neuroscience. This step identifies the requirements for visual

analysis and cohort modeling design.

C2. Representations and Interactions (Q2) After that, I present the design and devel-

opment of several visual analytics systems for post-treatment research. I introduce novel

visual encodings to summarize heterogeneous cohorts that exhibit unconventional char-

acteristics, such as multi-stage time series, temporal networks with temporal nodes,

weighted associations across temporal and non-temporal attributes, and multivariate

spatial and non-spatial temporal patient attributes.

C3. Integrated Workflows (Q3) The proposed visual analytics systems integrate visu-

alization with both supervised and unsupervised cohort modeling to leverage model
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explanation and evaluation, i.e., human-machine workflows. These modeling methods,

together with interactive visual encodings, support pattern, clustering, association, se-

quence, prediction, and risk analyses in patient cohorts.

C4. Evaluation (Q4) Finally, I evaluate the utility of these visualization systems through

case studies and feedback from domain experts, code the feedback into key research

dimensions, and present the lessons learned from these multidisciplinary collaborations.

The rest of this document is structured as follows:

In Section 1.3 (Background), I present the relevant research background to this thesis.

In Section 1.4 (Related Work), I present the related work relevant to my proposed work.

In Section 1.5 (Methods), I present the methodology for designing, developing, and eval-

uating the proposed work.

In Chapter 2 I introduce a visual analytics system, OpenDBM [59] ( Fig. 1.1), for cohorts

and individual patient analyses in digital biomarker research. The chapter describes the

domain characterization of digital biomarker modeling for behavioral research and proposes

a front-end application to support the understanding of disease outcomes. The project uses

custom visual encodings for the analysis of large-scale (>50GB), multimedia patient cohorts.

Furthermore, it enables the analysis of set formations based on user-defined attributes. It

supports the evaluation and understanding of modeling outputs for large audiences (e.g.,

academics, clinicians, technical and non-technical researchers). This work was evaluated by

academics, industry researchers, and clinical researchers. However, because the system is

released as open-source and intended for broad use, and because it addresses a relatively

new neurological domain without established standards of care, it prioritizes general cohort

analytical tasks and is better suited to data discovery and hypothesis generation rather than

to clinical decision-making.

In Chapter 3 I move to the domain application of cohort analysis in head and neck

cancer symptom research. This research shifts the focus to clinician-data modeler collabora-

tions for hypothesis-making and patient care decision-making. After presenting the domain
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characterization for oncological post-treatment research based on patient-reported symptom

measurements, the chapter presents a visual analytics system, THALIS [60] ( Fig. 1.1), that

introduces new encodings to stratify multivariate, multi-stage cohorts by symptom risk. In

particular, this system uses data visualization to evaluate the applicability of association

rule mining as a modeling approach for symptom clustering research and to identify risk

patterns and associations across different treatment stages. This work was developed for

and evaluated by data modelers and clinicians, but it does not account for the differences

in analytical tasks between clinicians and data modelers. Furthermore, THALIS supports

risk rule modeling on a limited set of results for the entire cohort, without considering key

attributes, such as treatment plans.

In Chapter 4, due to the collaborators’ interest in the rule mining-based modeling, I ex-

tend the work from Chapter 3 through a data visualization system, Roses [61] ( Fig. 1.1),

that supports the evaluation and understanding of an upgraded risk modeling approach,

using sequential rule mining and hierarchical rule clustering. This project uses custom vi-

sualizations to predict, explain, and find patterns in outcome risk for cohorts stratified by

treatment plans, this time focusing on post-treatment risk prediction. In particular, this

work supports configurable workflows on the front end to better accommodate the varying

interests in modeling results among data modelers and clinicians. The system was evalu-

ated by both data modelers and clinicians, but due to its configurable front-end design, the

amount of analytical workflows was at times overwhelming.

In Chapter 5 I continue with the same domain application in head and neck cancer re-

search, and propose a visual analytics system, L-VISP ( Fig. 1.1), that aims to separate

the workflows and front-ends for clinicians and data modelers, inspired by the design from

OpenDBM, trying to provide more analytical flexibility than THALIS, and trying to offer

more workflow structure than Roses. In L-VISP I focus on visual analytics for human-

machine analysis workflows centered on data modeler needs, to support more complex and

black-box modeling for cohort risk, while also considering the evaluation of the modeling
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results in a clinical context, by clinicians. L-VISP evaluates various Long Short-Term Mem-

ory (LSTM) methods for symptom risk prediction on user-specified patient sets, stratifying

the patient cohort using selected attributes and machine-derived patient clusters/sets. This

enables a better understanding of post-treatment outcomes for a target cohort. Custom

visualizations assist data modelers and oncologists in developing hypotheses about existing

patients and improving healthcare for future patients.

In Chapter 6 I discuss the results of this body of work. For readability purposes, I refer

to the visual analytics systems presented in Chapters 2-4 using the following acronyms:

OpenDBM for the system in Chapter 2, THALIS for the one presented in Chapter 3,

and Roses for the system in Chapter 4 and L-VISP for the system in Chapter 5.

Next, I will present a background overview of post-treatment research workflows and the

building blocks of this dissertation: the ACD method for developing the proposed systems

and the evaluation methodology for these systems.

1.3 Background

In this section, I present an overview of the patient treatment care research workflow, how it

connects to post-treatment care, and briefly describe the two medical domains used as case

studies in this dissertation. Specifically, I will discuss applications in oncology (a medical

branch specializing in the treatment and prevention of cancer, such as head and neck cancer)

and neurology (a medical branch dealing with the treatment of disorders and diseases of the

nervous system, from conditions such as Parkinson’s disease, epilepsy, autism, to depression,

and post-traumatic stress disorder). By symptoms in these medical domains, we refer to

negative physical or mental features that affect patients’ quality of life or cause a health

dysfunction. These symptoms are usually a consequence of either the disease of the patient or

the prescribed treatment (i.e., treatments including antidepressant medications for patients

with depression can cause fatigue and drowsiness, affecting the patient’s daily life).
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1.3.1 Post-Treatment Care

In many therapeutic areas of medicine, such as oncology, once a patient is diagnosed, a

treatment plan is determined. These treatments influence, to a large extent, how the patient’s

overall health status evolves Fig. 1.1. Usually, during cancer treatments, clinicians closely

monitor whether the treatment cures the disease and whether it contributes to a decline in

the patient’s quality of life [40]. Naturally, this patient-monitoring stage leads to longitudinal

studies, which, when collected from hundreds or thousands of patients, can yield rich datasets

for predicting more effective treatment plans for new patients. These studies are also used

for post-treatment care [117,186], which is mainly due to current therapeutic standards that

do not monitor patients as often after treatment completion; as a result, this stage is far

less documented and is supported by sparse datasets. Together with treatment outcomes,

treatment can provide strong indicators for predicting how a patient’s health will evolve

post-treatment, an understudied domain in many medical applications. As a result, post-

treatment care is highly dependent on the studies conducted during treatment [43].

After treatment, care planning is a complex modeling process due to challenges arising

from patient data that is complex, with many attribute types and extracted from different

sources. Many medical applications incorporate information on individual differences, in

addition to cohort data, to deliver personalized care. In the therapeutic domains of oncology

and neurology, identifying individuals at risk of adverse outcomes is fundamental to creating

safer therapies and improving patients’ quality of life. However, traditional outcome stratifi-

cation models are not always accurate and need to be evaluated alongside different attributes

within patient data [145, 191]. In addition, most patient cohorts are not stratified a priori

by risk level, making it more difficult to understand how outcome risk is connected to differ-

ent cohort characteristics [186]. As a consequence, risk modeling remains an understudied

domain in many medical applications, and analytical tools that overcome its challenges and

support its advancement are needed.
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1.3.2 Symptoms in Oncology

In recent decades, advancements in oncology have led to a greater variety of personalized

cancer treatments for head and neck cancer (HNC) patients, with more varied treatment

plans and better survival rates [42]. Personalized HNC treatment is a complex, longitudi-

nal process that uses a variety of therapies, including surgery, radiation therapy, induction

chemotherapy, or a combination of treatments. For example, a patient can be prescribed

with radiation therapy and then with chemotherapy as well, or with both in parallel. Unfor-

tunately, the type of prescribed treatment can cause symptoms during treatment (or acute

symptoms) and post-treatment (or late, long-term symptoms), or even permanent health

problems which can affect the patient’s quality of life [56]. As an example, radiation-based

treatments in head and neck cancer can cause dry mouth [153] due to the radiation damage

to the salivary glands. Similarly, some patients might forever experience swallowing dysfunc-

tions after treatment completion due to the organ damage produced by radiation [94,149].

The MD Anderson Cancer Center at the University of Texas documents and quantifies

these symptoms through a standardized symptom and quality-of-life monitoring program.

This program uses questionnaires collected weekly at the time of the treatment appointment

and at longer intervals post-treatment. The questionnaires contain the MDASI (MD Ander-

son Symptom Inventory) [40] items, a 28-symptom patient-reported symptom outcome used

in clinical research. MDASI has thirteen core items, which include symptoms common in

multiple types of cancers. MDASI-HN inventory [165] includes nine HNC-specific symptoms

as well (e.g., swallowing dysfunction), and six daily life-interference symptoms (e.g., mood).

These patient-reported data need a hybrid analytical approach that connects treatments

with symptomatic side effects and the patient’s health history.

The risk of appearance and the level of severity of these symptoms depend on a variety

of factors. In some cases, symptoms can persist or develop even after treatment has been

completed, affecting patients’ well-being [26]. Monitoring symptom burden post-treatment

delivery is more difficult due to less frequent patient visits to the clinic. Thus, there is growing
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interest in understanding the risk of patients developing symptoms, the relationship between

symptoms and treatment decisions, and the likelihood of symptoms occurring during and/or

after treatment, to identify long-term symptoms that limit patients’ quality of life.

Since cancer patients can experience a multitude of symptoms that can co-occur or can

cause other symptoms, oncology experts are interested in modeling clusters of frequently

co-occurring symptoms and in modeling how symptoms are correlated with the prescribed

treatment. Symptom-clustering research in oncology is strongly dependent on the patient’s

diagnosis and treatment and focuses on symptom severity [7, 50, 57]. However, existing

research does not focus on the temporal association between symptoms, changes in symptom

severity over time, or the prediction of post-treatment symptoms.

1.3.3 Digital Biomarkers in Neurology

One consequence of the rapidly aging population and the rapid evolution of society is an in-

crease in neurological diseases. Thus, there is increasing interest in neuroscience that delves

into the underlying mechanisms of various neurological diseases, with a focus on the risk

of disease onset and progression. Digital biomarkers (DBMs) are objective, quantifiable,

physiological, and behavioral medical measurements, collected using digital devices (e.g.,

smartphones, smartwatches) from patients [157], which can be used in neuroscience to diag-

nose patients, to predict disease risk, or to monitor the longitudinal response to treatment.

OpenDBM is an open-source feature extraction toolkit that extracts behavioral DBMs

from patient videos. This can help not only to better understand patient behavior during/post-

treatment, but also to assess the risk of negative behaviors using the modeled DBMS. How-

ever, these DBM measurements, extracted with OpenDBM, generate large-scale, longitudinal

datasets with hundreds of attributes and data files and thousands of time points that are

difficult to analyze without more appropriate analytical tools. Moreover, because DBMs

are a relatively new component in neurology, there are no golden standards regarding what

biomarkers are representative of each disorder risk and to what extent; thus, research in this

domain has yet to combine different categories of DBMs together for comprehensive patient
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risk investigations.

1.4 Related Work

In this section, I present the relevant related work for the four proposed systems offered

in the following four chapters. I start with the medical cohort ( Section 1.4.2) and XAI

( Section 1.4.2) visualization, which is relevant to all four systems, then I continue with

more related work relevant to THALIS, Roses, and L-VISP, which provide contributions

in cluster visualization Section 1.4.3, symptom clustering Section 1.4.4, and rule visualiza-

tion Section 1.4.5. Fig. 1.2 provides some examples of existing visual analytics (VA) systems

in cohort and medical visualization with respect to some key features to which OpenDBM,

THALIS, Roses, and L-VISP contribute.

1.4.1 Medical Cohort Visualization

Visual analysis of patient cohorts often relies on finding connections between different patient

attributes from medical records. Electronic Medical Records (EMRs) store longitudinal

patient information, often in the form of time series. In general, time-series visualization

has utilized point graphs, circle graphs, line graphs [87], parallel coordinate plots [92], or

stacked bar charts and their variations [6] to encode nominal, ordinal or quantitative time-

oriented data, including in cancer research [146,174,202]. For EMR data, Plaisant et al. have

introduced personal patient summary visualization using timelines [158,184,185], or matrix-

based representations [52]. Loorak et al. [120] proposed a stacked bar graph approach to

explore patient treatment processes, while Baumgartl et al. [14] explored EMR storyline

visualizations to detect pathogen outbreaks. Rogers et al. [162] showed outcome trajectories

of different patient procedures using line charts. However, most of these approaches are not

scalable to large EMR datasets with hundreds of items/patients and multivariate attributes

spanning tens of data points. Wong et al. have employed summarization techniques to

overcome scale issues via tree-based encodings [196] and Sankey-based representations [86,

195]. At the same time, Karpefors’ tendril plot [102] introduced a clustered timeline view
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Figure 1.2: Visual analytics selection from the related work and their comparison to OpenDBM, THALIS, Roses, and
L-VISP. Most of these tackle medical cohort visualization Section 1.4.1 and medical XAI visualization Section 1.4.2.
Some discuss rule mining and clustering visualizations Section 1.4.5, Section 1.4.3

of outliers and trends for dense clinical trial data. These works do not contribute to multi-

stage timelines, as we do in THALIS and Roses, nor to patient timelines extracted from

multimedia sources, with thousands of time points per attribute, as we do in OpenDBM, or

to associated timelines, as in L-VISP.

For large scale medical records data Fig. 1.2, such as records that store hundreds or thou-

sands data points with tens of attributes collected over many time points (n >10), patient

clinical histories are often visualized using clinical pathway summaries for individual pa-

tients [28], or cohort temporal summaries when dealing with larger cohorts (n >700) [196]. In

OpenDBM, we had hundreds of attributes collected frame-by-frame from multimedia sources,

resulting in thousands of time points. Furthermore, we had to integrate all these attributes

and provide a temporal overview, regardless of the data extraction rate (note that video and
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audio are extracted at different rates). Related work in medical cohort visualization does not

contribute to this. Visual abstractions for temporal cohort data have mostly used matrix-

based representations [52], flow-based representations [73, 195], or timelines [14, 76, 77, 158].

Variations in tree-based representations have been used for summarization, ordering, and

statistics of event sequences in temporal and clinical data [128, 144, 185, 196]. Other sys-

tems for time-dependent cohort data have used PCPs or flow-based representations that use

line bundling [14, 136]. Unlike the visual representations proposed in these works, THALIS

and Roses offer visual abstractions for timelines with unconventional characteristics, namely

multi-stage timelines, or associated timelines where the level of association matters (i.e.,

weighted associations), as in L-VISP.

Most of the work in medical visual analytics focuses primarily on chronic conditions such

as cancer [20], stroke [120], diabetes [47], or infectious disease control due to the COVID-19

pandemic [14,172], and less on neurological disorders. Our work in OpenDBM adopts a new

approach to promote individual patient data exploration while building on prior approaches

for cohort data exploration. There is work in visual analytics for facial activity and head

movement and separately for voice acoustics and speech measurements [37,134,177,178,198],

however, some of it does not use video data and none accounts for all four measurement

categories together.

Based on the 2021 survey of Guo et al. [79], general analytical tasks in medical applica-

tions are cohort summarization and comparison, outcome analysis, and prognosis analysis.

We contribute to all except the latter area and address some of the ongoing visualization

challenges they list, namely scalability, data heterogeneity, multivariate event sequence vi-

sualization, interpretability of machine learning, and associative analysis. In particular, our

focus across all proposed visual analytics systems is on developing custom, novel visualiza-

tions for cohort stratification and risk analysis to support post-treatment care research. In

addition to the data heterogeneity and complexity challenges, this proposal presents solu-

tions for multi-stage cohorts, with temporal, multivariate, and associated attributes. Given
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these data characteristics, we propose novel encodings for multi-stage timelines (THALIS,

Roses), temporal networks with temporal nodes (Roses), temporal items with weighted as-

sociations (L-VISP), and multivariate attributes with spatial and non-spatial characteristics

(OpenDBM).

1.4.2 Medical XAI Visualization

In explainable AI (XAI) medical applications Fig. 1.2, cohort analysis tackles clinical statis-

tics from patient records [88, 195], cohort history comparison [20, 39, 204], cohort medi-

cal image attribute comparison [108, 132, 161, 190], or cohort stratification for risk analy-

sis [130, 182, 191]. Visual encodings vary widely between these applications, from custom

histograms [14], time series plots [73,86,97], matrices [52,77,97,128], radial charts [75], etc.

Similarly, we use histograms, matrix-based, and time-based encodings to summarize cohort

characteristics in all proposed projects, but we propose novel encodings when the data shows

less common characteristics in medical cohorts, e.g., multi-stage timelines (THALIS, Roses),

a large number of attributes (n >100) (OpenDBM). For XAI cohort analytics, we explore

cohort stratifications based on user-selected attributes (THALIS, OpenDBM) and compari-

son of machine-derived cohorts (clusters) (Roses). When working with large cohorts (>700

patients) where the focus is on finding outlier patients and understanding why they show

unexpected clinical characteristics, scatterplot projections are a common way to interpret

cohort clusters [55, 135, 136, 192]. We use scatterplot projections in all projects to support

outlier detection and patient vs. cohort analysis, which are important considerations for

post-treatment research, but in THALIS and Roses, we try to incorporate other cohort at-

tributes in these projections using different visual marks (size, color, shape, etc.), including

temporal attributes (Roses) in the scatterplot glyphs. In L-VISP, we use scatterplot pro-

jections arranged in a matrix-like representation to provide a better sense of the size and

distinct characteristics of a selected cohort vs. the rest of the population.

There is a high demand in medical XAI for applications that can enhance the human

interpretation of machine-generated outputs in patient cohorts, as well as for collaborations
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between data scientists and medical experts [4,19,29,97,119,146,174,183]. Related work has

proposed a variety of applications that incorporate the output of the ML model for patient

prognosis, survival prediction, prediction of treatment outcome [73,77,79,97,99,111,114,195],

and patient treatment recommendation [52]. Our work across all four projects supports

multidisciplinary collaborations between data modelers and clinicians in cohort analyses of

patient outcomes and risk. However, in THALIS, Roses, and L-VISP, we use visual analysis

to help data modelers understand the model’s behavior and outputs for patient cohorts,

alongside relevant clinical attributes and treatment. We generally support designs that can

be used and evaluated by clinicians with modeling experience for clinical validation, but in

L-VISP we separate the clinician and modeler front-ends to support more complex modeling

for data modelers. We do not use artificial agents in any of the proposed projects, nor do

we explore the collaborations between artificial agents and human agents in human-machine

analysis [143].

Visual analytics for black-box cohort modeling is a challenging domain due to the inher-

ently opaque nature of these models. Some tools have been proposed to leverage the collab-

oration between a clinician and an AI model [105,114,189]. However, many times, clinicians

collaborate with data modelers to interpret cohort modeling [67, 121, 174]. In L-VISP, we

focus on the data modeler tasks, where the clinician is a secondary user. We use visual

analysis to help data modelers understand black-box models and support the collaborative

clinical validation of the model predictions with clinicians. We explore a more guided ana-

lytical workflow than in our previous work, visually separating user activities across multiple

front-end panels. Another notable difference from THALIS and Roses, rather than identi-

fying temporal [61] and non-temporal associations [60] between items, we uncover weighted

associations.

1.4.3 Cluster Visualization

Cohort analysis uses various unsupervised learning methods such as factor analysis (e.g.,

PCA), partitional (e.g., K-means), or hierarchical (e.g., agglomerative) clustering. Cluster
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analysis is traditionally visualized using methods such as scatterplots [135], matrices [160],

radar charts [130], dendrograms [56], and heatmaps [2]. Temporal clustering is an open

problem in symptom research due to the issue of missing data [9, 127]. Furthermore, can-

cer patient clustering takes into account clinical variables that can include disease stage,

treatment plans, medication, toxicity of treatment, etc. [53, 126]. For head and neck cancer

(HNC) patients, Gunn et al. [74]. Rosenthal et al. [166] have studied specifically symptom

burden for HNC patients by clustering patients based on reported symptom ratings and

clinical covariates to find similarities between symptoms and HNC patients using heatmaps

and cluster heatmaps. Still, they either do not consider temporal data or analyze patients

that underwent specific treatments, respectively, like we do in THALIS, Roses, or L-VISP.

Cohort analysis often relies on domain expert interaction to help support human-machine

integrated workflows. For general clustering, several interfaces have provided user interaction

for iterative re-clustering and visualization of unstructured cluster data [33, 34], although

these rely on generic, abstract encodings such as scatterplots. Other tools have been built to

support model building for biostatisticians [48], although these tools do not consider spatial

or temporal outcomes and are aimed at statisticians rather than clinicians. In contrast, we

focus on both the needs of statisticians (data modelers/scientists) and clinicians in all our

projects. Other applications have integrated interactive interfaces with application-specific

visual encodings with linked views [8, 66, 190, 192] to support active collaboration between

data modelers and clinical researchers. However, none of these approaches consider temporal

changes in outcome data, as we do in THALIS, Roses, and L-VISP, or nuanced quality-of-life

outcomes (all four projects), and none account for missing data, as we do in THALIS and

Roses.

1.4.4 Symptom Clustering

Cancer patients experience multiple co-occurring symptoms often related to each other and

to the therapy applied; however, much of the symptom clustering research focuses on sin-

gle symptoms. In contrast, the term “symptom cluster” (SC) refers to two or more in-
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terrelated symptoms that develop together and may or may not be caused by a single

underlying mechanism. Several studies have identified symptom clusters in cancer pa-

tients [7, 50, 57], though symptom cluster research is still an emerging field. The two most

common methods used to determine SC are factor analysis (e.g., principal component anal-

ysis, that is, PCA) [104, 107, 170] and cluster analysis (e.g., hierarchical agglomerative clus-

tering) [58,81,91,138]. However, these approaches have not addressed changes in symptoms

over time, as we do in THALIS, Roses, and L-VISP, which remains an elusive goal.

Association Rule Mining (ARM), introduced by Agrawal and Srikant in 1994 [5], is an

unsupervised data mining method for identifying interesting relationships in data. ARM

has been applied to risk management and marketing [80, 103], and more recently in clinical

settings [110], although not in symptom clustering. We use ARM in THALIS to identify

common symptom clusters across two patient monitoring stages: during and post-treatment.

Furthermore, a popular method for clustering time series focused on clinical event sequences

in the visualization domain is sequential pattern mining [32, 47, 182]. However, sequential

pattern mining can be misleading, as there is no assessment of the probability that a pattern

will be followed. In contrast, our proposed work in Roses uses sequential rule mining (SRM),

which accounts for the likelihood that a temporal pattern will be followed. We use SRM to

cluster temporal symptom measurements and to find temporal prediction patterns in cancer

cohorts.

1.4.5 Rule Visualization

Rule-based modeling is a common approach to create explainable models [116, 199]. In

XAI, rule-based explanations are often used to interpret black-box models such as neural

networks [141], support vector machines [133], and latent factor models [156]. Rules have

also been adopted in the visualization of medical data, with applications in clinical risk

prognosis [10, 118] and disease or treatment toxicity prediction [60,141,176].

Association rules have been visualized via scatterplots, matrix views, node-link representa-

tions, mosaic plots, and parallel coordinates plots, as indicated by two surveys [27,90,95,207],
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and also as grouped matrices [83]. Elmqvist and Tsigas [150] used differently sized colored

shapes to indicate the information flow in systems of interacting processes, with color in-

dicating the influence of different methods. In biological modeling, both RuleBender [171]

and the Kappa environment [62] propose interactive node-link visual representations of rule-

based intracellular biochemistry. Visual causal vectors have been used to indicate causality

between data elements [188], and animated causal overlays have been used to highlight causal

flows and to demonstrate the relative strength of the causal effect [13]. However, when ap-

plying rule mining to patient measurements, the results must be evaluated in conjunction

with cohort attributes to better support the generated hypothesis. In THALIS and Roses,

we try to connect all the dots by linking the common patterns identified by the rules to

diagnostic and demographic attributes.

Alongside rule set items, visualization systems also have to integrate relevant rule metrics,

such as the support and confidence, to denote the relevance of rules. Yuan et al. [201] found

that feature alignment and predicate encoding are influential visual factors for representing

rules, arguing that different rule structures strongly influence interpretability and decision-

making. Applications that support rule itemsets and the explanation of rule metrics in

disease progression have used matrix-based representations accompanied by barcharts and

tree-based circular glyphs [10,141]. In contrast, others used node-links to represent temporal

rules from diagnosis codes [148]. Similarly, to explain rule results, in THALIS, we use

visual marks to highlight important rule metrics that must be accounted for to understand

a pattern’s impact across a cohort. At the same time, in Roses, we propose a new way to

summarize overlapping rule sets using rule clustering and a projection to show associations

between rule items.

More generally, rule-based modeling and visualization are common in domains that seek

to understand causality. Although our work aims to identify temporal relationships among

data based on association rules, these relationships are not necessarily causal and differ from

those in biochemical pathways. Although we visualize individual rules in THALIS, we depart
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from that in Roses and propose a 2D clustering projection approach to analyze temporal rule

clusters using temporal itemsets.

1.4.6 LSTM Visualization

Long Short-Term Memory (LSTM) models are a deep learning method that can deal with

complex time series while showing excellent results for a variety of applications, spanning

from finance and economics to epidemiology and other biomedical applications [85, 115,

142, 205]. Past work in XAI visual analytics for explaining LSTM prediction models has

supported understanding of model performance by exposing models’ hidden-state dynam-

ics, evaluating performance metrics, and comparing modeling outputs with ground-truth

data [30,36,85,175,197]. These works have experimented with matrix-based visualizations, as

well as with timeline and flow-based visual representations of the predicted results [85,175].

We use similar visualization techniques, but, unlike previous work that focuses on single

tasks, we use them to combine these analytical tasks. Specifically, in L-VISP, we expose

the model’s hidden-state dynamics, evaluate its performance, and compare its predictions

against ground-truth data. Another difference from previous work is that we aim to visually

combine the outputs of two distinct and complementary LSTM models (i.e., the Bi-LSTM

and IMV-LSTM). Finally, unlike some of the previously mentioned work, our work aims

to evaluate and compare model results across patient cohorts. Namely, it supports model

evaluation on cohorts that are either user-defined (e.g., female patients under 50) or derived

from cluster modeling (e.g., a patient cluster with severe symptom ratings).

Our collaborators have previously experimented with unsupervised rule mining, clus-

tering [21, 61], and LSTM-based modeling [186, 187] to predict symptom risk and identify

associations in multivariate patient cohorts. In L-VISP, we do this with supervised LSTM

methods, which can help to predict symptom risk in new patients at the beginning of their

treatment, without necessitating their temporal records during treatment. Unlike previous

LSTM-based approaches to symptom prediction, the methods in this work use Bi-LSTM [186]

to capture bidirectional temporal dependencies for improved predictive performance, while
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incorporating interpretability mechanisms to enhance transparency.

LSTM-based models are a deep learning method that can deal with complex time series

data while showing excellent results for a variety of applications, spanning from finance and

economics to epidemiology and other biomedical applications [85,115,142,205]. Past work in

XAI visual analytics for explaining LSTM prediction models has supported understanding

of model performance by exposing models’ hidden-state dynamics, evaluating performance

metrics, and comparing modeling outputs with ground-truth data [30,36,85,175,197]. These

works have experimented with matrix and tabular-based visualizations, as well as with time-

line and flow-based visual representations of the predicted results [85, 175]. In addition to

exposing the model’s behavior by analyzing the features of hidden states, we combine, in

L-VISP, the exploration of the model’s performance across predicted items (i.e., symptoms)

with performance metrics and compare outcomes against ground-truth data. Unlike unsu-

pervised rule mining in THALIS and Roses, in L-VISP, we use LSTM-based modeling to

predict symptom risk and identify associations in multivariate patient cohorts. We com-

bine outputs from multiple LSTM-based methods using visualization for symptom modeling

and evaluate these methods on patient cohorts that are either model-derived (clusters) or

user-specified attribute sets.

1.5 Methods

1.5.1 Activity-Centered Design

The activity-centered design (ACD) approach [129], is a design model that emphasizes user

activities, under the principle that “people’s activities around the world tend to be similar,

and because people are quite willing to learn things that appear to be essential to the activ-

ity, activity should be allowed to define the product and its structure” [49]. Visual analytics

can use this paradigm; however, in many scientific domains, characterizing the application

domain poses significant challenges to visual analytics designers and domain experts, which

happens because the domain’s problems are exploratory and the analyzed data is heteroge-

neous. As a result, the ACD method is suitable for applications in scientific research because
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of the scarcity of trained domain experts and because it supports slow thinking [100]. The

ACD method puts value of the tool depending on the user activity, not the number of users

of the tool (for example, an application that serves only a couple of researchers in cancer

care is not less valuable than an application used by thousands of people for interior design

ideas) [131]. In this proposal, I use an ACD-based approach for the domain characterization,

design, and development of all the proposed visualization systems. The workflow used for

the four projects is, in short, as follows Fig. 1.3:

Figure 1.3: Activity-Centered Design simplified workflow

1. Cohort samples are retrieved and analyzed.

2. Visualization designers meet with domain experts, namely, the tool’s clients, to gather

and understand the user activities and tasks.

3. Designers propose several paper prototypes based on these tasks and narrow down the

final design with the clients.

4. During the development phase, visualization designers meet periodically with clients to

gather feedback and refine the software prototype.

We used ACD in all the projects presented in this dissertation.

1.5.2 Evaluation

The utility of the visualization systems was evaluated using qualitative methods. The evalu-

ations are based on pair analytics [11], where the visual analytics designer was the navigator

of the visual analytics tool, and the tool clients were the drivers of the tool. Although

pair analytics requires two participants per session, we organized evaluation sessions with

all clients due to limited availability and because we observed that group sessions helped
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to generate more hypotheses and feedback. However, these sessions usually had two main

drivers, namely a data modeler and a clinical practitioner. The evaluation sessions were

conducted online, through screen sharing, starting with demonstrations of the tool and then

walking through case studies. The drivers (evaluators) were encouraged to think aloud and

make hypotheses while the navigator was driving the interface, and a navigator helper took

notes or recorded interactions, feedback, and hypotheses from the domain experts. The

evaluators’ feedback was extracted from these notes and recordings, and occasionally, from

written feedback.

Unlike related work tools that usually employ experiments, case studies followed by sur-

veys, or case studies with datasets from different scientific disciplines to evaluate visual

analytics systems, we had certain constraints. We faced limitations in the number and avail-

ability of domain experts for these tools (e.g., clinicians who would use these systems should

have data modeling experience), as well as data sample limitations. Pair analytics helps re-

searchers with different expertise and from different work environments to naturally interact

and share hypotheses. This methodology reduces tacit knowledge that is not verbalized and

elicits collaborative analyses while also not constraining domain experts to be too verbose,

such as in the case of the think-aloud method. We also adopted a group setting to evaluate

how beneficial the end results of these projects were in real-life use cases.

We performed a reflexive thematic analysis [25] on the evaluation feedback gathered from

our collaborators from all projects and coded it into three main dimensions of this research:

Actionability. This helped us to understand whether domain experts think the systems

are fit to be used in practice.

Perceived Usefulness. This helped us to understand whether the domain experts think

they would benefit from the proposed systems.

Trust. This helped us to understand if domain experts trust the system enough to

actually use it and consult it during decision-making.

These dimensions are explained in more detail in the discussion of this research in Chap-
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ter 6 Section 6.2.
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Chapter 2

Opening Access to Visual Exploration of Audiovisual Digital
Biomarkers: an OpenDBM Analytics Tool

2.1 Introduction

In this chapter, I present the design, development, and evaluation of a visual analytics sys-

tem for digital biomarker knowledge discovery and hypothesis-making, which can be applied

to cohort post-treatment analysis. The system is open-source and was designed for large

audiences (e.g., technical and non-technical researchers, academics, clinicians, and industry

researchers). The aim is to facilitate the understanding of disease outcome risk through the

visualization of hundreds of derived (mean) and raw patient biomarker measurements that

were modeled and extracted from patient videos. This work uses visualization for model

understanding and evaluation by determining patient adverse behavioral risk through com-

binations of patient attributes (i.e., digital biomarkers). For example, in patients treated for

depression, behavioral indicators suggesting the persistence of depressive symptoms post-

treatment, detectable through digital biomarkers, include a consistently low gaze (e.g., re-

duced upper-lid raiser activity), lowered head posture (e.g., low-pitch head movements and

elevated brow-lowerer activation values), and reduced vocal intensity (e.g., low audio ampli-

tude). This system enables an iterative analysis of patient risk set formations and highlights

risk attributes that are correlated with the said sets. To better understand individual patient

health status, a separate panel visualizes raw individual patient biomarker measurements.

This project introduces a novel visual encoding that connects multiple risk components to

anatomical locations. The encoding summarizes spatial and non-spatial multivariate, tem-

poral attributes, and it illustrates the importance of providing context and humanizing the
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data when analyzing patient cohort datasets. The evaluation of this system on a 95-video

set proves the potential of risk analysis using digital biomarkers in clinical research.

The contents of this chapter were presented at the IEEE VIS 2022 Visualization in the

Biomedical AI workshop [59] and the draft is posted on arXiv.

2.2 Motivation

The global market value of digital biomarkers (DBMs) is projected to exceed $7 billion by

2026 [1]. DBMs are objective, quantifiable physiological and behavioral data collected and

measured using digital devices, such as smartphones and smartwatches. Like traditional

biomarkers, DBMs have clinical value, such as diagnosing disease and predicting disease

outcomes. For example, lowered gaze, slowed movements, and sad facial expressions in a

patient’s behavior can serve as predictors of depressive disorders. However, DBMs introduce

additional benefits that exceed traditional biomarkers’ constraints, such as capturing longi-

tudinal and continuous measurements that generate large, rich, and complex datasets [12],

with hundreds of variables and files, and thousands of time points. Providing clinical re-

searchers with practical tools to derive and interpret DBMs increases their ability to assess

changes in health status relevant to healthcare applications [180]. In addition, current DBM

research is represented by numerous studies with DBMs that are not validated properly [72]

or are duplicates of existing DBMs. Open-source DBM tools are necessary to broaden the

validation of DBMs, reduce duplication, and expedite innovation. To support the growing

demand for the adoption of DBMs by clinical researchers, more practical tools are required to

better inform non-technical biomedical researchers on how to use and identify DBMs [44,82].

In particular, the growing role of DBMs in the therapeutic domains of neurological dis-

orders has sparked renewed interest among clinical researchers in exploring measurable au-

diovisual changes to better understand how patients feel and behave [17, 35, 96, 112, 140,

157, 159, 169, 181]. Growing open source software projects, such as OpenDBM, are lower-

ing the barrier for non-technical clinical researchers to apply quantitative models, including
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machine learning models, to extract audiovisual features in human speech, voice acoustics,

head movement, and facial expressions [68, 69]. However, despite open source tools accessi-

ble to extract audiovisual features, clinical investigators are burdened with interpreting large

(N >100) and complex quantitative datasets [82], with data points that have hundreds of

variables collected over thousands of time points.

Given the novelty of DBMs and their still-growing taxonomy and use [41], there is interest

among behavioral and biomedical researchers in finding practical tools that can facilitate

exploratory analysis for the generation of data-informed hypotheses. This work aims to

improve researchers’ understanding of the breadth and scope of the hundreds of audiovisual

DBMs available for investigatory adoption. We propose a visual analytics interface for the

OpenDBM software1. Our proposed interface reveals patterns and outliers in facial, head

movement, acoustics, and speech DBMs extracted from videos. To our knowledge, this work

presents the first audiovisual DBM interactive visualization tool extracted from and made

available through open source software.

2.3 Setup and Requirements

The design process followed an Activity-Centered Design approach [129]. Our team held

remote meetings for nine weeks with five research groups in DBM therapeutic areas, collec-

tively representing academia, clinics, and industry. Although most of the collaborators were

principal investigators with faculty positions conducting behavioral or biomedical research,

all were familiar with the OpenDBM software. Throughout this process, the team iteratively

gained insight into user approaches to explore mappings between DBMs and conditions and

disorders of interest (e.g., major depression and schizophrenia), gathered functional specifi-

cations for a DBM interface, and prototyped and evaluated the interface. Due to the wide

variety of patient behavior for these disorders, we collected many specific requirements. How-

ever, we focused on the following subset of high-level activities to serve all our collaborators

and the open source community:
1https://aicure.com/opendbm/
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A1. Show details for any subset of DBM variables available through the OpenDBM

pipeline. For instance, for the early detection of Parkinson’s disease, head movement mea-

surements are of greater importance than other DBMs, such as voice acoustics. Adaptability

to different workflows is an essential factor in open source. Additionally, analyzing hundreds

of variables can be highly challenging, and sometimes researchers don’t know where to start

their analyses. Thus, having the means and freedom to choose what to explore visually is

very important.

A2. Support interactive visualizations for both raw and derived data. Visualizing derived

mean variables is important to get an effective cohort overview and context for individual

patients, while visualizing raw temporal variables supports in-depth analysis of individual

patients. This is critical for data quality checking. For example, researchers might want to

exclude from their analyses videos where the audio or the patient’s face was not captured.

A3. Emphasize trends and outliers in the DBM data. For instance, patients are expected

to exhibit negative emotions when discussing unpleasant or uncomfortable subjects. Domain

experts should be able to readily observe patterns across patients, which can provide valuable

insights for future studies. Furthermore, highlighting correlations between biomarkers is

fundamental to improving the understanding of these conditions.

2.4 Visualization Design

The visual system is open source and can be operated through the OpenDBM Github project.

It operates independently from the DBM extraction pipeline and serves as a complementary

application for visualizing the extracted DBM outputs. We used React with D3.js for the

front-end of the visualization system, and Python for the back-end. The interface has two

interactive panels: the Cohort Panel and the Individual Panel. These panels are composed

of multiple coordinated views that support brushing and linking operations.
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2.4.1 Data

Vocal and facial expressions convey emotion and communication behavior and are one of

the most researched topics in psychology and related disciplines; as a result, audiovisual

DBMs extend from these basic and applied science measurement tools [70]. When a video

is processed through OpenDBM, several vocal and facial feature extraction toolkits combine

to present hundreds of unique variable categories relevant to four different audiovisual DBM

domains: speech, acoustics, facial expression, and head movement. Each audiovisual DBM

domain provides two sets of quantitative variables: raw, captured as a frame-by-frame time

sequence measurement, and derived, capturing summary statistics on the total collection of

frames. These raw and derived variables provide a wide range of objective behavioral cues,

such as transcription and lexical richness for speech, jitter and shimmer for acoustics, eye

blink and facial tremor for head movement, and facial action units and facial asymmetry for

facial expressions. The proposed interface uses these raw and derived variables to display

relevant details and statistics about video cohorts and individual videos using two panels:

the Cohort and the Individual Panels. The official documentation provides the complete list

of DBM variables extracted by OpenDBM.

2.4.2 Cohort Panel

The Cohort Panel (Fig. 2.1) has three main views and functions: to provide a cohort overview

based on a selected set of variables, observe variable distributions, and find correlations

between variables.

Two query subpanels are available for variable and video ID selection, with the variable

query subpanel (Fig. 2.1.A) having three alternative components for each of the three main

views (Fig. 2.1.B, D, E). In the video ID query subpanel (Fig. 2.1.C), selected IDs are

highlighted in the other views, while unselected videos can be hidden from the rest. All

views have accompanying print buttons to generate plot images that can be used in further

studies.
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Figure 2.1: Cohort Panel. A) Query Subpanel with three alternative components for biomarker variable selection
for views B, D, E. B.1) PCA View that uses a scatterplot to display in 2D video data based on the variable selections
in A. B.2) The PCA scatterplot is color-coded based on an extra attribute, namely, the task that was performed
during each video. C) ID Query Subpanel, where IDs can be selected to be highlighted in views B and D, and
unselected IDs can be hidden. D) Distribution View showing cohort distributions for four selected variables. E)
Correlation View displaying pairwise Pearson correlation coefficients for six selected biomarker variables.

PCA View. This view (Fig. 2.1.B.1) uses a scatterplot for a cohort overview by ar-

ranging videos in 2D based on a selected set of biomarker variables (A1, A2, A3). The

axes correspond to the first two components computed by Principal Component Analysis

(PCA) [194]. We employed factor analysis (i.e., PCA) to help researchers get a better sense

of the underlying structures in the high-dimensional video data while retaining patterns.

The view shows trends and outliers, while brushing interactions highlight selected elements

in the Distribution View and ID query subpanel.

Distribution View. This view (Fig. 2.1.D) displays distribution charts for a selected

set of biomarker variables (A1, A2, A3). Split into two components, each distribution chart

shows one variable distribution throughout the cohort. The left side uses a scatterplot for

easier detection of individual videos, while the right side uses a density plot for a concise

cohort overview. Hovering on the scatterplot will highlight corresponding elements in the

PCA Scatterplot and ID query subpanel, and tooltips will display video IDs and variable
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values.

Many times, domain experts study biomarker data while trying to find patterns between

different cohorts. During the collection of system specifications, a frequent request was

to distinguish between sub-cohorts with varying plans of treatment, health conditions, age

range, etc. Thus, if such data are available, the system will color videos (Fig. 2.1.B.2) based

on that list of extra attributes in both the PCA and Distribution Views (A3).

Correlation View. This view (Fig. 2.1.E) contains a correlation matrix to emphasize the

interrelationships between a selected set of biomarker variables (A3). The matrix shows the

coefficients computed using Pearson’s Correlation [16] method. The accompanying tooltips

display the coefficient values for each pair of variables.

2.4.3 Individual Panel

This panel (Fig. 2.2) has five coordinated views, showing facial, movement, and acoustic

temporal variables with some derived variables, and correlations between raw variables.

The panel features an ID query subpanel (Fig. 2.2.E), where one video can be chosen

to display its DBM data. An interactive timeline (Fig. 2.2.B.1) splits the raw data into 20

time frames and highlights the corresponding time interval in the other views upon change.

Similar to the cohort panel, each view features print buttons.

Figure 2.2: Individual Panel. A) Head Sketch View, which uses custom colored masks to display facial asymmetry,
pain expressivity, overall expressivity (A.3), action unit (AU) intensity (A.1), and head movement (A.3) biomarkers.
In A.2, the AUs’ numbers are displayed, and the AUs involved in anger expressivity (bottom selection) are marked
with purple highlights. B.1) Timeline used to split the data into 20 time intervals. Upon change, the timeline will
update the mean values displayed in A and highlight the selected interval in views C, D, and F, while the corresponding
frame intervals will be shown in B.2. C, D, F) Facial, Movement, and Acoustics Views that display temporal data
distributions for selected biomarker variables. E) ID Query Subpanel, where one video can be chosen to display its
DBM data. G) Correlation View that shows a pairwise Pearson correlation coefficient for a set of variables.
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Head Sketch View. This head sketch (Fig. 2.2.A.1,2,3) supports derived value abstrac-

tions for facial activity and head pose biomarker data (A2, A3). Four alternative masks

that use custom heatmaps can be applied to support facial biomarker visualization. The

Asym mask uses colored glyphs to highlight facial features’ asymmetry values. The Pain

mask uses a colored glyph to highlight the pain expressivity values. The Expr mask uses col-

ored glyphs to highlight the overall, upper, and lower face expressivity values (Fig. 2.2.A.3).

The AUs mask (Fig. 2.2.A.1) highlights action units’ intensity values using arrows pointing

to the direction of the corresponding facial features’ movements [54]. As emotions are ex-

pressed through a combination of action units [163], the AUs mask has a complementary

layer (Fig. 2.2.A.2) that indicates the set of AUs that get activated for each of the seven

available emotions. Upon hovering, the action units’ numbers are visible on the facial sketch.

In addition to facial activity masks, a head pose (Mov) mask (Fig. 2.2.A.3) is also available

and indicates head movements of yaw, roll, and pitch using colored pairs of arrows for each

action. By default, the head sketch masks show derived values. However, this view will show

the mean values for the selected time frame when the timeline is updated.

Facial, Movement, and Acoustics Views. The Individual Panel features one view for

temporal data for each of the three biomarker categories, namely, facial activity (Fig. 2.2.C),

head movement (Fig. 2.2.D), and voice acoustics (Fig. 2.2.F) (A1, A2, A3). Each view uses

histograms to display temporal distributions for selected variables in the accompanying query

subpanels, with the X axis representing time. The placement of these views facilitates the

discovery of patterns among biomarkers. When the timeline is updated (Fig. 2.2.B1), the

corresponding time interval is highlighted in red on all histograms, while the frame intervals

are visible for each biomarker category (Fig. 2.2.B.2).

Correlation View. This view (Fig. 2.2.G) uses a correlation matrix to support the same

functionality as the Correlation View in the Cohort Panel (A3). However, here, the Pearson

correlation is computed using individual longitudinal data.

DBMs, as an interdisciplinary tool in AI and medicine, have a far-reaching potential in
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basic and applied sciences that will continue to drive qualitative domain experts’ interest in

quantitative DBMs. Therefore, when we started this project, we realized the importance of

making the interface accessible to a broad audience, including qualitatively trained domain

experts. As a result, we used conventional visual encodings suitable for various visual literacy

environments, such as scatterplots, histograms, density plots, and matrices. Additionally,

we experimented with custom visualizations, such as the facial and head pose masks, taking

advantage of the power of visual mapping techniques and trying to make better sense of

the behavioral measurements from facial activity and head movement. We chose to first

experiment with these two DBM categories because they were of interest in many use cases

during our design requirements interviews.

2.5 Evaluation

We evaluated our system using two case studies that involved three domain experts and a

video-simulated actor dataset. Using simulated actor datasets is a well-accepted practice for

capturing the prototypical representation of the multiple and complex emotional states of

psychiatric and neurodegenerative disorders [15,31,71,155]. A video-simulated actor dataset

was generated and used for our case studies. It included 95 videos, all under two minutes, of

one adult male actor, instructed to perform five categories of tasks while simulating major

depressive disorder for some videos. The five tasks included: describe a picture, describe a

memory, describe your day, read a passage, and reproduce a vowel sound or a basic facial

emotional expression. The evaluation was conducted through video conferencing using screen

sharing and the think-aloud method.

2.5.1 Case Study I: Cohort Analysis

For this case study, the domain experts were first interested in discarding videos with no

relevant information from the cohort (i.e., videos where the actor does not perform any

tasks). The investigation started with the PCA View (Fig. 2.1.A, B.1), where audio intensity,

fundamental frequency, and glottal to noise excitation ratio, all derived audio biomarker
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variables, were chosen as parameters to display the videos in 2D. Most videos were grouped

towards the lower-central part of the view. Next, the previous set of parameters was used for

the Distribution View (Fig. 2.1.D). After brushing the upper part of the PCA scatterplot,

the distribution charts revealed that the selected videos had the lowest audio intensity values

of the cohort. When brushing the left or right outliers, the distribution charts showed that

the selections belonged to opposite cohort extremities for fundamental frequency and glottal

to noise excitation (GNE) ratio, which aligned with previous research [139]. When using the

option to color the videos by task category (Fig. 2.1.B.2), the scatterplot showed that the

upper and left sides of the view were made up of videos with no audio or videos where the

actor reproduced facial expressions or vowels. Lastly, the domain experts wanted to check

the correlations between these parameters and speech DBM variables, such as the number

of pronouns, verbs, or adjectives used per task (Fig. 2.1.E). The Correlation View revealed

strong positive correlations between the DBM speech variables and the audio intensity. This

case study showed the interface’s ability to display relevant trends and outliers in subsets

of derived DBM variables of interest (A1, A2, A3) and helped the evaluators detect videos

without acoustic DBM data.

2.5.2 Case Study II: Individual Analysis

This case study started with the exploration of raw data for a video in which the actor

performs a picture description task (Fig. 2.2.E). The facial emotion expressions were chosen

as parameters for the Facial View (Fig. 2.2.C). The histograms showed high spikes for most

negative emotions, such as distress, anger, fear, and sadness, implying that the task entailed

describing a negative impact image. Hence, the domain experts were interested in observing

facial action unit changes over time, since they are connected to facial expressions, so they

used the Head Sketch View (Fig. 2.2.A.1) and the timeline for this task (Fig. 2.2.B.1). After

applying the AUs facial mask for action units and the Mov mask for head pose changes

(Fig. 2.2.A.3), they investigated different time frames using the timeline, and observed that,

indeed, at most times, the action units for negative emotions were active (Fig. 2.2.A.2). Next,
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the evaluators checked correlations between head poses and emotions using the Correlation

View (Fig. 2.2.G), and observed that, surprisingly, roll head movements were negatively

correlated with most emotions, while the other head poses did not show any particularly

strong correlations to emotions. Curiously, the evaluators watched the actual video, which

showed the actor describing a picture of a building on fire. This case study showcases the

interface’s ability to show patterns in selected raw DBM variables for one video (A1, A2,

A3) and helped the evaluators detect a video where negative emotional impact was present.

2.5.3 Expert feedback

We received positive feedback for the interface, considering that previously, domain experts

were limited to manual and laborious means of inspecting video data: “Very cool, so much

better to use for the analysis we did last year, huge time saver”. When asked what they

found most useful for their own research studies, most people pointed out the interface’s

ability to delineate subcohorts using different colors (Fig. 2.1.B.2) “very excited about the

color coding”, as well as the histograms (Fig. 2.2.C, D, F) “I had someone looking away from

the camera, this is actually picking up their data.” However, one evaluator indicated that it

would be helpful to “input our own data [in the interface] to work with the [bio]markers,”

as it could speed up symptom research for different disorders.

2.6 Discussion

The proposed interface successfully supports all main activities (A1-3). Both the Cohort and

Individual panels provide flexibility in choosing desired DBM variables for evaluation (A1).

The Cohort Panel supports the analysis of raw DBM variables, while the Individual Panel

supports the analysis of derived DBMs (A2). Finally, all visual encodings show cohort trends

in the DBM data (A3), such as the PCA view, which shows clusters and outlier patients

with respect to selected DBMs, and the distribution view, which shows cohort statistics for

DBMs. In contrast, the facial, voice, and acoustics views from the Individual Panel show

temporal trends for each DBM for a given patient.
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Overall, this system introduces visualization approaches to domain experts in the thera-

peutic fields of DBM. Some of the limitations of this system are that the Cohort Panel suffers

from scalability issues (i.e., the scatterplots) when it comes to large cohorts of hundreds of

videos, while several DBM normative ranges are currently being researched, and could better

inform domain experts on abnormal patterns and help generate more accurate hypotheses

about an individual’s health status.

This visualization approach begins to address the need for transparency behind data

quality control and quality assurance of these integrated open-source toolkits. The open-

source space is a natural fit to drive domain expert users to test and ratify best practices.

Future work can build upon our visualization approach by further improving visualizations

of raw data to check data quality from new and unvalidated toolkits.

2.6.1 Research Questions

Q1. How can visualization support cohort analysis? Using an ACD methodology, we in-

terviewed domain experts in behavioral biomarker research from industry, academia, and

clinics. This helped us to collect design requirements for this domain and key activities

that all researchers shared. Data visualization provided a more accessible way to traditional

methods of analyzing large datasets extracted from patient videos (such as looking at the

video in parallel to analyzing one file at a time). These datasets contain hundreds of vari-

ables, hundreds of files, and thousands of time points (frame-wise measurements) per video.

Analyzing this amount of data would be overwhelming for a single patient; needless to say,

it would be even more so for a cohort.

Q2. How to visually represent cohorts and their characteristics, and what interactions to

support? This project proposed a separation between the analysis of cohort data and indi-

vidual patient data. This design option seemed natural since the derived cohort variables are

extracted separately from individual frame-by-frame variables. We employed a coordinated

multiple-view design in the Cohort and Individual Panels to connect different categories of

DBMs (facial, movement, voice). We proposed a novel visual encoding to humanize these
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measurements when possible, connecting facial activity data, which were spatial, with head

movement data over time.

Q3. What system implementations work for post-treatment decision-making? The data for

this project was already modeled and extracted using the OpenDBM feature extraction

toolkit. The scope of this work was to provide a visualization interface to enhance the anal-

ysis of the resulting datasets. This interface could be used both during and post-treatment,

as patients could be recoded during both stages. For post-treatment care, the proposed visu-

alization system could highlight behavioral treatment outcomes (machine-derived biomarker

values), so that clinicians (humans) would make better-informed decisions about treating

current and future patients (visualization for ML). We ensured that the OpenDBM visu-

alization interface supports user activities by evaluating incremental prototypes with our

clients throughout the development phase.

Q4. What makes a visual analytics system valuable to biomedical users? The OpenDBM

interface supported research collaborations for the OpenDBM toolkit model understanding

and evaluation. We evaluated this project with research groups in academia and industry,

the latter being a multidisciplinary group, with clinical researchers and data modelers. The

visualization system was able to help biomedical researchers to evaluate how well the feature

extraction toolkit extracts the DBM variables (if what the patient videos correlated to the

behavioral measurements extracted by the toolkit), and to better understand behaviors in

patients through machine-derived measurements (human-machine analysis and workflows).

Takeaways. One of the main findings about the OpenDBM visualization system was

that designing a cohort visual analytics system for open source was challenging. That was

because researchers from different institutions had different interests in the data, depending

on the disease they investigated. At some point during the prototyping phase, we had to

draw a line and narrow down the capabilities of the visualization system so that it satisfied

most of the common user activities, as well as the project timeline. Conducting the domain

characterizations, we observed that behavioral DBM research was in its infancy stages, and
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still is. As a result, research in post-treatment decision-making was challenged by the missing

standards of the DBM values to detect disease-specific symptoms. As a result, in this project,

DBM visualization served for hypothesis-making more than decision-making.

2.7 Conclusion

OpenDBM introduced a visual analytics system for cohort analysis in neuroscience, in the

context of digital biomarker research. This work presented the domain characterization for

an application that is suitable for post-treatment care, which supports the understanding of

cohort risk stratification and cohort characteristics when dealing with large-scale, multivari-

ate, multimodal, unstratified patient data. The system introduced two panels to visually

analyze both cohorts and individual patients. In addition, the system was used to visual-

ize model outputs (i.e., digital biomarker measurements modeled by the OpenDBM toolkit)

for improved understanding and evaluation. It was designed to engage a broad audience

audience, including academics, clinicians, and industry researchers.

In the next chapter, I will introduce a visual analytics system for a different medical

domain, namely oncology, that focuses on user activities in the context of cohort risk strati-

fication and patient risk assignment during and after the implementation of treatment. This

next work will shift from large audiences (e.g., industry, academia, clinics, technical and non-

technical users) to a more targeted audience, namely the collaborations between clinicians

and data modelers, and as a consequence, to more fine-grained tasks and application-specific

cohort visualizations.
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Chapter 3

THALIS: Human-Machine Analysis of Longitudinal Symptoms in
Cancer Therapy

3.1 Introduction

This chapter introduces the design, development, and evaluation of a visual analytics system,

THALIS, for patient cohort risk stratification in the domain application of head and neck

cancer symptom research. For example, a patient prescribed radiation therapy for a neck

tumor may develop swallowing dysfunction after completing treatment due to radiation-

induced toxicity affecting the neck area surrounding the tumor. As a result, clinicians will

look at existing cohorts to find similar patients to their current patient to discover the co-

hort attributes that correspond to swallowing problems after treatment completion. In other

words, the clinician will categorize the cohort into high and low risk of swallowing problems.

Patient attributes that might be relevant to this risk could be older age, smoking status,

and swallowing difficulty during treatment. To help with this research, THALIS applies

association rule mining for risk modeling and targets model understanding and evaluation

through data visualization. Specifically, the system shows how user-specified attributes de-

termine cohort stratification into different categories of risk (i.e., burden and progression of

symptoms). Furthermore, THALIS ensures the domain sense and actionability of the asso-

ciation rule modeling results, explains the composition of outcome risk by linking outcome

components (e.g., progression of symptoms and patient characteristics), and shows the asso-

ciation between the said components. This work introduces custom, scalable encodings for

multivariate, temporal, multi-stage cohorts, targeting multidisciplinary collaborations be-

tween data modelers and clinical practitioners with modeling experience. A novel encoding,
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namely the filament plot, supports cohort symptom pattern and outlier detection by summa-

rizing multi-stage time series. The system was evaluated with domain experts in symptom

modeling and oncology in a cohort of 699 patients with head and neck cancer.

The contents of this chapter were presented at IEEE VIS 2021 in the whole paper track,

in the Applications area [60]. During the preliminary steps of the design and implementation

phase, this work was presented as a poster at the IEEE VIS 2020 Poster Session.

3.2 Motivation

Thanks to advances in therapeutic care, nowadays cancer patients survive for years post-

treatment. However, they are plagued with long-lasting or permanent residual sequelae,

whose severity, rate of development, and resolution post-treatment vary greatly between

survivors [38,192,193]. At the same time, patient questionnaires and electronic health records

storing patient-reported responses are leading to larger than ever oncological symptom data

collections, with hundreds or reports that store tens of multivariate attributes, collected

over tens of time points. These symptom data collected from cohorts of patients [165] offer

essential information that can improve clinical decision-making and individual care delivery

both during and post-treatment [130, 147], and could be critical for the efficient detection

and resolution of longitudinal symptoms. These factors have led to demands from healthcare

providers to better understand symptom development and prevention based on cohort data.

However, meaningful interpretation at the individual patient level of symptom repos-

itories is plagued by data and analysis issues that have prevented their practical use in

clinical care. These issues include the wide range of symptoms, their partial co-occurrence,

their variability between patients and over time, and, in the case of head and neck cancers

(HNC), and other cancers that employ radiation therapy, further symptom dependency on

the anatomical location of the tumors and the course of treatment prescribed. Further-

more, symptom research analyzes either individual symptom evolution or symptom clusters.

Symptom cluster research aims to identify co-occurring symptoms and to understand the
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underlying mechanisms that drive these clusters using machine learning [137, 170]. At the

same time, preliminary HNC analyses based on factor analysis (e.g., PCA) have not always

been replicable on patient datasets [21] with hundreds of data points. Consequently, there

is growing interest in alternative machine learning approaches for this type of longitudinal,

multivariate data. Furthermore, these approaches need to make sense in an applied health-

care setting and need to be actionable by clinicians and radiation oncologists. Therefore,

there is a growing demand for mixed human-machine analysis and a need to facilitate and

balance computational and human effort for symptom data analysis.

In this chapter, we present an interactive data mining environment to support the clus-

tering, exploration, and analysis of longitudinal symptoms collected from cohorts of cancer

patients. Our approach intertwines association rule and factor analysis unsupervised models

with custom visual statistical encodings and visual analysis, in order to estimate the longi-

tudinal symptom evolution of an individual patient, in the context of cancer therapies and

similar patients. This visual analysis methodology was successfully developed through an

interdisciplinary, remote, multi-site collaboration.

The contributions of this work are: 1) a description of the application domain data and

tasks, with an emphasis on the multidisciplinary development of clustering tools for symptom

data in cancer therapy; 2) the design of a novel blend of data mining and visual encodings

to predict and explain longitudinal symptom development, based on an existing cohort of

patients; 3) the description of custom interactive encodings: interactive association rule dia-

grams, filaments, and percentile heatmaps; 4) an implementation of this approach in a visual

symptom explorer named THALIS: THerapy Analysis of LongItudinal Symptoms ( Fig. 3.1);

5) an evaluation by domain experts of the resulting mixed workflows and encodings over an

existing head and neck symptom repository; 6) a description of the design process and of

the lessons learned from this successful collaboration.
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3.3 Design

3.3.1 Setting

Our system was developed through a remote collaboration between three different research

groups over the course of one and a half years. During this collaboration, our visual comput-

ing research group worked closely with oncology and data mining experts. The core team

includes three radiation oncology experts with clinical and research experience, a senior data

mining expert, a data mining graduate student, and a team of visual computing researchers

with varying expertise. Our team met weekly to produce informative mixed machine-human

analyses of longitudinal symptom data collected from head and neck cancer patients who

were undergoing treatment at the MD Anderson Cancer Center in Houston, TX. This work is

part of a longer, six-year collaboration between the lead investigators who had been working

together on a series of related projects using oncology patient data.

Due to the long-term and remote nature of our collaboration, which spanned three sites,

but within the same time zone, we employed team science principles [130]. Our design process

blended an agile design process based on regular team meetings along with an Activity-

Centered Design (ACD) approach to the design of the visualization system [129]. The ACD

paradigm is an extension of human-centered design, with emphasis on user activities and

workflow.

Through a series of iterations, the research team met to define functional specifications,

prototype the interface, evaluate prototypes, and decide on changes to the specifications.

Furthermore, because this approach was designed to develop interfaces that can be shared

and designed remotely, our approach proved to be an effective alternative to methods that

rely on in-person group meetings during the COVID-19 pandemic. Additionally, because

the ACD paradigm is focused on supporting the collaborators’ activities, our collaborators

stayed motivated to continue to attend meetings even during circumstances that required

remote meetings and exceptional working conditions for clinical practitioners [152].
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3.3.2 Activity and Task Analysis

THALIS serves oncologists who have experience in symptom research. Our collaborators also

had extensive experience using basic unsupervised machine learning methods such as factor

analysis through principal component analysis (PCA) [194], which they had used to deter-

mine that symptom burden varies over time and over patient populations. However, PCA

results obtained on smaller datasets did not generalize on datasets with hundreds of data

points with tens of attributes, so over the course of the project, the group’s interests shifted

from PCA to alternative approaches. Furthermore, predicting the symptom trajectory of

an individual patient in the clinic based on the population data in the repository was not

possible due to a lack of an appropriate computational approach. In addition, oncologists

expressed frustration due to repeated failures of patients to follow instructions to reduce

symptom burden, such as following a prescribed regimen of swallowing exercises or taking

the prescribed pain medication. The physicians felt that having the means to explain to

patients a predicted symptom trajectory, in the context of other patients, could be beneficial

in terms of adherence to therapy.

Taking into account evolving requirements and specifications, we summarize the project

activities and their corresponding visual analysis tasks as follows:

A1. Analyze alternative symptom clustering approaches and apply them to an existing

symptom dataset

• T1.1. For each approach, show similar patients, based on symptom severity at a specific

time point

• T1.2. For each approach, detect symptom correlations during and post-treatment

• T1.3. For each approach, detect patient outliers and trends

A2. Analyze longitudinal symptom progression in the dataset, with particular emphasis

on the acute versus late stage of symptoms, and different therapy options

• T2.1. Analyze patient symptom trajectories as a whole, by therapy, and by stage
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• T2.2. Compare symptom trajectories between patients, by therapy type

• T2.3. Summarize symptom ratings for the entire cohort, by stage

A3. Map an individual patient to its relevant cohort, and explain their longitudinal

symptom trajectory in the context of the cohort in an actionable manner

• T3.1. Show an individual patient in the context of the cohort

• T3.2. Display demographic and diagnostic data, and indicate patients with similar

diagnostic attributes

• T3.3. Display which anatomical locations are affected by each symptom

• T3.4. Filter a patient’s symptoms by association rule

Our evaluation describes example workflows centered on these activities. Non-functional

requirements included a request for the A3 data to be displayed in a manner amenable

to audiences with low visual literacy, awareness of variability in symptom ratings across

patients, and awareness of missing data.

3.3.3 Data

According to the ACD paradigm for data visualization [129], the project requirements were

based on a starter dataset, which was then expanded during the duration of the project,

as more data became available. Patients who had completed fewer than two questionnaires

were not included in the analysis. The final dataset included 699 HNC patients.

For each patient, two types of information were recorded: 1) patient demographics and

diagnostic data, which covered three attribute types: quantitative data (e.g., age, weight, or

the total radiation dose); ordinal data (disease stage), and nominal data (e.g., therapeutic

combination); and 2) longitudinal symptom data, as time-series attributes with quantitative

values (ratings for 28 symptoms) over a maximum of 12 time points. In this longitudinal

assessment, 28 symptoms are considered, split into HNC specific symptoms (swallow, speech,

mucus, taste, constipation, teeth, mouth sores, choking, and skin problems), general cancer
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symptoms (fatigue, sleep, distress, pain, drowsiness, sadness, memory, numbness, dry mouth,

appetite, breath, nausea, and vomiting problems) and daily life interference symptoms (work,

enjoyment, general activity, mood, walking, relationships issues). The symptoms are rated

on a 0-to-10 scale ranging from “not present” (0) to “as bad as you can imagine” (10) for the

specific elements of the core and the HNC, and from “did not interfere” (0) to “interfered

completely” (10) for the interference elements. Each patient rated all 28 symptoms during a

questionnaire completion (time point).

The dataset included a total of 12 time points. Due to the desired longitudinal aspect

of the analysis, we separated these points into three categories: baseline (week 0), acute

stage (on-treatment period), and late stage (>= 6 weeks post-treatment). For acute time

points during treatment, data were collected every week (at most 7 weeks), while post-

treatment time points data were collected at lower granularity, at 6 weeks, and 6-, 12-, or

18-month post-treatment. Previous time point values were substituted for missing values;

missing baseline values (i.e., for the first time point) were marked with 0. Patients with no

symptoms recorded during the acute or late phases were not included in the analysis for that

time frame.

3.3.4 Front-end Design

The design of THALIS followed a parallel prototyping approach [51], a method proven to lead

to better design results by opening up the visual encoding and interaction space, which in

turn generates more detailed and constructive feedback than in serial prototyping. THALIS

was implemented in Python and JavaScript with the D3.js library [23]. The design is based

on coordinated multiple views of the data, to support both layering and separation of infor-

mation and workflow components, and the ability to integrate visually heterogeneous data. A

main clustering panel allows the analysis of patient groupings based on similarity ( Fig. 3.2),

respectively, the analysis of symptom groups via association rule mining ( Fig. 3.1.A). A

second main panel supports the longitudinal analysis of patient symptoms ( Fig. 3.1.B), in

coordination with the other panels. A third main panel explicitly supports the context anal-
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Figure 3.1: THALIS analysis of longitudinal symptom data. A) Association Rule Diagram panel, showing here
association-rule-mining (ARM) relationships among the most frequent late-stage symptoms; rules are represented
using bubbles, with size and color encoding the support and lift metrics. B) Symptom trajectory panel—filament
plots encode the mean rating values per therapeutic combination, with more frequent observations in the acute stage
(left-end) than in the late stage (right-end). C) Sketch of areas affected by the selected symptoms (dry mouth
and taste). D) Cohort symptom panel showing, via summarization with shade and height, the percentile rating
distribution. E) Correlation matrix showing associations with the selected symptom.

ysis of cohort symptom data ( Fig. 3.1.C, D, E). The panels are connected through brushing

and linking, and through explicit filtering operations.

Clustering Panel

Due to the interest of the experts in activities A1 and A3, the clustering panel shows a

therapy cluster view of patients ( Fig. 3.2). Alternatively, the panel shows an association

graph view of related symptoms ( Fig. 3.1.A), illustrating the two main clustering approaches

of this project (A1). These views are coupled with computational modules for clustering.

Therapy Cluster View. In prior research, the clinicians had analyzed a subset of the

patient data using factor analysis. They had identified different groups of patients with

high, medium, and low symptom burden, depending on the therapeutic combination, which

they had illustrated via heatmaps and dendrograms. However, they were also aware that

the heatmap representation did not represent the outliers well in the patient dataset, nor

did it support the individual patient analysis well, and they were also not confident in the
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Figure 3.2: Custom scatterplot of patients at a specific time point, for a selected rating severity. The left position
is associated with a lower symptom burden, calculated based on the symptoms selected in the list. Shape, size,
and color encode demographic, diagnostic, and therapy features (see legend). In this example, highlighted patients
correspond to the high rating severity group, indicating that the three symptoms selected (mood, enjoyment, and
walk) severely affect the vast majority of patients across all therapies, genders, and tumor sizes. Outliers are easily
noted.

therapeutic distinction between these groups. We agreed that a scatterplot view, color-

mapped to the different therapies, would serve activities A1 and A3 better, by capturing

more clearly individual patients and cohort patterns in the data.

We first organized the symptom ratings into a patient-symptom matrix for the selected

time point, where each element (i, j) corresponds to the score given to symptom j by patient

i at that time point. Previous research in HNC symptom clustering [74] had applied hierar-

chical clustering using Ward’s method [98] with Euclidean distance on the patient-symptom

matrix to group patients based on their raw symptom ratings. After alternative clustering

with complete and average linkages, we found that Ward’s method generated more infor-

mative groups of high symptom patients, which made sense to the clinicians. We identified

two patient groups with high and low symptom burden (T1.1). This two-group clustering

was preferred by clinicians, who found it easier to compare two groups instead of more. The

axes of the scatterplot correspond to the first two components obtained by applying PCA to

the patient-symptom matrix. Clusters for a specific time point are extracted and displayed,

while clusters for different time points can be investigated via the time slider, which will

update the scatterplot.
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The scatterplot was customized to separately capture acute and late symptom burden

distribution as identified by the symptom clusters, and to reflect via marker color, shape,

and size the therapeutic combination administered to each patient, their gender, and their

disease stage (T3.2) ( Fig. 3.2). The data can be filtered by attributes, and filtering oper-

ations update the other views. A filtering control panel serves double duty, providing the

plot legend. This customized scatterplot encoding effectively captured the distribution of

symptoms in the patient population, patient outliers, and the therapeutic distribution in the

data (T1.1, T1.3, T2.3).

To assess the impact of symptoms on clustering, we also provide an option to dynamically

recalculate the clusters based on user-selected subsets of symptoms ( Fig. 3.2) and update

the scatterplot accordingly.

Figure 3.3: Acute vs. late phase analysis. A) Association rule diagram for the acute phase. Rules are filtered based
on support (frequency) and lift (dependency between symptoms); other rules are faded in the background. B) Mean
rating value filament plots for all therapies, with the acute phase highlighted. All therapies follow similar trajectories
for both mucus and taste, and towards the end of the acute phase, taste has a considerable increase in ratings for all
therapies. C) Association rule diagram for the late phase, showing the antecedents (fatigue, pain) and consequents
(swallow) for rule 14.

D) Mean rating value filament plots, showing a slightly different trajectory for

IC+Radiation.

Association Rule Diagram View. Driven by the limitations of the factor analysis

discussed above, this project pursued the Association Rule Mining (ARM) as an alternative

and novel approach to symptom cluster analysis (A1). ARM is an unsupervised data mining
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technique for identifying relationships within the data [5]. In marketing applications, an as-

sociation rule in the form X → Y indicates the pattern that if a customer purchases X, they

will also buy Y , where the patterns are extracted from relational data expressed as trans-

actions. Similarly to the strong positive correlations found between items in a supermarket

basket, relationships within clinical data can help identify disease comorbidities [89,106,110].
Table 3.1: Example of 3 transactions containing four symptoms: fatigue, drowsiness, pain, and swallow.

tid items
001 fatigue, drowsiness
002 pain, drowsiness
003 fatigue, pain, swallow

In this project, we extended the potential of ARM to symptom clustering applications.

To this end, we adapted the most common ARM method to our problem: the Apriori

algorithm [5], for frequent item set mining and association rule learning. In our approach,

the symptoms experienced at each time point by each patient are treated as a transaction.

The algorithm first identifies frequent symptoms to determine sets of symptoms that co-

occur with high certainty and then extends to larger symptom sets (n >20). Table 3.1

contains an example of three “transactions” from our data. Transactions were extracted

from existing questionnaires. The lack of ratings for a symptom in a questionnaire implied

that the symptom was not included in the transaction. If a patient was missing an entire

questionnaire, no transaction was generated for that patient. The ARM was performed using

all available data, and no data imputation was performed.

We followed Agrawal and Srikant’s proposed association rule [5] in the form:

X → Y

which indicates that if a patient suffers from symptom X (the antecedent), they will also be

affected by symptom Y (the consequent). Based on the first transaction in Table 3.1, such

a rule can be:

{fatigue} → {drowsiness}

where {fatigue} is the rule antecedent and {drowsiness} is the consequent. For itemsets larger
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than this pairwise example (e.g., the last transaction in Table 1), either the antecedent or

the consequent could contain multiple items.

Two standard measures, support and lift, are tuned to filter the association rules by a

minimum value. Support is the measure of how often the transactions contain both X and

Y , in our case, how frequently sets of symptoms X and Y occur together. The support of a

subset of symptoms S is defined by:

σ(S) = |S|
|T |

where |S| is the number of transactions that contain all the symptoms in set S and |T | is

the total number of transactions in the dataset. In Table 3.1, σ({fatigue, drowsiness}) = 1
3

as both symptoms appear together in 1 out of 3 transactions.

Lift is the measure of the importance, or strength of the rule, and it shows how more

frequently than we would expect by random chance do X and Y appear together. Lift is

defined as:

λ(X, Y ) = σ(X ∪ Y )
σ(X) × σ(Y )

where (X ∪ Y ) refers to transactions that contain both X and Y . For example:

λ({fatigue}, {drowsiness}) = σ({fatigue, drowsiness})
σ({fatigue}) × σ({drowsiness})

We applied ARM to each of the acute stage and the late stage (T1.2, T3.4), and em-

pirically chose to illustrate the top 20 rules yielded by this approach, because only a small

number of rules were of clinical interest. We chose minimum values for the support and lift

metrics that were suitable for frequent and interdependent symptoms.

Symptom Trajectory Panel

Designing an appropriate encoding for the symptom longitudinal data (A2) turned out to

be particularly challenging, primarily due to the nature and richness of the temporal data,
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the acknowledged variability in ratings between patients, and the missing or uneven time

points, which were expected in this context. The design process explored a wide range

of possible temporal encodings, many of which suffered from scalability issues, and, after

several sessions, focused on a promising and novel encoding called a “tendril plot” [102].

A tendril plot is a visual summary of the incidence, significance, and temporal aspects of

adverse events in clinical trials, in which individual temporal threads, one per each patient,

emanate from a common root and shoot upward and curl either to the left or to the right

depending on whether the next event in the timeline was adverse or an improvement. For

clinical trial data, tendrils were shown to create beautiful, compact, naturally clustering

pathlines that illustrate the positive or negative evolution of each group of patients. The

clinicians had also seen this representation and thought it could work (T1.2, T2.2). Although

promising on paper, unfortunately, the tendril implementation did not yield similarly clean

illustrations for the symptom data, due to the much smaller number of time points, the

variability in therapeutic sequences, and the variability in patient outcomes, which are not

typical of clinical trials.

Numerous design variations yielded a new custom temporal encoding, which we call a

filament plot ( Fig. 3.4.D). Filament plots also emanate from a common root and then proceed

in a left-to-right direction aligned with the time sequence. Wider timesteps, typical for late

stage, are therefore more widely spaced. Each filament represents the whole observation

period for a specific patient, with dots along the filament to indicate time stamps. To

account for inter-patient rating variability, the curvature degree for the filament at each time

step encodes the relative change from the previous rating, where upward rotation indicates

worsening symptoms (rating increase). In contrast, downward rotation shows symptom

amelioration (rating decrease).

To calculate the rotation, if patient p is located at position (xt, yt) at timestep t for a

symptom with rating r, we compute the next position (xt+1, yt+1) at timestep t + 1 by first
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calculating the horizontal rotation angle as:

θ = θmax · ∆rt+1

2 · ∆rmax

where θmax is the total maximum rotation allowed, whose value is set to 3π
4 ; ∆rt+1 is the

rating difference between t + 1 and t:

∆rt+1 = r(t + 1) − r(t);

and ∆rmax is the maximum difference between two rating values, which is 10 in our case.

Negative differences between ratings (i.e., rating decreases) produce negative angle values

for θ.

Next, we want to rotate θ degrees relative to the horizontal line P1P2 defined by the points

P1 = (xt, yt) and P2 = (xt + l, yt) where l quantifies the time elapsed between t + 1 and t.

A higher l indicates that more time passed between t + 1 and t (that is, late vs. acute).

Finally, we rotate P2 around P1 by θ degrees.

For missing data during the observation period, the associated points are not represented,

and we consider no rating change from the previous time points; the surveillance period is

described in each filament until the last recorded time point for each patient. We account

for the time ratio between the acute (1 week) and late (months) stages, so the distances

illustrated for the acute time points are smaller than those for the late time points. Hovering

over a filament grays out all the other filaments in the plot. This interaction helps to compare

the symptom trajectories for the same patient and, by brushing and linking with the different

views, to highlight the additional patient data (T3.1).

This compact representation helps in the analysis of symptom evolution trends by clearly

indicating the overall symptom burden (low/high). The representation also helps identify

outlier trajectories that should be further evaluated and facilitates the discovery of steady vs.

variable progression of symptoms. The panel includes two such filament plots, which support

the side-by-side comparison of different symptoms for selected patient groups. To further

enhance visual support, during the evaluation of the acute period in the entire THALIS
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environment, the acute time periods are highlighted in the filament plots, and vice versa for

the late period ( Fig. 3.3.B, D).

To better support activities A1 and A2, an additional option uses the same filament

encoding, this time with the color assigned to the therapy type, to capture the mean tra-

jectory for each therapeutic combination ( Fig. 3.1.B). Since in the therapy case, the mean

symptom ratings across the population have meaning, the filaments are spread out according

to the mean ratings per therapy (T2.1). This therapy analysis option helps estimate what

treatment plans are less symptomatic, or, in contrast, lead to high symptom burden. In

addition, to satisfy activity A3, the current patient’s filament is highlighted in black in each

plot ( Fig. 3.4.D). Whereas reliable automated symptom prediction is an unsolved problem

in symptom research, THALIS supports human-machine analysis via trajectory views of

similar patients.

Cohort Symptom Panel

The last panel explicitly supports activities A1 and A3, and provides an abstract summary

of the entire temporal symptom data. As in other fields [122], and as indicated by our

activity analysis, this summary provides context for a specific datapoint, but does not lead

the investigation. The panel comprises a percentile heatmap, a correlation matrix, and an

anatomical sketch ( Fig. 3.1.D, E, C).

The percentile heatmap ( Fig. 3.1.D) is a custom representation showing the rating dis-

tribution of individual symptoms over time, for the entire patient cohort (T2.3). We arrived

at this representation after exploring a variety of alternatives, such as stacked line plots, par-

allel coordinates plots, and radar charts, guided by feedback from collaborators. We settled

on a matrix-based layout due to its compactness and its ability to support small multiple

plots. Each row corresponds to a symptom, with rows grouped by symptom category, and

each column corresponds to a time point. Each cell in this matrix is a horizontal bar graph

showing through the shade the percentage of patients reporting within a specific range (0,
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1-5, 6-9, or 10) for that symptom, at that time point. The height of the bar maps the

percentage of individuals in the entire cohort who reported the symptom ratings at that

time point. The current patient is indicated in this heatmap by cross markers ( Fig. 3.4.C)

(T3.1). This encoding proved to be an intuitive way to show what symptoms produce a

higher burden on patients, and when, as well as to indicate how many patients were affected

by these symptoms from the entire cohort (T1.2, T2.3).

To support exploration driven by a specific patient (A3), a dropdown selection box is

also provided ( Fig. 3.4.B). A selection in this box highlights the patient data across panels

( Fig. 3.4). A timeline selector also allows for the choice of a particular time point in the

data( Fig. 3.4.C), and further interface elements will enable the selection and analysis of

sets of similar patients. Additionally, a compact correlation matrix ( Fig. 3.1.E), along with

the percentile heatmap, supports T1.2, showing the strength of the correlation between a

selected symptom and all other symptoms, with circles encoding the Spearman coefficient

via color and size. Finally, because a discussion of task T3.3 revealed that patients tend to

point to the location of their symptoms, an anatomical sketch ( Fig. 3.1.C) supports visual

anchoring based on anatomy. The regions of the head and neck affected by the selected

symptoms are highlighted in this sketch.

3.4 Evaluation

Because no design approach is failproof, although ACD has higher success rates than HCD [129],

we evaluated THALIS through a combination of multiple demonstrations and case studies

involving domain experts, namely a senior data mining specialist and three senior clinical

radiation oncology experts. Two case studies were completed during separate, dedicated

sessions, in addition to regular feedback sessions. As the designers and evaluators were in

different locations, and due to COVID-19 constraints, these sessions were conducted remotely

using screen sharing and note-taking. The oncology experts directed the exploration using

the think-aloud method, while the first author drove the interface according to their instruc-
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tions. Both case studies analyze a set of 699 HNC patients, which was significantly larger

than prior clinician analyses, and span all activities, A1-A3. Qualitative feedback was also

provided during weekly design-driven sessions and was used to improve the overall design of

THALIS.

Figure 3.4: Symptom burden analysis. A) Patients in the mild symptom burden cluster, having tumor categories
T0 and T1 (current patient, 340, is highlighted in red), with all other patients faded. B) The anatomical sketch shows
that the mouth and neck areas are affected by the selected symptoms (mucus, breath) for the current patient. C) The
patient’s ratings are shown by black marks. In this case, the patient had a low rating for mucus at the first assessment
(0 weeks), while at the end of the observation period (18 months post-treatment), the rating increased. D) Filament
plots encoding symptom trajectories for the selected symptoms, for the patients filtered in the scatterplot. One
filament per patient shows the temporal development for that symptom; black filaments mark the current patient,
confirming the mucus rating increase in the late stage.

3.4.1 Case Study I: Symptom Burden Analysis in Radiotherapy

The study sought to assess the impact of therapy on symptom burden in this set and took

place before we developed the associative rule model. Oncologists originally hoped to repli-

cate the published analysis results obtained in significantly smaller cohorts of 80 to 270

patients [56,101,166]. Using the system over the course of several sessions showed, however,

that those clustering results were not generalizable to the larger cohort (n >700). So the

investigation shifted focus to discovering and analyzing outliers in terms of patient charac-

teristics and symptom trajectories. The study workflow started directly with the therapy

scatterplot panel ( Fig. 3.4.A) (T1.1, T3.2). At first glance, most of the patients were visibly

grouped in the center-right part of the plot, suggesting a substantial similarity. Filtering

patients (T3.1) based on their rating severity revealed that this group corresponded to a

mild-rating severity cluster. Further filtering by therapy and tumor category, the experts

noted that most of these patients were treated with radiation with or without concurrent
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chemotherapy (CC) and, not surprisingly, presented a small tumor size and a low symptom

burden at the end of the observation period. They concluded that for this group, the ther-

apy plan did not have a practical impact on quality of life. Next, the oncologists examined

whether a smaller set of symptoms, as in their previous studies, would correlate with patient

groupings (T1.1, T1.3). To do this, they filtered the data by daily interference symptoms,

including, for example, mood, enjoyment, and work ( Fig. 3.2). This time, they found that

almost a third of the patients suffered from high symptom burden in this symptom group.

Encouraged by this finding, the analysis quickly moved to the filament plots ( Fig. 3.4.D),

to examine the symptom trajectories (T2.2). The plots captured a general trend in most

symptom trajectories, namely, a rating decrease post-treatment, except for numbness, mem-

ory, breath. In addition, these three symptoms, along with nausea and vomiting, exhibited a

steady symptom development, with fewer patient outliers or drastic rating changes over time

(T1.2). In fact, there was no correlation between the temporal outliers in the filament plots

and the therapy scatterplot outliers. This finding indicated that patients experienced steady

ratings for these five symptoms over time, regardless of overall symptom burden or therapy

treatment. This observation was of notable interest, so the analysis moved on to examine

the cohort context (T2.3). Using the percentile heatmap ( Fig. 3.1.D) and the correlation

matrix, our collaborators observed that groups of symptoms such as swallow and dry mouth,

or taste, appetite, constipation, and sores showed higher ratings over time, suggesting possi-

ble interrelationship or causal factors between these symptoms. For example, when selecting

dry mouth, the panel indicated strong correlations between dry mouth and mucus, choking,

and swallow, but also with taste, drowsiness, and fatigue as well. Finally, the anatomical

sketch layout ( Fig. 3.1.C) emphasized which head and neck locations are affected by the

selected symptoms (T3.3). In this case, we observed that both dry mouth and taste affected

the area of the mouth. The oncologists are planning studies to verify this set of symptom

cluster hypotheses.
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Figure 3.5: Symptom cluster diversity analysis. A) Symptom association graph for the acute phase showing mucus
and swallow correlate with many symptoms. Note that the network layout is fixed, and that by construction it places
centrally nodes with high degree. B) The percentile heatmap shows a spread of high ratings for mucus along the
whole observation period. C) Summary panel for mucus showing that among patients who reported ratings for week
5 during treatment, more than 95% noted mucus as a present symptom. D) Mean rating filament plot emphasizing
rising ratings at the end of the acute phase, especially for the IC+Radiation+CC treatment.

3.4.2 Case Study II: Symptom Cluster Diversity

This study aimed primarily to explore the value of associative rule mining in longitudinal

symptom analysis (T1.2). Examining the association diagrams, the oncologists were stunned

to find surprising symptom clusters during and post-treatment; in particular, eight common

symptoms for the acute stage ( Fig. 3.5.A), with two strongly coupled subgroups: distress,

sadness, and swallow, pain, sores, taste, mucus; and, respectively, 12 frequent symptoms

during the late part of the treatment ( Fig. 3.1.A), showing symptom clusters such as taste,

dry mouth, and sores, pain. The experts were impressed to see that the sores, pain cluster is

strongly associated with taste in the acute phase, while in the late phase, there is a connection

between drowsiness, sleep ( Fig. 3.6.A), which is known to be a factor in dangerous muscle-

mass loss. The taste, dry mouth cluster in the late phase supported our collaborators’

previous findings. However, the connection between fatigue, drowsiness in the late phase

and the centrality of mucus ( Fig. 3.5.A), as well as the taste, sores connection within the

acute graph, was unexpected. “In our group, we have established this arc from taste to dry

mouth in the late stage, but we haven’t thought of the taste to sores link in the acute phase.

That is striking.”

The ability to highlight a particular symptom (T3.4) or rule and filter rules based on their
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Figure 3.6: Late symptom cluster analysis. A) Symptom association graph showing drowsiness as a central symptom
for the late phase. The connection between sleep and drowsiness is expected, as these two symptoms are known to
be a factor in dangerous muscle-mass loss. B) The filament plots show mean rating values, with the late phase
highlighted, and the acute phase faded. Notably, in the case of sleep and drowsiness, IC+Radiation is the therapy
associated with higher symptom ratings, and it is noticeably different from the other therapy plans.

support and lift ( Fig. 3.3.A, C) was found to be essential during the exploration, helping

us to determine which symptoms were more persistent or more dependent on each other.

For instance, fatigue, drowsiness were the most common symptoms (based on their support)

and activities, work the most dependent on each other (based on their lift) in the late phase

( Fig. 3.1.A). The insights observed from the symptoms association graphs were further

extended using the percentile heatmap ( Fig. 3.1.D), revealing the spread of high ratings for

taste and fatigue over the whole patient supervision period (T2.3). Furthermore, because

mucus was usually perceived as an acute symptom, the experts found it remarkable that a

large number of patients experienced mucus during the late period ( Fig. 3.6). The mean

value filament plots were used to show the mean ratings per time point for each therapy while

highlighting the treatment phase of interest (acute/late) ( Fig. 3.3.B, D) (T2.1). The plots

showed that the trends were remarkably conserved over time between therapies, although

their magnitudes could differ. To achieve a better understanding, the option of separate

filaments according to the starting mean rating (baseline) was used ( Fig. 3.1.B, Fig. 3.5.D),

which showed a difference in the symptom burden between therapies for the ARM-identified

symptom groups. For example, in the case of taste and mucus, in both acute and late phases,

the highest rated treatments were IC+Radiation+CC (induced chemotherapy, radiation, and
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concurrent chemotherapy) and IC+Radiation. In contrast, CC+Radiation and Radiation

alone were rated lower compared to the other two treatments. Notably, in the case of

drowsiness, sleep, IC+Radiation was remarkably separated from the other treatment plans

( Fig. 3.6.B). The oncologists concluded this case study, and the associative approach was

a gold mine for their symptom research, highlighting the diversity of symptom clusters over

time.

3.4.3 Expert Feedback

THALIS received excellent feedback from the oncology team, often indicating a change in

thinking about their work. Below is some sample feedback in relation to our activity analysis

A1 - A3:

(A1, A3) Quote from the most senior oncologist: “I gotta be honest, every time I meet

with you guys and we see these visualizations, I get so much material for future research. In

general, to be fair, my focus in clinical practice [and in helping patients] tends to be on dry

mouth and swallowing. I say – we’re going to talk about dry mouth and swallowing, cause

these two are really bad– and then there’s all the other stuff. And then I see this [the ARM

and heatmap and filaments], and here’s this other stuff, that is usually at my periphery, but

I don’t focus on, although patients do mention it. If I were sitting with a patient and I’d

look at this interface and ARMs—I get it, hey, there’s actually a LOT of moving parts here

[beyond dry mouth and swallowing], and they’re related, and they have different time sources.

It’s sobering.”

(A1, A2) Both case studies had the team exclaim, on multiple occasions, about being

“blown away”, “that [symptom] spread over time just jumps out at you”, “This entire ARM

approach is so different from [the approach we’ve followed in our previous research on symp-

tom clusters]. I want to stick a flag in the ground with the ARM work, and look at dose to

organs and use ARM to see dose-to-swallowing correlation, based on this spatial structure

underneath”, “This interface and the ARM provide great preliminary data for so many grants

[projects] right off the bat!”, “Really impressed”, and “This [relationship] is not intuitive, so
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it’s very interesting. And I wouldn’t have thought about it. But now, it makes perfect sense.

Duh!”, “The [filament view] is such a great asset for the interface.”

(A3) The oncologists: “[THALIS’s] ability to go from patient to population is fantastic, I

really love it, it’s exactly what I need”, “I like that when a patient is with [oncologist], they

want percentages, e.g., 66% of patients have normal appetite after 12 months, and [THALIS]

shows that”, “When I see a patient, this [taste-dry mouth] association in the late phase is the

default picture I have in my mind. But here I see that also fatigue connects to drowsiness,

and that these symptoms show up in the acute phase as well, and that I really need to discuss

these issues with my patients.” “I can share [this view] with my patients, to explain that pain

and swallowing and fatigue are really tightly related—we don’t know if it’s causation, but they

definitely show up together, so could you please, please, take your pain and anti-inflammatory

meds, and could you please do the swallowing exercises we’ve talked about?”

3.5 Discussion

The case studies and the domain expert feedback demonstrate THALIS’s value in bridg-

ing the gap between machine and human analysis, and its ability to help generate novel

insights. Our integrated approach is capable of capturing longitudinal differences between

acute and late stages while detecting outliers and trends in the symptom and therapy data.

More importantly, our approach supports individual patient analysis while handling a large

cohort (n >700) both computationally and visually. Through an ACD approach, and as

indicated by expert feedback, THALIS successfully serves the core interests of its audience.

In conjunction with the clustering panel, the symptom association rule view, the filament

plots, and the cohort symptom panel enabled discovering interesting relationships in the

data, and in several cases led to unexpected but insightful results. Furthermore, THALIS

couples multiple customized novel visual encodings with symptom clustering algorithms in

the background, enabling the domain experts to explore various scenarios and test their hy-

potheses in real-time. Its use of a multi-view paradigm supports flexible analytical workflows
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that enhance computational power and human expert knowledge.

Through close collaboration with domain experts, our solution introduces compact, cus-

tomized visual encodings for the symptom data: a filament encoding and a percentile

heatmap. The percentile heatmap scales well with the number of subjects, by design, at

the cost of summarization. Although the inherent scalability of filaments with the number

of items shown is limited, these encodings successfully abstract the cohort data with the help

of similarity-based filtering operations, which are appropriate in this context; for hundreds

of dense observations, as common in other problems, tendrils [102] offer a better solution.

In terms of scalability, the ARM graph can provide rules for any number of time points in

the late and acute time periods. However, the graph representation for association rules is

suitable for a smaller number of rules (less than 100 [83]). The scatterplot and correlation

matrix are time point specific, so any number of plots could be generated. On the other

hand, some views are prone to clutter. Some of these encodings may have limited generaliz-

ability beyond this application domain. In the case of filaments, they work in this application

because there is a significant correlation between similar patients’ trajectories and because

our application emphasizes relative trajectory changes as opposed to absolute values. This

type of correlation and relativity may not be true across application domains. However, our

custom encodings can be repurposed for other longitudinal problems that feature missing

data, such as in astronomy or biology [84, 124, 125, 171]. Future work includes longitudinal

clustering of patients and symptoms, applying the ARM approach to sequential data, and

interactively changing the metrics of the ARM and the number of rules.

3.5.1 Research Questions

Q1. How can visualization support cohort analysis? Through the ACD method, we inter-

viewed both clinicians and data scientists in head and neck cancer research, which helped

to understand the needs of our clients and the primary user activities for cancer treatment

research. In this project, data visualization combined cohort data extracted from different

sources and with various types of attributes, some collected over time, providing a common
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ground for clinicians and data modelers to collaborate and generate hypotheses.

Q2. How to visually represent cohorts and their characteristics, and what interactions to

support? We proposed a multiple coordinated view design to combine temporal symptom

measurements with clinical variables within the cohort. We supported the selection of a de-

sired patient to compare it to its cohort to better relate a future patient to existing ones. We

emphasized the two-stage patient monitoring process with custom encodings, which high-

lighted the connection between treatment stages – how, during treatment, data impacts

post-treatment longitudinal outcomes. For this purpose, we proposed several encodings,

notably the filament plot, which showed the cohort overview of temporal symptom measure-

ments and enabled inter-symptom comparisons.

Q3. What system implementations work for post-treatment decision-making? This project

involved modeling symptom data to better associate patient studies during treatment with

post-treatment outcomes. THALIS supported human-machine workflows by visualizing rule-

mining-modeled symptoms, which were clinically validated and evaluated by clinicians. We

presented incremental designs to our clients throughout the system prototyping phase, which

helped with an incremental evaluation of the modeled results. This eventually helped build

trust in the results and in the upcoming new cohort modeling research avenues.

Q4. What makes a visual analytics system valuable to biomedical users? THALIS supported

clinician-modeler collaborations by assisting clinicians’ evaluation of rule mining modeling

results. The rule-mining results were explained in conjunction with relevant clinical patient

attributes (visualization of different data facets for model understanding). THALIS demon-

strated the importance of relating model outcomes to other sources of data to make these

outcomes actionable in clinical practice.

Takeaways. The main lesson learned from THALIS was the importance of documenting

the domain characterization when designing an application-specific visual analytics system.

This is related to the importance of supporting clinician-data modeler collaborations when

designing visualizations for cohort XAI and using data visualization to emphasize the domain
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sense and actionability of the modeling results. It was relatively easy to gain trust in our

results because the modeling methodologies, such as association rule mining, were more

transparent (unsupervised modeling) than supervised, black-box models. Another notable

finding was that the ACD methodology helped with the incremental, more reliable design

of the front-end, by gaining trust in the visualizations due to the incremental use of said

visualizations during regular update meetings, and by introducing unconventional visual

encodings. The need for novel encodings seemed to be a consequence of unusual cohort

characteristics, in this case, the two-stage temporal data. The two-stage patient supervision

protocol was a key consideration in the front-end design to highlight how health trajectories

during treatment influence post-treatment outcomes.

Considerations for future work ( Chapter 4) include: 1) to expand on the association

rule mining approach to find temporal symptom associations/clusters between the acute and

late treatment stages, and as a result, 2) to delve into visual analytics for longitudinal risk

modeling using rule mining, 3) to model treatment-induced risk as opposed to THALIS that

extracted rules from the entire cohort data without considering the influence of treatment

on symptom risk, 4) to find designs that can visualize more rule results, as opposed to the

limited number presented by THALIS (e.g. 20 per stage), and 5) to explore designs that take

into consideration the difference in analytical tasks between clinicians and data modelers.

3.6 Conclusion

THALIS presented an example of a visual analytics system that aims to support cohort

analysis and modeling for multivariate temporal patient data. This work introduced do-

main characterization for outcome modeling with symptom measurements in head and neck

cancer, which focuses on a two-stage patient monitoring protocol, i.e., during and post-

treatment implementation. The presented system focused on custom visual encodings to

incorporate rule mining modeling results in conjunction with multivariate longitudinal pa-

tient attributes, with the aim of stratifying patient cohorts by outcome. In particular, the
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proposed visualizations helped to summarize cohort characteristics and make the results of

the association rule actionable for risk analysis in clinical practice. Both clinicians and data

modelers evaluated this work.

In the following chapter, I will present an extension of this domain application, this

time using visual analytics for outcome risk prediction and risk stratification through more

configurable analytical workflows, which consider the differences in the mental models of the

clients (i.e., data modelers vs. clinicians).
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Chapter 4

Roses Have Thorns: Understanding the Downside of Oncological
Care Delivery Through Visual Analytics and Sequential Rule

Mining

4.1 Introduction

This chapter presents the design, development, and evaluation of a visual analytics system

that tackles configurable workflows in multidisciplinary collaborations through a highly cus-

tomizable front-end. The proposed system provides flexibility to both data modelers and

clinicians to evaluate cohort modeling results, considering both clinical interpretation and

prediction results evaluation. Unlike previous work, this project focuses more on determining

longitudinal risk after treatment completion. In this project, the starting premise is that the

treatment type and symptoms during treatment can predict symptom risk post-treatment.

The proposed system uses custom visual encodings to explain how different categories of out-

come risk occur for other treatment plans, comparing these risks across the cohort stratified

by treatment type. This work expands the previous risk modeling approach and introduces

a modeling method for longitudinal treatment outcome risk, using sequential rule mining

and rule clustering. The system uses visual analytics to interpret and evaluate rule min-

ing predictions and introduces a custom visual encoding to summarize multi-stage, temporal

attributes (symptoms), namely the rose glyph. Additionally, a rose glyph projection summa-

rizes multi-stage networks with temporal nodes (symptoms), which are the clustering result

of large-scale (n >20), overlapping sequential rule sets. The rose glyph supports various

tasks, such as explaining and comparing risk results for different sets of patients alongside

relevant patient attributes. Both modelers and oncologists evaluated the system on a cohort

of 766 head and neck cancer patients.
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The contents of this chapter were presented at IEEE VIS 2023 in the full paper track,

under the area of Applications [61].

4.2 Motivation

In recent decades, advancements in oncology have resulted in a greater variety of person-

alized cancer treatment outcomes for head and neck cancer (HNC) patients. Despite the

increase in survival outcomes (“roses”), for many patients, treatment leads to side effects

that can significantly affect quality of life even after completion of treatment (“thorns”).

These symptoms can often be mitigated through preventative therapies, but the preventa-

tive treatment can also be an additional burden to patients. Thus, there is a growing interest

in understanding how symptoms develop, in stratifying patients into high-risk and low-risk

cohorts, and in studying the relationship between symptoms and treatment decisions, with

an effort to identify long-term symptoms that affect the patient’s quality of life.

In HNC, identifying the risk of symptoms is particularly challenging due to the effects of

specific treatments and various clinical factors [154]. Furthermore, the temporal nature of

the progression of symptoms during and post-treatment requires special consideration when

making predictions for a given patient. In contrast, some symptoms are often correlated

with other symptoms, either due to direct influence or by shared root causes. These factors

make predicting treatment outcomes difficult and hamper the decision-making and delivery

of personalized care. Because these challenges complicate the interpretation of treatment

outcomes, there is a need for alternative human-machine analysis tools that can enhance

computational and human effort to help modelers better understand HNC symptoms.

Current computational symptom research is focused on symptom clustering [81, 104];

however, there is little work [60] that correlates symptom patterns over time or compares

the results of different treatment modalities. Sequential rule mining (SRM) is a promising

unsupervised learning approach for discovering common temporal patterns in symptom data.

Still, it can produce many repetitive or even misleading results for predicting outcomes. Our
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work uses SRM modeling in combination with other unsupervised machine learning (ML)

methods to predict treatment-related toxicities. However, the model results also have to

make sense in a clinical setting, and so they need to be interpreted by domain experts with

real patient data. Beyond helping modelers, visual analysis can help further with model

interpretation in the context of clinical patient data.

Visual computing with temporal symptoms has several challenges. First, the large size of

the patient cohort (>700 patients), number of symptoms (>20 symptoms), and time points

(>10 time points) requires scalable encodings that are readable by users, as well as meaning-

ful aggregation techniques. Second, interpreting symptom trajectories in a clinical setting

requires access to secondary clinical features for the cohort. Third, because domain experts

are interested in identifying which symptoms are caused by treatments or other symptoms,

a visual system needs to allow for flexible comparison between symptom patterns for sub-

cohorts. Fourth, since the interpretation of causal structures requires both data mining and

clinical expertise, the systems need to allow for multiple workflows and levels of detail to

analyze both symptoms and patient sub-cohorts. Finally, concluding high-dimensional co-

hort data requires the use of interpretable algorithms to help extract patterns that are both

useful and simple enough to be understood by users, for which we propose combining rule

mining and clustering to yield simple but flexible results.

To address these challenges, we introduce a visual computing system to support the

analysis of treatment-related toxicities and to predict post-treatment symptoms based on

during-treatment symptoms. Our system uses an unsupervised, multivariate method that

incorporates sequential rule mining, hierarchical clustering, and factor analysis to assess

temporal interrelationships between multiple symptoms in the context of personalized care

delivery. Our main contributions are: 1) a description of the modeling problem, data,

and tasks; 2) a hybrid human-machine approach for identifying symptom profiles in HNC

patients, stratified by treatment methods; 3) the design and implementation of this approach

in a system which allows for the exploration of HNC cohort data at both the symptom and
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patient level, with an emphasis on capturing longitudinal patterns in symptom and patient

cohorts; 4) a clinically-validated evaluation by domain experts; 5) the lessons learned from

this multidisciplinary collaboration.

4.3 Design

4.3.1 Setting

This work is part of a multiyear interdisciplinary collaboration between three research groups

with experience in modeling cancer symptoms at three research sites, composed of three

radiation oncology experts with clinical and research experience, a senior data mining expert,

one senior visual computing expert, and several junior visual computing researchers. The

team held weekly remote meetings to discuss various clinical data analyses, during which

our visual computing research group collected feedback on the design of our system.

Our design process followed an Activity-Centered Design (ACD) approach [129], focusing

on user activities and workflows. This paradigm has shown higher success than traditional

human-centered design for scientific, interdisciplinary collaborations. In this project, we

used ACD to build workflows around the evaluation of clinically applicable models and

complementary clinical data analysis.

The visual computing and data mining research groups met weekly to define functional

specifications, prototype the interface for clinically applied models, and evaluate the in-

terface. This was an interactive process that, following the ACD approach, proved to be

effective in the context of this remote collaboration [129].

4.3.2 Activity and Task Analysis

Our system serves model builders in the research of cancer symptoms. Our collaborators

have experience in ML approaches for predicting patient outcomes and symptom analysis,

but were interested in alternative methods for temporal symptom analysis that focus on

exploring the differences between patients receiving different treatment modalities. There

was also a need to efficiently present and interpret the results of the proposed model to
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our clinician collaborators. In addition, it was imperative to compare the toxicities found

by the model between different treatment groups to find symptoms that depended on the

treatment modality. Based on these considerations, and following the ACD paradigm, we

split the requirements for this project into two main activities, and we list their corresponding

visualization tasks:

A1. Symptom analysis for a given treatment

• T1.1. Predict late symptoms based on acute symptoms

• T1.2. Identify temporal patterns in the overall symptom severity

• T1.3. Correlate clinical cohort details and symptom patterns

• T1.4. Facilitate the analysis of a subset of patients within a cohort

A2. Support temporal symptom analysis across multiple treatments

• T2.1. Compare temporal symptom profiles across treatments

• T2.2. Evaluate the likelihood of experiencing a symptom profile compared to alternative

treatments

• T2.3. Identify temporal patterns in symptom severity across treatments

• T2.4. Facilitate the comparison of clinical patient data for multiple treatments

Our evaluation describes examples of preferred workflows focused on these activities, while

experts in the oncology domain clinically validate the results. Non-functional requirements

included clarity in the model results, visual explanation, scalable visualizations that can

display symptom and patient statistics, and intuitive visual abstractions that effectively

guide the user during their data assessment.

4.3.3 Data

The data used to build the proposed work is from a cohort of 823 HNC patients who un-

derwent treatment at the MD Anderson Cancer Center in Houston, TX. Demographic and
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diagnostic information was recorded for this cohort, covering ordinal attributes (tumor stage,

lymph node stage), quantitative attributes (age, radiation dose), nominal attributes (treat-

ment modality), and time-series attributes with quantitative values (symptom ratings). This

dataset is a more comprehensive dataset compared to the one used in Chapter 3

Data on self-reported longitudinal symptoms were extracted from patient questionnaires [40]

at 12 time points: before starting treatment, weekly for 7 weeks during treatment, 6 weeks

post-treatment, and 6, 12, and 18 months post-treatment. Symptoms were rated on a 0-to-10

scale, from “not present” (0) to “as bad as you can imagine” (10). A total of 28 symptoms

were considered in this longitudinal assessment, split into HNC specific symptoms (swallow,

speech, mucus, taste, constipation, teeth, mouth sores, choking, and skin problems), general

cancer symptoms (fatigue, sleep, distress, pain, drowsiness, sadness, memory, numbness,

dry mouth, appetite, breath, nausea, and vomiting problems), and daily life interference

symptoms (work, enjoyment, general activity, mood, walking, relationships issues). The 12

time points were divided into two categories: the acute stage (once before the start date

of treatment, or week 0, and all 7 weeks throughout the treatment) and the late stage (the

remaining four post-treatment assessment dates). Not all features were available for all pa-

tients. Missing clinical variables were marked as “unspecified”, and missing symptom ratings

were considered a rating of 0, which were not considered when building the models.

This cohort presents six possible treatment combinations: induction with concurrent

chemotherapy and radiation therapy (ICC) (n = 97), concurrent chemotherapy and radiation

therapy(CC) (n = 329), induction and radiation therapy (IRT) (n = 66), radiation therapy

alone (RT) (n = 199), surgery and other treatments (S and others) (n = 75), and surgery

alone (S) (n=57). Patients were stratified by treatment during the sequential rule mining

analyses. Patients receiving surgery alone were removed from the model building because

this sub-cohort did not report weekly symptom scores during treatment.
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4.3.4 SRM Modeling for Medical Data

Association Rule Mining (ARM) [5] is an unsupervised method that identifies frequent pat-

terns, correlations, or association structures in transactional data sets. Association rules are

most commonly found in the form X → Y (the appearance of X implies the appearance of

Y), with X called the antecedent and Y the consequent of the rule. Because rule mining is

more transparent than black-box models used in various applications, it has also caught the

attention of medical research [10,148,176]. We applied ARM in our previous work [21,60] in

the context of cancer symptoms {taste} → {dryMouth} (if the patient suffers from taste,

then they will more likely suffer from dryMouth as well) by transforming our longitudinal

symptom records into a transactional data set. This helped to find common symptom com-

binations at different stages in the patient observation period, but did not help us predict

late symptoms based on symptoms during treatment.

An interesting extension of association mining for temporal data is sequential rule mining

(SRM) [46]. SRM uses the antecedent of a rule to predict the consequent of the rule, with

the condition that the antecedent precedes the consequent. We applied SRM to our longi-

tudinal symptom data, considering the during- and post-treatment time frames as temporal

sequences of symptom toxicity as follows:

R1 : {taste, nausea} → {dryMouth} (4.1)

meaning that if a patient suffers from taste and nausea problems during treatment, they will

more likely suffer from dryMouth problems after the completion of the treatment. However,

the disadvantage of rule mining in clinical applications is that a large number of rules (n

>20) may typically be required to make knowledge actionable. Moreover, the prediction

should reflect a strong association relationship between the antecedent and the consequent

of a rule. Fortunately, useful knowledge can be quickly identified using rule metrics such as

support, confidence, and lift. In the case of the previous rule R1, the support of the rule

is the ratio of patients who have taste and nausea problems during treatment, followed by
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dryMouth problems post-treatment:

sup(R1) = |{(taste, nausea) ∪ (dryMouth)}|
|S|

(4.2)

where |S| is the total number of patient symptom sequences.

The confidence of the rule predicts the risk of a patient to develop late symptoms (dry-

Mouth in our example), given a certain symptomatology during treatment (taste and nausea

in our example) and is reported as:

conf(R1) = sup(R1)
sup({taste, nausea}) (4.3)

The lift of a sequential rule denotes the strength of the rule, or in other words, denotes

whether the antecedent and the consequent are dependent on each other or not, and is

computed as follows:

lift(R1) = sup(R1)
sup({taste, nausea}) × sup({dryMouth}) (4.4)

A lift value ≤1 indicates that the rule cannot predict the consequence with more accuracy

than could be expected by chance.

As noted above, rule mining can result in a multitude of rules that can show overlapping

patterns. It is important to filter these results based on the previous metrics to obtain

valuable, easy-to-interpret, and meaningful information regarding the patterns within the

data.

Figure 4.1: SRM Modeling. A) Patient-reported symptom ratings are recorded as longitudinal records. B) Records
are processed into patient symptom sequences. C) Patient sequences are provided as input to the SRM algorithm.
D) The sequential rules are filtered and clustered into rule clusters based on their corresponding patient IDs.
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Back-end Design

We use Sequential Rule Mining (SRM) to identify temporal patterns in symptoms and to

predict late symptoms. We discretize treatment ratings into two bins: before treatment

and weekly ratings taken during treatment for up to 7 weeks (the acute stage), and ratings

6-18 months post-treatment (the late stage) (Figure 4.1.A). Patients are stratified based on

treatment modality, and the rule mining algorithm is run separately for each sub-cohort, as

we are interested in identifying treatment-related symptoms.

We used the CMDeo algorithm [63] to compute the sequential rules, which is an adap-

tation of the Deogun et al. algorithm [46] for multiple sequences of events. We followed

the documentation of the open source data mining library called SPMF [64] that supports

the CMDeo algorithm. The Python wrapper from this library was used for the model,

which required us to pre-process our data to correspond to the input structure from the

documentation.

In the first step of data preprocessing, we computed sequences from patient timelines

(Figure 4.1.B). Each sequence corresponds to the temporal ratings of one patient across

both the acute stage (baseline and during treatment) and the late stage (post-treatment).

Consequently, we abstracted the sequences into two-stage patterns, acute and late (Sec. 1.3).

In the acute pattern, we include a symptom only if the patient provided a rating above a

given severity threshold (e.g., ≥5) during any of the acute time points. Similarly, in the late

pattern, we include a symptom only if the patient provided a rating above a given threshold

(e.g. ≥3). Clinically, a rating ≥5 is considered a moderate-to-high severity, while three is

regarded as mild severity. The same threshold is not enforced for the two stages because,

in general, ratings are lower in the late stage than in the acute stage. The use of a severity

threshold helps minimize patient variability and individual symptom severity ratings.

Next, the SRM algorithm was applied to these sequences to identify sequential rules

(Figure 4.1.C). Similar to traditional association rule mining, two input parameters, namely

support and confidence, need to be specified by the user to generate the rules. In our
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experiments, we used a minimum support (i.e., percent of patients that show the resulting

patterns) of 30% or 40%, depending on the number of sequences, as we consider patterns

experienced by a third of the patients to be significant. The minimum confidence (i.e.,

risk of late symptoms) was set to 50%. From the initial set of rules, only rules with a lift

threshold higher than one were selected to ensure the rules can be used for the prediction of

late symptoms. The lift of a rule indicates the degree of dependency between the antecedent

and consequent of the rule. The resulting rule sets varied from 9 to 46 rules, depending

on the number of sequences for each treatment and the variety of occurring symptoms per

sub-cohort.

As expected, the extracted rules within each treatment cohort showed many similarities

in terms of symptom patterns (often differing in only one or two symptoms) and in the

set of patients supporting the rules (more than 90% of the same patients appearing in two

or more rules). To minimize redundancy among the rules, we decided to cluster the rules

into rule clusters that would then be used for visualization. We labeled each rule with the

corresponding patient IDs that support the rule. Next, we computed the similarity between

the rules based on their common patient IDs using the Jaccard index [93]. We used this

method because we work with sets (i.e., patient ID sets) for which we wish to compute rule

similarity based on the patients the rules affect. We then applied hierarchical clustering

using the complete linkage [45] on the resulting similarity matrices. We used the complete

linkage since the point of reducing a group of rules to a single rule was to yield cohesive rule

clusters while avoiding in-cluster outliers. We used hierarchical clustering because we have

found it produces highly interpretable results through the use of dendrograms [123], which

allows us to manually adjust the clusters and identify outliers. We decided on the number

of clusters after inspecting all treatment results. We created rule clusters (Fig. 4.1.D) by

merging the antecedent symptoms and the consequent symptoms of all rules within a cluster.

Thus, each cluster is formed by a set of acute symptoms and a set of late symptoms.

We attached to each cluster all the patient IDs from that cluster’s corresponding rules.
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This is helpful for visually connecting the cluster information with the patient cohort. We

report the following measurements per each cluster: 1) the probability (support) of develop-

ing the acute symptoms given a treatment method; 2) the probability of the acute symptoms

to develop the cluster’s corresponding late symptoms, given by the confidence of the rule

cluster; 3) the likelihood that the temporal pattern shown by the rule cluster will appear

more frequently as compared to the rest of the treatment modalities, given by the support

of the cluster within the treatment over the support of the cluster outside the treatment (i.e.

for all the alternative treatment modalities).

Figure 4.2: Longitudinal symptom analysis and prediction for head and neck patients (ICC treatment). A) Overall
severity over time for each symptom, across treatments. B) Sequential mining component, showing two clusters that
use acute symptoms (left) to predict late symptoms (right). Lower opacity indicates other late prevalent symptoms,
not selected by the current model. C) Cohort characteristics, showing symptom cluster results against patient
attributes. D) Scatterplot showing patients projected based on the total symptom score for acute (X axis) and late
(Y axis) stages. E) Cohort timeline, displaying cluster labels, clinical details, and mean symptom burden.

4.3.5 Front-end Design

The proposed visual system was built using Python for the back-end and React with D3.js

for the front-end. The design is based on coordinated multiple views that support diverse

analysis workflows. The interface is split into five panels that support six types of visual

components. The top panel ( Fig. 4.2.A) is the only panel that cannot be configured by

the modeler and shows the stratified overall symptom severity for the entire patient cohort.

The rest of the interface is split into quadrants that can be configured with any of the

following five visual components: the symptom clustering component ( Fig. 4.2.B) - which
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denotes temporal symptom clusters for one treatment; the patient clustering component

( Fig. 4.2.D) - which shows patient cohort symptomatology attributes for one treatment; the

cohort characteristics component ( Fig. 4.2.C) - which correlated diagnostic data to symptom

clusters and symptom overall severity over time; the cohort timeline component ( Fig. 4.2.E)

- which displays an in-depth view of each patient’s longitudinal and diagnostic features; and

the symptom query component ( Fig. 4.7.D) - which provides overall statistics regarding the

appearance of symptoms during (acute) and post-treatment (late). Excluding the top view,

which uses the entire cohort, each component displays the data for one treatment modality.

The quadrants have treatment and visual component queries attached at their top-left to

facilitate workflow configurations.

Figure 4.3: Rose glyph. Color-coded petals aggregate the mean severity for patients for the symptom dryMouth.
Petals in the radial layout start at 9 o’clock and proceed clockwise. Pink “petals” encode acute time intervals while
purple encodes late time intervals. Late petals are wider to depict longer time intervals, while acute petals depict
shorter intervals.

Our design relies on the use of custom Rose Glyphs ( Fig. 4.3) to encode the trajectory

of a single symptom severity within the entire cohort ( Fig. 4.2.A), or subgroups in the

data ( Fig. 4.2.B). For the selected subgroup, the mean symptom rating at each time point

is encoded using variable-radius slices (petals). Based on feedback from collaborators, the

symptom trajectory starts with the baseline ratings at 9 o’clock. It progresses clockwise in

order of increasing time points, showing rating details for each of the twelve time points

of the patient observation period. Pink petals encode acute treatment time points, while

purple petals encode late time points. Late time points are wider to denote that they

represent longer intervals than the acute time points (e.g., months vs. weeks). We took

inspiration from Florence Nightingale’s Rose Diagram [24] for this glyph. Still, instead of

focusing on comparing events within a time frame, we mainly concentrate on the temporal
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trajectory and comparing trajectories across symptoms. We used the radial glyph design

because it provided a compact way to display the severity of symptoms across cohorts, while

highlighting which of them represent a greater burden on patients, and an efficient way to

compare the progression of severity between symptoms.

Overall Symptom Severity

This component ( Fig. 4.2.A) shows the mean severity (i.e., rating) distribution for each of

the 28 symptoms for the entire patient cohort (i.e., all treatment modalities) (T2.3) using

rose glyphs. The list of symptoms starts with dryMouth, which is one of the most severe

symptoms throughout the observation period, and is the most persistent symptom post-

treatment across patient sub-cohorts. The rest of the symptoms are ordered based on the

cosine similarity to dryMouth, computed using the mean temporal ratings per each symptom.

We used cosine similarity because we are more interested in the relative frequency of symptom

occurrence, as there can be a significant variation in self-reported symptoms between items

that may not correlate with their impact on quality of life. Symptoms predicted by SRM in

at least one of the existing treatments are highlighted with a shadowed border (i.e., taste).

This encoding provides a compact way of showing the overall trajectory of symptoms for the

entire cohort, and it serves as an entry point for further analysis, as well as giving a reference

point when evaluating treatment-specific symptom patterns.

Figure 4.4: Symptom clustering for treatment ICC. The clusters in orange and green predict in the late stage
dryMouth and taste problems. Cluster 1 (orange) shows a higher risk of developing these toxicities for ICC rather
than the other existing treatment modalities (i.e., 1.88 times more likely)
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Symptom Clustering

This component ( Fig. 4.4) provides a visual abstraction for the symptom clusters found

in Section 4.3.4 through a 2D projection of the corresponding symptoms using rose glyphs

(T1.1, T2.1). The view is split into two halves to facilitate temporal separation between acute

and late stages. The X and Y axes in the acute half correspond to the first two principal

components after applying PCA to the Jaccard similarity between symptoms, based on the

common patient IDs they share. Because many of these symptoms have an underlying

association, we used PCA, as opposed to other projections, because it works better for

correlated attributes. We use a force-directed layout to ensure that the symptom glyphs

do not overlap in the projection. Symptoms are represented using rose glyphs to show the

mean severity distribution over time among patients who correspond to clusters. This also

improves temporal symptom severity comparisons between a selected treatment and the

overall cohort or another treatment.

In the latter half ( Fig. 4.4), the clustering results are not part of the PCA projections

because these clusters usually resulted in one or two different symptoms in this stage for a

given treatment. Furthermore, we list on the right edge of the view the late symptoms that

appeared in our rule mining results, but were not part of the rules filtered for the prediction

or the clustering of the symptoms due to low metrics results (i.e., lift < 1). We chose to

visualize these additional late symptoms to highlight the fact that, although the data shows

many common treatment-related toxicities, these cannot be accurately predicted using acute

symptoms with the data at hand. We mark these symptoms with low opacity for the rose

glyphs as opposed to predicted symptoms.

The left legend of the component shows the details for each symptom cluster ( Fig. 4.4):

the cluster ID, the corresponding antecedent (acute symptoms) and consequent (late symp-

toms), he support of the acute stage (i.e. how many patients display the symptom patterns

from the acute stage), the confidence of the cluster (i.e. the risk of developing late symp-

toms given the acute symptoms), and the support of the cluster within the treatment cohort
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over the support of the cluster for the other treatment cohorts (i.e. the likeliness that this

cluster might appear more frequent for the given treatment as opposed to all the other treat-

ments) (T2.2). Each cluster is highlighted using an envelope ( Fig. 4.7.B, C) categorically

color-coded. The envelopes’ background can be turned on ( Fig. 4.2.B), which can better

emphasize the correspondence of symptoms to clusters, using a Venn diagram-like illustra-

tion. From the legend panel, the clusters can be unselected, which will result in the removal

of the highlight for those cluster envelopes. Selecting a symptom glyph from the projection

or a cluster label from the legend will highlight the complementary information in the other

interface components (e.g., cohort attributes that correspond to the selected item).

In our previous work with rule mining for symptom analysis, we used node-link diagrams

to represent the symptoms’ inter-relationships [60]. Domain experts preferred this 2D visual

abstraction due to the small number of rules that we displayed. However, in this project,

we work with a larger number of temporal rules (n >20). Early prototypes relied on a

combination of network-based encodings and barplots. However, this resulted in clutter due

to the large number of edges between nodes, which did not capture well the temporal nature

of the rulesets. As a result, we detached from displaying actual rules. We opted for a cleaner

projection that uses rule clusters, using envelopes to show relationships between symptoms,

and horizontal separation to denote temporal direction. We opted for the rose glyph, as

opposed to circles, for the interpretation of symptoms, to enhance the comparison of the

trajectory between symptoms.

Cohort Symptom Query

This component ( Fig. 4.7.D) provides an overview of all the 28 symptoms from the cohort

for the acute and late stages, and guides the analysis of symptom clusters, using a vertical

barchart (T2.1). For a selected treatment, tumor and lymph node stage, acute and late

symptom rating thresholds, this view returns the percentage of patients who have reported

symptoms above the given thresholds at least once during and post-treatment for each symp-
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tom. Symptoms are ordered from top to bottom by the highest cumulative percentages for

acute and late occurrences, which highlights symptoms of high prevalence among patients.

Symptoms from SRM clusters are colored blue.

We proposed this encoding in early prototyping iterations to show statistics for rule

symptom occurrences. Our collaborators quickly adopted it into their analysis due to its low

complexity, so we chose to follow this design to explain the prevalence of symptoms.

Figure 4.5: Patient Clustering View. A) Scatterplot showing patient glyphs. Two options for patient encodings in
the scatterplot: B) encodes cluster memberships, and C) encodes temporal symptom burdens.

Patient Clustering

This component ( Fig. 4.2.D) provides a custom 2D scatterplot projection of the patient

cohort, with axes corresponding to the total severity scores of symptoms for acute time

points (X axis) and the late time points (Y axis) ( Fig. 4.5A). We chose this orientation to

better highlight patient outliers for the acute and late stages (T1.2). We use a force-directed

layout to remove overlap and ensure that each individual patient can be selected from this

projection for further analysis.

This component has two interchangeable layers: the first layer ( Fig. 4.5B) colors the

points based on the patients’ rule cluster labels. If a patient is not included in any of the

rule clusters, their corresponding point is gray. Otherwise, the point is split into as many

sections as the number of clusters to which it belongs, where each section is colored to

match the cluster colors from the symptom clustering component. The second layer (Fig.

Roses 5.C) divides the points into two sections, representing, from left to right, the acute

and late treatment periods, respectively. The color of each section is assigned to the overall

symptom severity for its corresponding period, with lighter red encoding low severity and
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dark red encoding high severity. Furthermore, this layer can be applied by selecting a subset

of symptoms from the top rose glyph row ( Fig. 4.2.A), and it will be updated to show the

acute/late severities of the selected symptoms. Brushing operations are available on this

view, which will highlight or filter information in the rest of the views based on patient

selection (T1.4).

Alternative designs experimented with other projection methods and glyph encodings.

However, we found most projection methods like PCA [60] and T-SNE did not capture

the rule clusters and associations. In contrast, we found moderate-to-high acute and late

symptom ratings were consistently correlated with more cluster membership, which made the

glyph encoding more intuitive to the collaborators. Using symptom severity made it easier for

collaborators to identify patients with increases or decreases in treatment severity between

the acute and late stages. For the scatterplot glyph design, we considered alternative shapes

instead of circles for different clusters. Still, we found that it was challenging to capture

an arbitrary number of cluster memberships across treatment modalities using shapes. For

the symptom toxicity layer, we considered splitting circles into more than two time periods

(i.e., baseline, acute, late) or using rose glyphs, but that cluttered the view and made it

difficult to find patterns. This component ensures a better understanding of the model

results and clinical statistics as it connects the cohort information to actual patients for the

given treatment.

Cohort Timeline

This component ( Fig. 4.2.E) functions as a detailed view of the attributes of each patient

(T1.4), using timelines and small multiples to show the mean symptom ratings over time,

patient cluster labels, and diagnostic information (T1.3). The left half of the view shows the

patient’s ID, tumor (T) stage, lymph node (N) stage, symptom clusters labels, and temporal

symptom severity using their corresponding points from the scatterplot ( Fig. 4.8.C). The

right half uses a barchart timeline, split by acute and late stages, showing mean ratings
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for each of the 28 symptoms ( Fig. 4.8.C). The symptom bars are ordered after the top

interface row symptom order. They are colored blue when they represent symptoms that

are present in at least one of the rule clusters for the selected treatment, or gray, vice versa.

Brushing from the scatterplots will filter this view by the selection. Clicking on the patient

IDs will highlight the corresponding patients in the scatterplot and in the flows in the cohort

characteristics component.

Oncology experts are often interested in analyzing a single patient and comparing them

with the rest of the cohort. As a result, we designed this component to make individual-

patient analysis possible. Previous prototyping iterations explored matrix-based encodings,

which included all time points from the symptom data. This resulted in cluttered components

that took most of the screen space due to the large number of time points (n >10), making

the inclusion of diagnostic patient data difficult. Thus, we adopted this custom simplified

view of the temporal symptom data, deciding to aggregate the acute and late time points

while also integrating the diagnostic and symptom cluster/severity labels. The timeline

component can also be used to observe how a patient’s symptomatology trajectory compares

to other patients, or to observe the overall burden of symptoms for a given set of patients

(T1.2, T2.3).

Figure 4.6: Sankey Diagram for IRT treatment. Node c1, c2 is selected, showing that a tiny part of the patient
cohort with this cluster combination is linked to low symptom severity in the acute stage.
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Cohort Characteristics

This component (F Fig. 4.6) connects symptom cluster memberships, overall symptom bur-

den for the acute and late stages, and diagnostic patient data (T stage, N stage) using a

Sankey Diagram (T1.3, T2.4). In addition to showcasing possible combinations of symptom

groups, we stratify patients into low, medium, or high symptom burden for acute and late

stages using K Means clustering on the total symptom toxicity scores for both stages. This

further emphasizes how acute symptom burden is translated into late symptom burden. The

nodes from the diagram can be selected, and the corresponding nodes and flows are high-

lighted in blue (F Fig. 4.6), while filtering options in the other views highlight in blue the

selection in this component as well.

When we prototyped this component, we kept in mind that we needed to showcase the

distribution of categorical cohort attributes while also considering time directionality for our

temporal attributes (i.e., acute and late symptom toxicity). We opted for a Sankey design, as

it has shown adoption in categorical and temporal characteristics in previous work [195]. Our

collaborators easily adopted this design and became a key component of their analyses. The

diagram’s ordinal axes are ordered from top to bottom (i.e., T/N stage, acute/late toxicity),

in accordance with the request of our oncology domain experts. Due to the limited number

of attributes, this component can clearly show the distribution of a particular attribute’s

values across a treatment modality and how it is connected to the distributions of the other

cohort attributes.

Flexible Workflow Support

Due to the variation of the requirements that would support the analysis at both the patient

cohort level and the symptom cohort level, we designed these visual components to provide

a balance between flexibility and guidance across analysis workflows. Our modelers were

interested in understanding and interpreting the SRM model results in the context of treat-

ment decision making and treatment-related symptoms. However, they also sought common
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symptoms between treatments that may develop independently of the treatment strategy.

In addition, they were interested in predicting what a new patient should expect given a

selected treatment to better assist future treatment decisions. To support these multiple

workflows, the afferent components can be flexibly swapped.

4.4 Evaluation

We evaluated the system and the resulting models through multiple demonstrations and

case studies involving two senior model builders, two junior model builders, and three senior

clinical oncology co-modelers with ML experience. Only the model builders were part of

the entire design process for our interface and model building, while the oncology experts

provided occasional input and feedback. Although our system is dedicated to model builders

in cancer symptom research, we also needed to clinically validate the results we had found.

We illustrate two case studies that were conducted through focus groups via Zoom, using

screen sharing and note-taking. During these sessions, the first author navigated the interface

under the guidance of the model builders and oncology co-modelers, using the think-aloud

method. These studies used a cohort of 766 HNC patients who presented five treatment

modalities: RT, IRT, CC, ICC, and Surgery and other. We show in abbreviated form these

case studies.

Figure 4.7: Treatment comparison. A) Overall cohort toxicities for all time points. B) and C) Symptom clusters
for treatments ICC and IRT. Both treatments show two clusters, with similar acute symptoms, but ICC presents
taste as a late symptom (B), as opposed to IRT(C). Although the rose glyphs are projected based on similar patients
in the acute half, both treatments have outliers (i.e., skin and sleep in acute). D) and E) Symptom queries showing
the prevalence of all symptoms for the two selected treatments. These bottom views show that, although there are
many late common toxicities, not all can be predicted by the acute symptoms in B) and C) (i.e., mucus in late ICC
is prevalent but not predicted in the symptom clusters).
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Case Study I: Multi-treatment Analysis

The model builders wanted to find temporal symptom patterns across multiple treatment

modalities and compare the results. Oncologists hoped they would discover specific symp-

toms highly correlated with particular treatment strategies. After examining the top row

of the interface ( Fig. 4.7.A), the evaluators noted that, unsurprisingly, common toxicities

such as dryMouth, taste, swallow, and mucus were the highest overall (T 2.3). In general,

symptoms usually followed a gradually increased toxicity during treatment and a decrease

post-treatment, as expected. However, symptoms related to daily life activities, such as

mood, enjoyment of life, distress, and sadness, showed severity peaks before the start of the

treatment (i.e., first pink petal), implying that mental health improved when the patients

started the treatment (i.e., the severity decreased). The interface was then used to show

the symptom clusters for ICC ( Fig. 4.7.B) and IRT ( Fig. 4.7.C) in conjunction with the

symptom queries ( Fig. 4.7.D, E). Using the symptom queries, the evaluators found simi-

lar prevalent symptoms for both treatments (T2.3). In the symptom cluster components,

both treatments showed two temporal clusters each, with identical overall symptom profiles

(T2.1). Although the symptom queries showed many prevalent late toxicities ( Fig. 4.7.C,

E), they were not all predicted by the model. These symptoms appeared as common late

toxicities in the rule mining results, as shown by the low opacity late symptoms in the clus-

ters panels ( Fig. 4.7.B, C). Taste was predicted as a late toxicity for ICC, correlated with

loss of appetite, and, surprisingly, with skin problems ( Fig. 4.7.B). DryMouth showed ap-

parent severe toxicity in late when compared to the whole cohort ( Fig. 4.7.A), more so for

IRT ( Fig. 4.7.C) (T2.1,3). The evaluators appreciated how the rose glyph projection kept

symptoms with similar trajectories together. For example, in the ICC symptom clusters,

pain and mucositis showed strikingly similar trajectories ( Fig. 4.7.B). They hypothesized

that this might be a sign that pain, being such a general symptom, was highly correlated

with mucositis problems in this cohort. The evaluators also showed particular interest in the

outliers of the acute projections, namely issues with sleep in IRT and skin in ICC.
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Replacing the symptom query components with the Sankey diagrams for the two treat-

ments ( Fig. 4.2.C, F Fig. 4.6), the evaluators observed that IRT showed N3 stage (advanced)

for node lymphs. At the same time, ICC did not present such a high attribute value (T2.4).

In terms of the predicted values of the model, although the evaluated cohort had missing

data, the oncology co-modelers appreciated the model’s ability to find common longitudi-

nal patterns for small sub-cohorts that show an increased risk of developing these patterns

within the given treatment (T2.2). For example, although only 97 patients were given ICC

( Fig. 4.7.B), the model showed a higher likelihood (i.e., almost twice as likely) that appetite

and skin problems could cause dryMouth as opposed to all the other treatments. The evalu-

ators concluded that the symptom clustering component was an effective way to understand

the impact of late symptoms in a sub-cohort. They are excited to analyze the SRM results

with more symptom rating data for this patient sub-cohort.

Figure 4.8: Single-treatment analysis. A) ICC treatment symptom clusters with cluster 1 (orange) selected. B)
ICC patient projection with the cluster label layer. The cluster 1 outlier patients from the lower-left side are selected
and highlighted in blue in the scatterplot filtered in the other views. C) patient timelines for the selection from
B) showing low mean temporal toxicities. D) Patient projections with the toxicity layer. The selection from B) is
highlighted with blue in this view, and shows moderate total severities for both acute and late.

4.4.1 Case Study II: Single Treatment Analysis

For the second study, the cancer co-modelers wanted to better understand the mechanisms

between symptom clusters. They started with a treatment example, ICC. The interface

was configured as follows: the symptom cluster component ( Fig. 4.8.A), patient projection
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component using the symptom cluster layer ( Fig. 4.8.B), the patient timeline component

( Fig. 4.8.C), and the cohort characteristics component ( Fig. 4.2.C). At first glance, the pa-

tients who usually suffered from moderate-to-high symptom burden overall showed patterns

among the two existing symptom clusters ( Fig. 4.8.A, B) (T1.1). Patients usually showed

problems in both clusters, with lower burden patients sharing mostly cluster 1 (appetite,

skin → taste) ( Fig. 4.8.B). Selecting the previously mentioned sub-group of patients with

cluster 1 from the scatterplot (T1.4), the evaluators looked at their timelines ( Fig. 4.8.C).

They observed low mean symptom ratings for both treatment stages, with peaks among the

symptoms from the clusters (T1.1). Moving to the cohort characteristics component, the

modelers observed that most cluster combinations among this cohort showed higher symp-

tom burden for the acute and late stages, but the symptom cluster 1 patients showed only

problems below the T3 stage (T1.3). While evaluating the cohort characteristics compo-

nent, the oncology co-modelers commented that they expected severe symptom burden in

late stages to be correlated with higher T stage (i.e., T3) ( Fig. 4.8.C). Still, this view proved

that it was not the case.

Next, the evaluators wished to understand the overall temporal toxicity among the pa-

tients. The cohort characteristics component was changed to show the patient projection

with the overall temporal severity layer applied ( Fig. 4.8.D) (T1.2). In this way, they

could better understand the relationship between the symptom cluster labels and acute-late

toxicity. They noted that almost half of the patients within this treatment often showed

severe toxicity during acute, but low severity after the completion of treatment, which was

received with relief. Selecting the top-left outlier (T1.4), the evaluators observed that the

given patient did not have reported data for the acute stage, making it an outlier, and agreed

that the medical records for this patient needed further analysis. The oncology co-modelers

expressed that the scatterplot was really efficient in detecting outliers in patient data, while

also connecting the cohort to symptom burden characteristics. After finding the outliers and

unexpected diagnostic patient details connected to symptom clusters, the evaluators decided
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that their future studies should focus further on diagnostic patient data.

4.4.2 Expert Feedback

The visual system and model results received extremely positive feedback. One of the senior

model builders affirmed: “The interface is extremely useful for navigating through the patient-

reported outcome data and generating hypotheses. Evaluating the effect of different thresholds

for symptom severity and rule mining would be overwhelming without these visualizations [...]

Using the rose glyphs gives a quick overview of the symptom trajectory for a group of patients

and it is easy to compare between different therapeutic combinations [...] The sequential rules

provide a way to identify acute symptoms that can be predictive for late toxicity. The rule

clustering dramatically reduces the complexity of the analysis by reducing the number of

relevant rules and highlighting interesting metrics to compare the different treatments.”

The oncology co-modelers were really impressed, one of them affirming: “The app is

very good and combines all the information in one place, so that is very interesting”, while

another commented:“I really like this..I feel very strongly about this..the utility for exploring

the data here is very high” and “if you’re talking about quantitative decision-making, this

is very strong”. The appreciation for multiple data-driven analyses was further emphasized

by the oncologist co-modelers:“First, we can stratify by treatment, [...] second, we can see

that patients who have certain patterns of symptoms like those more impacted by skin and

appetite are more likely to get taste problems later on than [...] third, you can stratify the

patients by T stage, N stage, and different clinical parameters [...] so for me, it is really,

really helpful, it is a really cool tool”. One oncologist thought that the system would help

explain late symptoms to patients and expressed interest in deploying the system to other

clinicians to assess whether it can help them when dealing with patients.

In terms of visual encodings, the modelers appreciated the usefulness and many tasks

that the rose glyphs accomplish, from single-symptom, single-treatment analysis to multi-

symptom, multi-treatment analysis. One oncologist co-modeler commented when analyzing

the rose glyphs: “Fascinating that taste is so prevalent [...] we don’t understand why it’s so
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bad. The kinetics are fascinating”. Secondly, they appreciated the Sankey diagram:“this one

is going to help if you want to connect the dots between staging and toxicity, and symptom

clusters, so it gives an overall connection”. The diagram revealed surprising results: “I

expected that the more advanced staging you have (T stage), the more toxicity you get - it

corrected my assumptions”. They found the scatterplot helpful to observe symptom burden

temporal trends at the cohort level while detecting outliers. The other components served

as applicable complements to the model analysis.

4.5 Discussion

This work was developed as a collaborative project with oncologists and data scientists to

create explainable rule mining and clustering of temporal patient symptoms. The evaluation

with domain experts in symptom research demonstrates that our visual system successfully

explains the SRM model results in the context of several aspects of the patient and symptom

cohort data. Our results show that our visual system is an effective tool for collaboratively

analyzing treatment-related symptom patterns in clinical patients. Our combination of SRM

and rule clusters allows for a flexible and easily comprehensible explanation of common

co-occurring symptoms and predicting late-stage symptoms for different treatment groups.

Although we focus our design on model building, our case studies and feedback suggest that

our interface is able to provide usable insights for clinical practitioners. Although we target

radiation oncology patients, we generalize design insights to a wide range of approaches when

dealing with complex, temporal patient outcomes and when working with clinical explainable

ML models.

Since our system aims to visualize individual patients in the cohort, some of our visual

components, such as the scatterplot and individual patient timelines, can show scalability

issues if they must support a large number of patients (e.g., n >700). However, this may

be addressed by increasing the granularity of the sub-cohorts used to reason about the

data On the other hand, the Sankey diagram, rose glyphs, and symptom query barcharts
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can support any cohort sizes. At the same time, the timelines can show any number of

patients using scrolling operations. Moreover, if having to support more data attributes,

the Sankey diagram would become harder to understand, although brushing operations can

uncover the necessary connections. On the other hand, given the difficulty in collecting

large homogeneous cohorts of symptom data ( >700 patients with >20 attributes over >10

time points), we felt that it was more important to provide a highly configurable interface,

supporting several workflows, at the cost of some scalability issues. The user can set any

sub-cohort with any visual component in any part of the interface, which enhances the user’s

analysis process.

Notably, some of the patients used in the model building were still in the observation

period and, as a result, they were missing symptom ratings for many post-treatment time

points. This impacted the results of the model’s predictions. Future work includes refine-

ments in the SRM model using the interface once the data set is complete.

4.5.1 Research Questions

Q1. How can visualization support cohort analysis? Through the ACD method and consid-

ering the experience from THALIS, we interviewed data modelers in head and neck cancer

research for task-gathering because this project aimed to experiment with new modeling ap-

proaches for patient cohorts. The modelers presented specific design considerations to better

visualize the modeling results for the clinician collaborators. In this project, treatment-

induced toxicity was one of the primary research considerations. As a result, we stratified

the patient populations into cohorts by treatment plans and used data visualization to an-

alyze in-depth a given cohort, as well as to compare different cohorts to understand how

treatment type influences patient outcomes and post-treatment quality of life.

Q2. How to visually represent cohorts and their characteristics, and what interactions to

support? We proposed a multiple coordinated view design by splitting the front-end into

quadrants. The users could pick a visual encoding and a treatment type for each quad-

rant. This design principle enabled the configuration of different workflows, such as clinician
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workflows, modeler workflows, in-depth treatment analysis, or cohort comparison. For the

visualization of cohort characteristics, we faced some modeling and data challenges, such as

the need to visualize the overlapping temporal rules that represented outcome predictions

for each cohort. These results were abstracted into temporal networks with temporal nodes.

We proposed the rose glyph encoding for several tasks within the system, such as providing

temporal trajectories for all symptoms or grouping and comparing temporal rules.

Q3. What system implementations work for post-treatment decision-making? As opposed

to THALIS, we focused on the different analytical needs for clinicians and data modelers.

Roses supported the modeling activity by summarizing the rule mining results for modelers.

At the same time, visualizations for different cohort data facets helped to link all the pieces

together for clinicians (e.g., connecting the rule clusters to clinical statistics within a cohort,

or to the overall symptom burden within a cohort).

Q4. What makes a visual analytics system valuable to biomedical users? We experimented

with a highly configurable front-end to explore different workflows in clinicians and data

modelers and to comply with differences in mental models of our collaborators. The evalua-

tion sessions showed how Roses can elicit hypotheses about the toxicity of treatment-induced

symptoms in different cohorts. Design considerations for clinical researchers ensured that

the results of the rule mining modeling were accessible for clinical interpretation and action-

able in practice. The configurable front-end supported more comprehensive analyses due to

accounting for different levels of detail.

Takeaways. Unlike THALIS, where the domain characterization process was essential

to understand how data visualization can help cancer post-treatment research, in Roses,

we had the benefit of having all that information at hand. As a result, we focused on

expanding modeling approaches from THALIS and exploring a highly configurable front-

end that takes into account multiple levels of cohort details to better accommodate the

differences in user workflows and different insights. The highly configurable interface was

designed in coordination with multiple domain experts, who approach the problem with
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different viewpoints, which required different forms of data abstraction. For example, a

modeler was more interested in identifying the rules with the highest prediction metrics for

each treatment, and thus benefited from a layout that was more focused on showing multiple

different panels. In contrast, some clinicians were interested in assessing the value of the rules

when explaining results to patients, and thus benefited more from configuring the layout to

allow for side-by-side comparisons between panels. On the other hand, the amount of possible

front-end configurations was overwhelming for some users at the beginning. Another finding

in this project was that due to unconventional cohort characteristics, we had to come up

with a novel encoding to interpret the cohort results. Besides the two-stage characteristic,

we dealt with temporal networks that contained temporal nodes, which were the results of

the sequential rule cluster modeling. Notably, this visual encoding was the key component

of our interface, supporting several analytical tasks. We proposed the rose glyph to ensure

actionability and transparency in the modeling results.

Considerations for future work ( Chapter 5) include: 1) better separation for clinician

vs. modeler activities and 2) better workflows structure since Roses’s configurable front-end

can become overwhelming due to too many layout options, 3) need for visual analytics

support for more complex modeling activities (e.g. black-box model understanding and

evaluation), and 4) visualize modeling results for user-selected cohort stratifications to better

understand what are the cohort attributes associated with symptom risk (aka main risk

components). Next, I will discuss the completed work and future steps for this research.

4.6 Conclusion

Roses introduced an example of a configurable visual analytics system for clinician-modeler

collaborations in head and neck cancer cohort analysis, which accounted for different user

interests and tasks, and consequently, different levels of cohort details. We presented the

domain characterization for longitudinal outcome risk modeling after the completion of onco-

logical treatment plans. The system supported model explanation, introduced a new method
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to predict temporal risk post-treatment completion, and compared the modeling results to

better understand how treatment plans influence adverse outcomes. Moreover, the system

introduced the rose glyph to summarize multi-stage, temporal patient attributes (i.e., symp-

tom measurements) and to better understand the risk stratification process.

In the following chapter, I will continue with the same application domain, but will

not extend the work from THALIS and Roses. I will present an independent project that

aims to explain and evaluate symptom risk predictions post-treatment, where I focus on

data modeler activities and support clinician interpretation of the modeling results through

separate front-ends, dedicated to the two types of domain experts.
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Chapter 5

L-VISP: LSTM Visualization for Interpretable Symptom Prediction
in Patient Cohorts

5.1 Introduction

This chapter presents the design, development, and evaluation of a visual analytics system,

L-VISP, for analytical workflows centered on data modeler needs, and it supports cohort

treatment risk modeling activity. L-VISP’s design considers the evaluation of the results by

clinicians as well, who play a secondary user role in this project. I continue my work on the

head and neck cancer domain to assist the evaluation, interpretation, and actionability of

supervised and unsupervised risk modeling. Specifically, this project adapts various LSTM

methods for symptom risk prediction on user-defined patient cohorts or on machine-derived

patient clusters. This helps to evaluate how the model predicts outcomes for a target cohort.

L-VISP contributes to visualization for model understanding by attempting to explain the

underlying mechanisms of LSTM black-box models. This is done through visualizations

that expose the model’s memory and the evaluation of its predictions alongside ground-

truth data. The model explanation is assisted by custom visualizations and by separate

clinician-modeler front-ends, which separate different users’ needs and provide a more guided

analysis. These front-ends show predefined user workflows, which bring together various

data facets, such as prediction statistics for a specified cohort, for clinician analyses, or

prediction performance metrics for patient clusters. Last but not least, L-VISP introduces

an encoding that helps to interpret the decision of the LSTM symptom predictions, which

highlights weighted associations between symptoms and the underlying connections between

said symptoms/model variables. The system was evaluated on a 937-patient cohort with
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data modelers and a clinician.

The contents of this chapter are currently under review at the Computer Graphics Forum

journal.

5.2 Motivation

Personalized head and neck cancer (HNC) care focuses on creating treatments tailored to

individual patients based on cohort characteristics from similar patients. Unfortunately,

cancer treatment often results in numerous side effects, which differ between patient cohorts

and can last for a long time post-treatment. As a result, clinicians are collaborating with data

modelers to understand treatment-related symptoms that appear or persist after treatment,

to predict adverse outcomes, and to stratify patients into high-risk and low-risk cohorts.

One of the significant challenges in post-treatment research is posed by the scarcity of cohort

data, imposed by the patient monitoring protocol [40]. Patients are closely monitored during

treatment when they come to the clinic to receive the prescribed doses, as opposed to post-

treatment, when they come for biannual follow-up checkups [56]. As a consequence, post-

treatment patient data is collected less often, posing a challenge in outcome prediction.

Long Short-Term Memory Network (LSTM) methods have demonstrated excellent results for

temporal patient outcome prediction, surpassing traditional statistical and machine learning

methods, and have also gained attention in HNC symptom risk prediction [186,187].

Post-treatment symptom risk prediction is a multidisciplinary field where data modelers

collaborate with clinicians to model patient outcome risk, but this modeling often suffers

from low interpretability. This is especially true when supervised black-box models, such as

LSTMs, are used. Visual analytics can support this research; however, it needs to consider

the differences in the mental models of the users. For example, clinicians are more interested

in the actionable interpretation of the modeling outcomes and in the accuracy of the meth-

ods, which can be applied when treating new patients. Data modelers, on the other hand,

are also interested in understanding the mechanisms behind the model’s decisions and tools

94



that help them refine and debug modeling approaches. Moreover, post-treatment symptoms

can result from the cumulative effects of various factors [154,179], such as treatment-related

complications or patient-specific health and lifestyle changes following treatment. Symptoms

can also be associated with each other, either due to direct influence or due to shared root

causes. Consequently, there is a growing need for analytical tools that support collabora-

tive cohort modeling through workflows that enable experts to interpret machine-derived

(modeled) results with real patient data.

Although data visualization is a valuable tool for supporting analytical tasks, in the

context of post-treatment symptom prediction, it must overcome several challenges. To

effectively interpret LSTM model behavior, data visualization must integrate diverse data

facets from heterogeneous cohorts and support data modelers’ and clinicians’ analytical

tasks. Specifically, data visualization needs to: compare multiple cohorts of interest to

understand the impact of the modeled risk; support cohort stratifications by levels of risk

to better understand prediction results; and blend cohort characteristics with results from

different models to gain a deeper understanding of risk categories. Notably, LSTM symptom

prediction visualization needs to overcome the cognitive burden associated with the high

information density of LSTM models.

To address these challenges, we introduce a visual analytics system, L-VISP, developed

for and with data modelers and with clinicians as secondary users, which supports post-

treatment risk modeling in HNC patients. This work’s main contributions are: 1) the domain

characterization, developed alongside domain experts, of an application that targets model

explainability in LSTM predictive analysis for head and neck cancer cohorts in collaborative

clinician - data modeler settings, with a description of the modeling problem and design

requirements; 2) data modeling with unsupervised and supervised approaches to stratify pa-

tient cohorts by risk using temporal clustering, and to model symptom severity using LSTM

methods; 3) a human-machine system that is a collaborative bridge for data modelers and

clinicians in clinical research. The system blends data visualization with data modeling to
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interpret model outputs on multivariate, temporal patient cohorts. The system uses custom

visualizations to blend different facets of the ground-truth data and outcomes from multiple

models, and to validate the models on machine-generated (clusters) or user-defined patient

cohorts; and 4) the evaluation of the resulting system by modelers and a clinician, along

with a thematic analysis of their feedback, and lessons learned from this multidisciplinary

collaboration.

5.3 Project Setting

This work is part of an interdisciplinary collaboration between three research groups located

at different sites: two data modelers with experience in symptom modeling, three visual

computing researchers with modeling experience, and a radiation oncology expert with clin-

ical and modeling experience. All collaborators are coauthors of this work. Characterizing

the application domain is a challenging task, primarily due to the exploratory nature of the

research questions and the heterogeneity of the data. As a result, in this work, we used an

Activity-Centered-Design (ACD) [129] paradigm, which is particularly suitable for scientific

research, primarily due to the scarcity of trained domain experts and the importance of slow

thinking [100] for scientific research. ACD prioritizes the user activity over the number of

users.

Through a series of iterations, the visual computing team and the data modelers held

weekly meetings to define functional specifications and to prototype the interface. This was

an iterative process that evaluated incremental designs, starting with paper prototypes, then

narrowing down proposed designs alongside data modelers, and finally moving to digital pro-

totypes. Before evaluating the final system, the team met with the clinician to demonstrate

the system. The clinician was not part of the design process, but provided feedback during

the domain characterization and was part of the evaluation of the final system. The data

modelers were part of the domain characterization, design, and evaluation stages.
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Table 5.1: Symptom ratings example for two patients (P1, P2) and for two symptoms (taste, swallow) over time (B
for baseline, W0 for first week post-treatment, W6 for six weeks post-treatment, M6 for six months post-treatment,
and M12 for twelve months post-treatment)

Patient Taste Swallow

B W0 W6 M6 M12 B W0 W6 M6 M12

P1 0 4 6 5 4 1 5 6 7 5

P2 2 3 4 6 5 0 0 4 3 3

5.3.1 Task Analysis

L-VISP was built to primarily serve data modelers in cancer symptom research. The system

evaluates two LSTM variants for symptom risk in the context of patient cohort data. Our

modeler collaborators have experience in ML approaches for predicting patient outcomes,

but they treat the predictive model as a black-box. Thus, they needed an overview of the

model’s behavior and its sensitivity to input variation, and an explanation of the output.

Through the ACD paradigm, the regular meetings revealed the modelers’ process, which

involved running multiple scripts with numerous parameters and verifying each output plot

individually. However, this process made it difficult to assess multiple outcomes concurrently

on a desired cohort. Furthermore, the group was interested in having clinicians validate the

modeling results. As a result, part of L-VISP’s front-end targets clinicians with modeling

experience. These front-end components support the clinician’s interpretation of symptom

predictions on cohorts of interest. They are dedicated to one of the primary user activities,

which include both clinician and modeler tasks, presented in detail in Section 5.4.

We identified several key tasks and, following the ACD framework, grouped them into

two main activities: the first one for analyzing model performance and behavior for the

patient population, which is stratified by symptom severity using temporal clustering, and

the second one for analyzing the model performance for a target, user-specified patient

cohort. Other works in LSTM modeling visualization focus on either finding patterns in

prediction trajectories [85], comparing predicted data against ground-truth data to find
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prediction errors [36], or visualizing model hidden states [175] to understand the model’s

decisions. Our activities, however, need to support a combination of these tasks. In addition,

we compare modeling results for two patient cohorts and predictions between data items (i.e.,

symptoms). We present below the two activities, which are composed of several visualization

tasks:

• A1 Stratified model evaluation for patient clusters

T1 Validate model predictions by comparing ground-truth symptoms to predicted symp-

toms, to test the model accuracy

T2 Analyze the model behavior by exposing the model memory and evaluating results

on different cohorts, to understand underlying mechanisms

T3 Compare model results between cohorts by analyzing prediction trajectories and

performance metrics, to find model deficiencies

• A2 Targeted model evaluation for user-defined patient cohorts

T4 Examine input-output relationships in the model by evaluating predictions under

different cohort attributes, to test the model’s robustness

T5 Evaluate model performance for a given cohort by comparing predictions between

desired cohorts against the rest of the patient population, to test the model accuracy

and find cohorts for which the model predicts negative outcomes

T6 Find model connections to symptom severity by evaluating predictions under dif-

ferent symptom severity thresholds, to test the model’s accuracy and find symptoms

linked to high risk of negative outcomes

Although these activities were extracted in accordance with data modelers’ needs, A2 was

documented to support clinician analysis as well. The clinician provided occasional feedback

on the tasks as mentioned earlier during the domain characterization phase, which helped

to define the activities. Our clinician collaborator was not interested in understanding the
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mechanisms of the LSTM (A1), but in analyzing outcomes on groups of patients of interest

(A2). Consequently, L-VISP becomes a collaborative tool that facilitates joint workflows.

First, the data modeler uses A1 to debug and gain confidence in the LSTM model. After-

wards, the modeler and clinician can collaborate in A2 to validate the model’s predictions

against clinical intuition and explore outcomes for desired cohorts.

5.3.2 Data

The data was collected from a cohort of 937 head and neck cancer patients from the MD

Anderson Cancer Center in Texas, treated with radiation therapy (RT). This dataset is a

more comprehensive dataset compared to the ones used in Chapter 3 and Chapter 4. We

refer to the whole dataset as the patient population, and to a subset of the patient population

as a patient cohort. The data includes clinical and treatment attributes, and patient-reported

symptom ratings. Clinical data includes demographics such as age (quantitative), gender,

and smoking status (nominal); diagnostic attributes such as tumor size and lymph node

stage (ordinal), tumor site (nominal); and additional treatments: induction therapy (IC),

concurrent therapy (CC), and neck dissection surgery (ND) (nominal). The clinical data is

visualized to support the analysis of the patient clustering and symptom prediction. We use

symptom ratings and treatment attributes for symptom prediction, and symptom ratings

for patient clustering.

The MD Anderson Cancer Center studies symptom severity in patients through a quality-

of-life monitoring program. The program involves patient-reported outcome (PRO) question-

naires based on MD Anderson Symptom Inventory-Head and Neck Module [40], also known

as MDASI-HN. This 28-symptom questionnaire is used for clinical and research purposes,

in which patients are asked to rate symptoms using a 0-10 scale, from “not present” (0) to

“as bad as you can imagine” (10). Symptoms are split into three categories: HNC-specific,

general cancer, and daily interference symptoms. The PRO data are temporal and multi-

variate, collected before, during, and post-treatment throughout a total of 12 time points.

Over half of this data collection happens during treatment, when a spike in symptom sever-
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ity is expected due to treatment toxicity. In this work, we aim to identify patients who

experience late symptoms well after treatment has concluded. Our data analysis evaluates

modeling results based on several rating thresholds with clinical significance: ≥1<3 (labeled

as ≥1 in the front-end) for mild symptoms, ≥3<5 for mild-to-moderate symptoms (labeled

as ≥3 in the front-end), and ≥5, which clinically stand for moderate-to-severe symptoms.

These thresholds were chosen based on our clinician collaborator feedback, previous clinical

research on the MDASI-HN questionnaire [3, 164, 165], and our previous projects with the

questionnaire [21,60,61,186,191].

We use the PRO symptom data before treatment, or baseline (B), at the end of treatment

(W0), and during post-treatment at 6 weeks (W6), 6 months (M6), and 12 months (M12)

(Table 5.1). Although we used all 28 symptoms to cluster patients by symptom severity,

we performed LSTM modeling. We used visual analysis to evaluate and understand the

model’s decisions for the 9 HNC symptoms: swallow, speech, mucus, taste, constipation,

teeth, mouth sores (mucositis), choking, and skin problems. We used all 28 symptoms

in patient clustering to capture a comprehensive view of symptom burden and patients’

variability. The selection of the 9 HNC symptoms for LSTM modeling followed, driven by

clinical relevance and the need for focused analysis on symptom categories. Our collaborators

showed particular interest in the HNC subset of symptoms before extending the analysis to

the daily interference and general cancer categories. The modelers aimed to present results

to clinicians for this symptom subset to inform planning for further patient cohort modeling

projects. Visualization considerations for supporting the analysis of 9 symptoms include the

front-end’s limited real estate and the need to limit cognitive load due to high data density,

aspects discussed in Section 5.6.

In addition to the ground-truth patient data, we visualize the results of our models (Fig.

5.1). The data modelers used the Bi-directional LSTM (Bi-LSTM) [186] for symptom sever-

ity prediction and the Interpretable Multi-Variable LSTM (IMV-LSTM) [78] for Bi-LSTM

modeling understanding. As a result, we used visual analytics to support the evaluation
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of the Bi-LSTM predictions, the Bi-LSTM performance metrics, and the IMV-LSTM fea-

tures; all described in detail in Section 5.4.1. Additional cohort modeling is done with the

Time2Feat time-series clustering method [22], which the modelers used to extract three pa-

tient clusters with different symptom severity thresholds. These results are integrated into

our visualization system as well.

Figure 5.1: LSTM symptom modeling pipeline. A) Imputation of missing symptom ratings, for all time points
up to the last one (M12) using Bi-LSTM; except for the B time point, which is imputed using mean B imputation.
B) Bi-LSTM prediction for symptoms at the last time point, M12. C) Application of IMV-LSTM on the Bi-LSTM
imputed values to extract temporal and variable feature importance for all symptoms.

5.4 System Design

This section presents the back-end modeling, namely the LSTM-based symptom prediction

and the patient clustering method, and the front-end components that visualize the modeling

results. L-VISP uses Python for the back-end and React with D3.js for the front-end. All

modeling is computed offline before being loaded into the front-end.

5.4.1 LSTM Symptom Modeling

Our modeling approach uses a pair of variants from the LSTM family for symptom risk

analysis (A1, A2). The first is a Bi-directional LSTM (Bi-LSTM) [168], which acts as our

primary prediction model. By processing a patient’s timeline in both forward and reverse,

it gains a deeper context to forecast future symptoms. Specifically, Bi-LSTM contains two

LSTMs that go in opposite directions, which allows them to capture upstream information

and additional context at each time point. After running the LSTM in both directions, the

hidden states are concatenated, i.e., the dimension of the hidden states, before generating

the final output. This ensures that more information is gathered, which improves the final

prediction results. The second LSTM model is an Interpretable Multi-Variate LSTM (IMV-
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LSTM) [78], which serves as the explainer, and looks inside the Bi-LSTM to understand how

it arrives at its predictions by exposing its memory/hidden states. We applied Bi-LSTM and

IMV-LSTM on the nine symptoms of interest.

Our primary goal was to predict long-term symptoms at the 12-month mark (M12),

which corresponds to long-term/chronic symptoms. To prepare the model for this task,

we first trained the Bi-LSTM to impute missing ratings from earlier and subsequent time

points, ensuring it had a complete patient history to learn from before making its final (M12)

prediction (Fig. 5.1). Specifically, the modelers first imputed the missing baseline (B) ratings

using the mean values of the entire cohort (Fig. 5.1.A). In their preliminary work [187], the

modelers have experimented with other imputation methods, such as a K-nearest neighbors

baseline imputation. Compared to the mean baseline imputation, the results have shown

a similar AUC performance on the month 12 (M12) prediction. Given the comparable

performance, they opted for a mean baseline imputation for the present project. They then

trained the Bi-LSTM model recursively on the preceding time points and let it predict the

current time point for all time points (W0-M6) before the last recorded one (M12) (Fig.

5.1.A). Using 3-fold cross-validation, our collaborators used the B-M6 imputed symptoms

(Fig. 5.1.B) and trained the Bi-LSTM model over two training folds to predict M12 symptom

values for all patients in the test fold. Model performance metrics were extracted, including

the Area under the curve (AUC), F1 score (micro averaging), Precision, Recall, and Root

Mean Square Error (RMSE) for each symptom.

To understand the reasoning behind the Bi-LSTM’s predictions, we used the IMV-LSTM.

This second model analyzed the complete patient history to determine the temporal impor-

tance (i.e., which symptoms across the B-M6 time points were most influential) and the

variable importance (i.e., which other symptoms or treatments were most influential) for the

final M12 prediction. Following the terminology in [78], we define the feature importance

from the IMV-LSTM during the intermediate time points (B-M6) as temporal importance,

and the final feature importance predicting M12 as the variable importance. IMV-LSTM
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defines a hidden state matrix to monitor and obtain both the temporal importance (5.1) and

the variable importance (5.2) from the LSTM hidden states. By using a mixture-attention

mechanism, IMV-LSTM applies temporal attention/importance to the sequence of each vari-

able’s hidden states to obtain a summary of each variable’s history. After that, variable

attention/importance is computed from each variable’s history-enriched hidden states. The

mathematical definitions of the temporal importance and the variable importance for a given

symptom are shown below:

A = 1
M

M∑
m=1

Am; Am = [α1,m, ..., αT,m] (5.1)

Where A is the temporal importance vector computed by taking the average of the attention

weights α for all the data instances, M is the number of patients, and T is the number of

time points preceding the last one (B-M6). In our context, the temporal importance of each

symptom is the average of the attention-weight vectors over all the patients. To derive tem-

poral importances for each of the 9 HNC symptoms, we trained nine separate interpretable

multivariate (IMV)-LSTM models, with each model targeting one specific symptom. For

each model, the predictors included three treatment conditions and all other HNC symp-

toms except the target symptom. This design allows the temporal importance scores to

capture not only the contributions of preceding time points for the same symptom, but also

the cross-symptom associations that influence the prediction of the target outcome. In a

clinical context, given a symptom, such as pain, the temporal importance reflects how both

within-symptom history and other symptom trajectories (e.g., swallow, taste, voice, etc)

jointly contribute to predicting pain at M12. A high score means the model found a strong

influence for a symptom at a time point preceding M12 to predict another symptom’s M12.

B = 1
M

M∑
m=1

Bm; Bm = [β1
m, ..., βn

m] (5.2)

Where B is the variable importance computed by taking the average of the posterior prob-

ability β for all the data instances (patients) across all input variables, M is the number of
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patients, and n is the number of input variables (9 symptoms and three treatment condi-

tions). The resulting posterior probability is computed by a softmax layer of a neural net-

work, whose input combines attention-weighted summary with the hidden state vectors of

each variable (symptoms and treatment conditions). In a clinical context, for each predicted

symptom (e.g., pain), the model calculated the importance score for all other symptoms

(e.g., taste, voice, choke, etc) and treatments (RT, IRT, ICC). This score represents the

influence of those other symptoms and treatments on the final M12 prediction.

The modelers conducted the same analysis for each symptom to obtain the temporal

and variable importance. They first removed the symptom to predict from the training

data to avoid the target symptom from dominating the variable/temporal significance. Af-

ter extracting the temporal and variable importance, they obtained relations between each

symptom and all the other symptoms. They used the IMV-LSTM’s Area Under the Curve

(AUC) score as a quantifier of the strength of the relationships. The higher the AUC, the

better the model can distinguish between the positive and negative classes; thus, the more

confident we can say that the temporal and variable importance patterns help make accurate

predictions.

Both LSTM models were trained using the Mean Squared Error loss function with early

stopping. Parameter tuning was performed using an 80/20 data split. The Bi-LSTM model

used one recurrent layer with a size of 10 and trained with a learning rate of .0215 using

Stochastic Gradient Descent. The IMV-LSTM used a hidden state size of 128 and was trained

on a learning rate of .001 and a weight decay of .9 using the Adaptive Moment Estimation

optimizer. The Bi-LSTM training on an NVIDIA RTX 4080 platform with a 3-fold cross-

validation required, on average, 4.2 seconds per time point and around 17 seconds in total,

while the prediction on the test set was completed in less than 0.1 seconds. These runtimes

indicate that the modeling is computationally efficient and suitable for offline analysis.
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5.4.2 Multivariate Temporal Patient Clustering

A key goal for our collaborators was to stratify the patient population based on the overall

severity of their symptoms over time (A1). This was needed to find patients with high,

medium, and low risk of symptom burden. This was a complex task, as each patient’s

trajectory involves multiple symptoms that evolve in unique ways. Our collaborators have

experimented with several patient clustering methods before [60,130], which could not cap-

ture the multivariate time series nature of our data well. Most temporal clustering methods

that consider either univariate or multivariate time series (e.g., Dynamic Time Warping,

K-Shape, CSPCA, MC2PCA) [22] suffer from poor explainability, and the original data di-

mensions are lost. As a result, in this work, our collaborators explored Time2Feat [22], which

is specifically designed for complex time-series and aims to create understandable clusters.

This method focuses on interpretable features extracted from time series and uses dimen-

sionality reduction on subsets of features that retain the most information, providing highly

interpretable results. The technique has demonstrated higher effectiveness, interpretabil-

ity, efficiency, and robustness over several state-of-the-art multivariate time series clustering

methods [22].

The modelers used the PRO symptom data, which they considered time series data (B-

M12 time points) with 28 dimensions (symptoms), to cluster patients based on temporal

symptom severity. In this project, we used the unsupervised mode of the Time2Feat method,

which is fully automatic and uses Principal Component Analysis (PCA) to find the symptoms

that best stratify the patient cohort by symptom severity. The modelers experimented with

several clusters as input for this method, from two to seven clusters. In the end, they decided

to further evaluate the results for three patient clusters, which represent patient groups

with mild, medium, and severe symptoms. The three-cluster results showed a balanced

stratification, with a 27/48/25% split. We evaluate the Bi-LSTM modeling for these patient

clusters to better understand prediction patterns across cohorts.
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Figure 5.2: LSTM model performance on patient clusters (modeler activity). A) Clinical component showing two
patient clusters, stratified by symptom severity. B) Patient projection (cluster with severe symptoms in blue and with
mild symptoms in yellow). C) LSTM metrics, which are similar for the two clusters; taste has the highest AUC scores
for all rating thresholds. Symptoms’ vertical order corresponds to the dendrogram order in D). LSTM-predicted
symptom trajectories for D) the severe symptom burden cluster (blue) and E) for the mild symptom burden cluster
(yellow) against the ground-truth (gray area). The LSTM model shows mild underpredictions for the first cluster
and overpredictions for the second. The dendrograms show similar trajectory groupings between the two cohorts.

5.4.3 Front-end Design

Our front-end design comprises several user panels with coordinated components, presented

below, that support the tasks involved in the two main activities (A1, A2). Tooltips provide

further details upon hovering over any element, and user-selected patients are highlighted in

magenta across the front-end.

Cohort Attribute Distribution

The cohort attribute distribution component (Fig. 5.2.A) displays the distribution of clini-

cal attributes, allowing for the selection of cohorts of interest for model evaluation (T1-6).

Stacked bar charts display demographic and diagnostic characteristics for each patient co-

hort, with labels highlighting attribute values present in over 20% of the patient population.

Smaller distribution values are visible upon hovering over a stacked bar. This component

provides a clinical snapshot of each patient group. For the patient clusters evaluated in A1

(Fig. 5.2.A), buttons enable the selection of a cluster. For the custom, user-defined cohorts
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evaluated in A2 (Fig. 5.6.A), this component helps to compare attributes between a cohort

of interest and the rest of the population, and dropdowns accompany the attributes to sup-

port cohort queries. We chose this compact, horizontal layout because it handles a large

number of clinical attributes and easily compares different cohorts at a glance.

Patient Projection

The patient projection component (Fig. 5.6.B) uses an interactive matrix where each cell is

represented by an individual patient. It represents the patient population (e.g., the whole

dataset of patients), and it shows how cohorts are clustered. The matrix is interactive,

supporting brushing a single/group of patient(s) of interest. This component is used in both

activities (A1, A2) by both modelers and clinicians to relate modeling results to the actual

patients during each task (T1-T6).

Blue cells highlight the patients within the selected cohort, while gray cells represent the

rest of the patient population. Patients chosen directly from the matrix are highlighted in

magenta. For cohort comparison (Fig. 5.2.B) (T3), the second selected cohort is highlighted

in yellow. Patients are sorted by overall temporal symptom severity in a list (T5). We

then populate the matrix with the patient list from the bottom left corner. In this way,

low-symptom-severity patients correspond to the bottom of the matrix, and high-symptom-

severity patients correspond to the top Y positions. The left-to-right direction (X axis)

corresponds to an increase in severity per row. We used this projection method as opposed

to others (e.g., PCA, t-SNE, UMAP) as it showed the best visual stratification of the patient

population, with fewer outliers in the low and high symptom severity clusters extracted in

Section 5.4.2.

In our previous work with similar patient cohorts, we have experimented with scatter-

plot projections to visualize the patients, either by projecting the whole population with

overlapping glyphs [60], or using groups of patient projections with no overlaps on larger co-

horts [61]. Rather than using a traditional scatterplot, we represent the patient population
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Figure 5.3: Bi-LSTM performance metrics for two symptoms at M12 time point.

with an interactive matrix. We drew inspiration from previous work that employs matrix

representations for cohorts; however, these works use matrices for cohort summaries, not

for representing individuals within a cohort [113, 200, 203, 206]. Our approach avoids the

visual clutter and glyph overlap that often make scatterplots unreadable on large cohorts (n

>900), and it aims to reduce cognitive load. Because patients are consistently ordered from

top to bottom by decreasing symptom severity, users can easily switch between analyzing

pre-defined clusters and their own custom cohorts. It also provides a scalable overview of

the patient population, and it could be used on larger cohorts in exchange for reducing the

size of glyphs/cells.

Performance Metrics

We use the performance metrics component (Fig. 5.2.C, Fig. 5.3) to evaluate the perfor-

mance of the Bi-LSTM at M12 (T1). Bar plots display relevant metrics for each symptom

for model performance under different rating thresholds: r≥1, ≥3, ≥5; which are clinically

considered as mild, moderate, and severe symptoms, respectively (Fig. 5.3). The bar plots

are rotated by 90°due to limited vertical space per symptom. We highlight good (> 0.75)

performance metrics (e.g., AUC, F1 score, Precision, Recall) with dark blue, and the rest

with light blue. The RMSE metric values are not reported for rating thresholds; therefore,

they are represented using the cohort’s standard color. Tooltips display the values for each

metric/bar upon hovering, and the symptoms’ order is given by the first symptom dendro-

gram/list of trajectories (Fig. 5.2.D). For cohort comparison, we depict the values of a second
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Figure 5.4: Ground-truth vs. predicted symptom trajectories for the severe symptom burden patient cohort. A)
ground-truth symptom trajectories for the cohort (blue) against the population (gray) and B) predicted trajectories
for the cohort (blue) against the population (gray) show similar symptom clusters in the dendrograms, with over-
predictions at the end of treatment (W0) for all symptoms. Trajectory values span the [0,7] interval, and trajectory
surpassing rating thresholds of interest (i.e., rating ≥3 for mild-to-medium severity, ≥5 for medium-to-severe symp-
toms) are highlighted with pink and purple threshold lines.

selected cohort using light and dark (score > 0.75) yellow highlights. The grid-based display

supports pattern and outlier detection in the metrics through the side-by-side positioning.

While this view uses standard statistical charts, it displays these metrics side-by-side for

different input thresholds, and the grid layout makes it easy to spot which symptoms and

for what input conditions the model predicts well, and where it does not (T1).

Symptom Trajectory

The symptom trajectory component (Fig. 5.4.D, E) uses a lineplot to visualize how symptom

severity changes over time. It can compare the model’s predictions to the ground-truth data

(T1) or contrast the symptom trajectories of a selected cohort with those of the rest of the

patient population (T5). A blue line represents the predicted values for a given cohort. At

the same time, the gray area highlights the difference to the ground-truth values (T1) (Fig.

5.4.D, E) or to the predictions of the rest of the patient population (T4) (Fig. 5.6.D, E).

The distribution of Bi-LSTM mispredictions is represented using vertical gray bars (upward
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direction for the count of overpredictions, and vice versa for underpredictions) at each time

point. Brushed patients from the patient projection matrix are highlighted via magenta

lineplots (T5) (Fig. 5.6.D, E). For cohort comparison (T3), the trajectories for a second

cohort are depicted in yellow (Fig. 5.2.D, E). We chose this common encoding for its utility

in pattern detection, as seen in other LSTM visualization work [85, 175]. Its key advantage

is its versatility, which adapts to various analytical tasks for cohort time-series.

We clustered the symptom trajectories using hierarchical clustering (HC) to find consis-

tent symptom grouping between predicted and ground-truth trajectories (T1, T4) across

cohorts (T3) (Fig. 5.4). We used Euclidean distance with the Average metric for the symp-

tom clustering. Still, we have previously experimented with other similarity search methods

for time series, such as Dynamic Time Warping (DTW), Symbolic Aggregate Approximation

(SAX), Cosine Similarity, and Pearson Correlation, as well as with other clustering linkage

methods, including Complete and Ward. These methods showed either outlier sensitivity,

did not have similar trajectories within-cluster, or showed significant variability in cluster

formations across the patient clusters. Ultimately, we selected this method because it per-

formed best for time series with comparable shapes and magnitudes, such as our symptom

trajectories. It also did the best job of creating distinct and meaningful symptom clusters,

but similar clusters across patient cohorts (T3, T5). We ordered the symptoms based on

the HC results for each cohort. We used accompanying dendrograms, displayed through a

mirroring technique, to represent the patterns between symptom clusters (T1, T4) for two

patient cohorts (T3) (Fig. 5.2.D, E). The dendrogram dictates the vertical order of the

symptoms in the other components. In the case of cohort comparison, the first dendrogram

dictates the vertical symptom order in the other components (Fig. 5.2.D, E). In this way,

the user can analyze a single symptom horizontally, across visual components. To reduce

the cognitive load of identifying clusters and comparing trajectories across different rows

in two cohorts, we offer an option to hide the symptom clusters and dendrograms. In this

case, we list the symptoms in the same order across cohorts, which is based on all symptom
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Figure 5.5: Model behavior for the medium symptom burden patient cohort. A) Predicted symptom trajectories
with minimal mispredictions. B) Variable importance and C) Temporal importance. Hovering on swallow’s row D),
swallow’s associations with mucositis, choke, voice, and teeth are shown from B), and high values in W6 and M6 time
points (e.g., teeth) from C), meaning associations with M12 rating prediction.

clusters across cohorts. However, the dendrogram’s goal is to help identify highly similar

symptom behaviors. This is important, given that patients generally exhibit the same overall

trend in symptoms, but with different severity thresholds, and a rise in severity at W0, as a

consequence of the treatment’s influence [40].

Since we visualize mainly mean values for a given cohort, we didn’t specify the exact

numerical differences between the ground-truth and the predicted values. We opted to

juxtapose these differences (e.g., blue vs. gray or yellow vs. gray in Fig.5.2.D, E) or to

visualize trajectories side by side to compare ground-truth and predicted symptoms (Fig.5.5).

For numerical values, we provide tooltips with ground-truth and predicted values across time

points upon hovering over a symptom trajectory.

Temporal and Variable Symptom Importance

To look inside the model’s black box, the variable importance components (Fig. 5.5.B)

explain the Bi-LSTM’s behavior. Using importance scores from the IMV-LSTM, it highlights

which features (i.e., symptoms and treatments) contribute most to the prediction of a given

symptom (T2). We can see the variable importances as weighted associations between the

symptoms and treatment type and the M12 prediction for a given symptom. We use a

matrix representation to show the variable importance of each symptom in predicting a

given symptom. Each row lists the symptoms based on the dendrogram order from the
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symptom trajectory component, and it visualizes the mean variable importance of a cohort

for each symptom. The same order is followed in the columns. Brown corresponds to

the current symptom, a gray color scheme is for the rest of the symptoms, while a purple

color scheme is for the global importance of the treatment types. Lighter colors and lower

opacity correspond to lower variable importance, while darker colors and higher opacity

encode higher values. For each symptom, we highlight reliable results, characterized by a

high AUC (>0.75), using a dark margin around the corresponding symptom’s row. When

hovering over a symptom label, the corresponding variable importance is highlighted in the

row (Fig. 5.5.D) to illustrate how the symptom affects the predictions of other symptoms.

During hovering, the column corresponding to the given symptom is highlighted to show

the influence of the other symptoms in the prediction of the given symptom. The design is

inspired by previous work for LSTM hidden states visualization [175]; however, we visualize

both variable importance and temporal importance for each symptom. Moreover, we took

inspiration from related work on cohort summaries using matrix encodings [113,200,203,206],

but we highlight which items (i.e., symptoms) show reliable associations with other items

through the rows’ dark margins.

The design of the temporal importance component mirrors that of the variable importance

component (Fig. 5.5.C). This consistency makes the temporal importance analysis more

intuitive and easier to follow (T2). It shows the IMV-LSTM-generated importance of the

symptoms’ time points (i.e., B-M6) in predicting the M12 rating for a given symptom. In

other words, we can see the temporal importance as a weighted association of the symptoms’

time points to the prediction of the M12 rating. Following the matrix-based design, the

row visualizes the mean temporal importance of a cohort for a symptom. Each row is

split into smaller cells by time points on the vertical axis. The same interactions with the

variable importance components apply here as well. Upon hovering over a symptom, the row

highlights the influence of the given symptom on the rest. The highlighted corresponding

column shows the impact of the other symptoms on the hovered one.
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Figure 5.6: Model performance analysis for a custom cohort (clinician and modeler activity). A) Clinical component
showing the queried patients: males with medium taste problems (right C) filters) that represent 35% of the patient
population. B) Patient projection based on symptom burden, showing the queried patients on the upper, more severe
half, which is represented by high symptom burden. Two female outliers (gray cells) are highlighted in the projection
(magenta highlight in all components). C) Symptom severity distribution showing higher and similar prevalence
for taste, swallow, mucus, and mucositis. Filters for symptom severity are displayed on the left of the component.
D) Symptom trajectory for ground-truth and E) for predictions, showing differences in ground truth vs. predicted
trajectories at W6-M12 for taste and significant differences from the brushed patients (magenta) in all symptoms at
B-W0.

Symptom Severity Distribution

In a similar fashion to the performance metrics component (Fig. 5.2.C), this component

(Fig. 5.6.C) uses a grid-based representation to display the temporal severity distributions.

The top rows represent the ground-truth severity distributions and the bottom rows the

predicted symptom distributions (T1, T4). With a similar design to the cohort attribute

distribution component (Fig.5.4.A), each cell is represented by a stacked bar chart showing

the distribution of symptoms (rating > 0), with light-to-dark blue colors representing mild

(r≥1), medium (r≥3), and severe (r≥5) ratings. The horizontal bars support the side-by-

side comparison between the ground-truth and predicted values. Tooltips provide numerical

values upon hovering over the distribution rows. For custom cohort model analysis (A2),

each symptom is accompanied by a severity slider, which filters the patients with the corre-

sponding severity for the last time point, M12 (T5). The component highlights patterns in

symptom presence and shows which symptoms are severe and need more attention during
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analytical workflows (T6). Brushed patients from the patient projection are highlighted with

magenta borders in this view. We chose this grid layout over other chart types because it

provides a compact and efficient display of temporal, multivariate data. Different designs

were considered, but would have occupied more screen space, such as box/violin plots and

pie charts. This grid layout facilitates item (symptom) comparison, as well as comparison

of temporal and data provenance (ground truth vs. predictions).

5.4.4 Workflows

The stratified model evaluation activity (A1), supports modeler tasks using predefined work-

flows represented by several panels. These panels are used to validate the Bi-LSTM and

IMV-LSTM results on three patient clusters. An example is presented in Fig. 5.2, where the

Bi-LSTM results are validated (T1) and compared (T3) between the patient clusters with

mild and severe symptom burdens. After the selection of the two cohorts from the clinical

component (Fig. 5.2.A), the cohorts are highlighted in the projection (Fig. 5.2.B). Their cor-

responding prediction metrics are represented in the corresponding component (Fig. 5.2.C)

(T1). The cohort predictions are compared to the ground-truth on symptom trajectories

(Fig. 5.2.D, E) (T3). Alternatively, another workflow examines the Bi-LSTM memory expo-

sition to understand the model’s behavior (T2) and its prediction decisions by analyzing the

IMV-LSTM temporal and variable importances (Fig. 5.5.D, E) for a given cohort (Fig. 5.5.A).

A third panel supports the targeted model evaluation (A2), on user-defined cohorts

(Fig. 5.6). This configuration enables both data modelers and clinicians to analyze modeling

results for a specific cohort of interest. This workflow provides fewer model behavior details

(e.g., no memory exposition) to lower the cognitive load during clinician analyses. The user

can better understand how sensitive predictions are on diverse patient attribute inputs (T4)

once they select a cohort from the cohort attribute distribution component (Fig. 5.6.A).

The selection is highlighted in the patient projection (Fig. 5.6.B), alongside their symptom

severity distribution on the right (Fig. 5.6.C) (T5), which connects symptom presence with

prediction results. The selected cohort’s ground-truth (Fig. 5.6.D) and predicted (Fig. 5.6.E)
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trajectories, compared to the rest of the patient population (T5), are represented on the right

side of the panel. Further selections on the patient matrix projection will highlight the cor-

responding patients in magenta. This panel and activity provide a common ground for

hypothesis generation in clinician-modeler collaborations.

5.5 Evaluation

We evaluated L-VISP qualitatively through demonstrations and case studies with two data

modelers, the visual computing team, and a senior research oncology expert, who had ML

experience. The data modelers participated in the design of the visual analytics system

and in the model building, and the oncologist provided occasional input and feedback. All

evaluators are coauthors. Although the system serves modelers in cancer research, validating

the results with a clinician was essential to ensure their clinical relevance.

The evaluation was based on pair analytics [11], where the main visual analytics designer

was the navigator of the visual analytics tool (L-VISP), and the collaborators were the drivers

of the tool. Although pair analytics requires two participants per session, we organized

group evaluation sessions due to the collaborators’ limited availability. Additionally, we

observed that group sessions helped to generate more hypotheses and feedback. However,

these sessions usually had two main drivers, namely a data modeler and the clinician. The

evaluation was conducted online, through screen sharing, starting with demonstrations of

the tool and then walking through case studies. The drivers (evaluators) were encouraged

to think aloud and make hypotheses while the navigator was driving the interface, and a

navigator helper (from the visual computing team) was taking notes. The data modelers

described two case studies, presented below, on a cohort of 937 HNC patients treated at the

MD Anderson Cancer Center, and the results were validated by the clinician.

5.5.1 Blended Models Insights and Evaluation

In the first case study (A1), the modelers were interested in evaluating the symptom modeling

results on the pre-computed patient clusters (Fig. 5.2) and getting insights into how the
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Bi-LSTM makes predictions (A1). The patient projection revealed that the clusters were

separated by temporal symptom severity into the severe (top), the medium (center), and

the mild cluster (bottom) (Fig. 5.2.B). Selecting the severe patient cluster, the modelers

observed that it consistently showed higher severity in predictions as opposed to ground-

truth data across all time points and all symptoms (Fig. 5.4) (T1). The modelers observed

that most overpredictions occurred in W0, which was typically the highest-rated time point,

and noted this biased result for future refinements. The symptom clusters highlighted by the

dendrogram were similar between the ground-truth and predicted symptoms (T1, T3) (Fig.

5.4), showing that the model captured the same temporal patterns as the ground-truth (T1).

The Bi-LSTM predictions revealed three consistent clusters across cohorts, with ’taste’ as

the first cluster (Fig. ref fig: fig51), ’Fig. 5.4’ representing the second, and ’mucositis,

swallow, and mucus’ as the third (T3).

There were more high AUC and F1 score values for the mild patient cluster, suggesting

that the model captures lower symptom ratings more effectively (Fig. 5.2.C) (T3). The

highest RMSE was observed for M12 in the taste prediction, while the lowest was for skin

problems. This was verified in the timelines (Fig. 5.2.D, E) where skin consistently had the

lowest mean in M12, suggesting that a lot of people might not report skin (T1), while taste

had the highest mean, which was expected as taste has shown to be one of the most prevalent

symptoms in our previous symptom research work [61]. The modelers and the oncologist

agreed that taste showed more severe and persistent patterns “We see that taste is its own

thing” ; “I am not surprised taste is so common”. The dendrograms highlighted similar

symptom clusters for both the mild and severe patient groups (T3). This finding, despite

the groups’ differing severities, suggested that symptoms have consistent trajectory groupings

regardless of severity. When checking the Bi-LSTM performance across clusters, (Fig. 5.2),

the model consistently showed overprediction for the severe cluster, and underprediction for

the mild cluster, across all symptoms (T1,3) (Fig. 5.2.D, E). The modelers agreed that the

model tends to be more sensitive to severity extremes in the patient cohort.
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The hidden states of the Bi-LSTM black box (Fig. 5.5) showed that only a couple of

symptoms were highlighted as reliable predictions (T2). Swallow unsurprisingly showed

associations with predictions for symptoms connected to the salivary domain (Fig. 5.5.D).

However, its association with teeth was an unexpected finding, which the oncology expert

suggested needed to be further investigated “it’s hard to tell the root cause of tooth pain, it

can be from choking or pain, or a reflection of mucositis problems.” The temporal importance

(Fig. 5.5.C) showed that most of the symptoms tend to be associated with M12 predictions at

the end of the patient observation period, in W6 and M6 (T2), but did not show any common

symptom patterns with the variable importance, which was surprising to the modelers.

5.5.2 Model Output Analysis for Targeted Cohorts

In the second case study (A2), the modelers, together with the clinician, explored the cohort

to evaluate how the model predicted symptoms in subsets of patients (Fig. 5.6) (A2). They

retrieved the male patients (Fig. 5.6.A)) with medium taste severity in M12 (Fig. 5.6.C),

which were grouped at the top of the patient projection (Fig. 5.6.B), where patients with

higher overall symptom severity were displayed. When selecting two outlier females against

this cohort (Fig. 5.6.B) (T4), the clinician observed some high the Bi-LSTM predictions at

M12 for swallow, voice, and choke, suggesting that the brushed patients show a higher risk

for these symptoms (Fig. 5.6.E) (T5-6). The modelers recorded the patients’ IDs of these

outliers for further investigation.

Next, the evaluators checked how the Bi-LSTM model performed on the selected cohort

(Fig. 5.6.C) (T5). The system revealed that the selected cohort consistently showed higher

mean ratings for both the ground-truth and predicted values compared to the rest of the

patient population (T4, T6), as well as higher trajectory ratings (Fig. 5.6.D, E). An in-

teresting pattern was observed in the Bi-LSTM trajectories across symptoms that showed

increases in M12, as opposed to the rest of the population, such as taste and mucus (T6)

(Fig. 5.2.D, E). The Bi-LSTM outputs showed a second peak in M6 for these symptoms,

suggesting that the model, by learning from both temporal directions, detected the increases

117



in M12 in the ground-truth data (T5). This was not obvious in the preliminary analyses of

the model results.

The clinician expressed that looking at symptom statistics for the desired cohort is what

he’s primarily interested in “Summaries of chances of having anything (symptoms) over 5

(rating)”. He also added that this activity would benefit his clinician colleagues in analyzing

cohorts of interest.

5.5.3 Expert Feedback

The evaluators’ feedback was extracted from meeting notes and direct written feedback.

The modelers’ feedback showed that L-VISP is valuable for their research practices:

“There is so much output data generated [...](L-VISP) is instrumental in facilitating the

exploration of those outputs, comparing the performance of different patient groups, and vi-

sualizing the temporal symptoms importance. In the targeted evaluation, we can use patient

filters that allow for hypothesis testing. The IMV-LSTM generates summary figures [...]

these vary greatly between different cohorts, and it would not be possible to identify these

differences without this” and “I appreciate how intuitive the system can show and compare

Bi-LSTM’s performance among different symptoms and patient cohorts”.

The evaluation showed that L-VISP is fit to be used for clinical research. One modeler

expressed:“It helps me a lot to analyze and understand the behavior of the Bi-LSTM. The

compact, yet informative, representation of [...] allows us to see not only which variables

contribute to the target symptom, but also how important one symptom contributes to all

other symptoms”. The clinician appreciated the system’s ability to analyze cohorts of interest

“I am interested in seeing simplified probabilities of severity, such as toxicity at X months...

(given a cohort) which this (L-VISP) supports”.

Statements from our evaluators regarding L-VISP’s actual use in practice and agreeing

on hypotheses during the evaluation showed that they trust the system’s results. The on-

cologist expressed that they were considering showing the L-VISP results to their patients

and coworkers: “I can show these to my colleagues and even my patients”. Furthermore, the
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modelers agreed during one of the case studies that “The LSTM overpredicts for the severe

patient cluster and underpredicts for the mild cluster.”.

5.6 Discussion

L-VISP highlights symptom patterns and groupings generated by LSTM modeling that ex-

tend previous research in head and neck cancer post-treatment [60,61,186,187]. Our evalua-

tion showed that L-VISP can blend results from multiple models, enabling tasks that range

from evaluating Bi-LSTM performance on patient clusters (Fig. 5.2) to visualizing hidden

states from the IMV-LSTM (Fig. 5.5) for deeper model insights. L-VISP helped the mod-

elers capture input-output relationships in the Bi-LSTM results, showing increasing trends

in targeted patient cohorts with severe symptoms (Fig. 5.5). Our visual system compared

performances between cohorts and revealed that the Bi-LSTM showed consistent predicted

symptom clusters among cohorts (Fig. 5.2.D, E). L-VISP validated the BI-LSTMs predic-

tions, revealing mild mispredictions for the patient clusters with severe and mild symptoms

(Fig. 5.4). L-VISP was able to capture insights into the Bi-LSTM decision-making by reveal-

ing associations between symptoms during prediction (Fig. 5.5). The modelers expected to

see more reliable patterns in the model’s behavior, which was not the case, but were overall

content with the post-treatment symptom predictions.

L-VISP was developed mainly for data modelers to create interpretable models in clinical

practice. Through expert feedback and generated hypotheses, our evaluation demonstrated

that modelers can effectively summarize cohort modeling results and collaborate with clinical

experts to clinically interpret the models. While our case studies target head and neck

cancer patients, we generalize our design to multivariate, temporal patient cohorts where

the focus is to evaluate and compare different model outcomes against ground-truth data,

for multiple cohorts. We generalize most of our design choices to other fields that need

complex temporal prediction output interpretation in multidisciplinary collaborations with

multiple workflows. Specifically, L-VISP can support other variants of the LSTM family for
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temporal predictions. The ACD collaborative and iterative approach ensured that L-VISP

met technical requirements for data analysis and aligned with our collaborators’ workflows.

The ACD design process revealed a key insight for clinician-data modeler collaborations,

which was to visually separate the results presented to modelers and clinicians. However,

the clinician will analyze the results together with the modeler. Specifically, we separated

model debugging tasks from clinical model interpretation tasks. Below, we present a couple

of lessons learned from this multidisciplinary collaboration.

Design limitations include the inability to legibly visualize data for all 28 symptoms, such

as the symptom trajectories, the variable importance, and temporal importance components

(i.e., would require vertical scrolling). L-VISP does not support more than two-cohort com-

parisons, which in turn supports legible LSTM outcome visualization. The clinical compo-

nent can support a limited number of attributes and sub-cohorts/clusters (i.e., would require

horizontal scrolling) in the cohort attribute distribution component. On the other hand, the

patient matrix can support 2D projections based on different combinations of attributes, and

a larger cohort (i.e., thousands) at the cost of limiting individual patient selection/brushing.

On large cohorts with tens of thousands of patients, the system can visualize the summarized

LSTM results and the three-cluster stratification. However, individual patients depicted in

the projection matrix would not be legible.

Future work will address updating the current design to scale for all 28 symptom categories

and for larger patient cohorts. Cluster visualization would be an option instead of visualizing

individual patients and symptoms. Another natural direction would be to update the Bi-

LSTM model to account for the issues found during our evaluation (e.g., the overprediction

for the severe patient cluster and underprediction for the mild cluster), or to visualize other

cohorts with the same data attributes. This could help the data modelers use the model on

future patient cohorts.
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5.6.1 Research Questions

Q1. How can visualization support cohort analysis? We once again employed the ACD

method and interviewed data modelers in head and neck cancer research for task-gathering.

We did this because this project aimed to explain black-box, LSTM-based modeling for

symptom prediction in patient cohorts. We also wanted to enable clinicians to visualize the

results for desired sub-cohorts. Still, we realized that some tasks are modeler-specific and

are not of interest to the clinician (e.g., analyze the model’s hidden states).

Q2. How to visually represent cohorts and their characteristics, and what interactions to

support? We proposed a multiple coordinated view design, separated into multiple front-

end panels. Each panel was designed for specific activities; some are dedicated to modelers

alone, while others are dedicated to a clinician-modeler collaborative analysis. All panels

present consistent layouts, but are dedicated to different cohort analytical workflows (i.e.,

analyze target cohort prediction stats, validate cluster predictions, compare model perfor-

mance between clusters). This design principle enabled more guided workflows and lowered

the cognitive load associated to switching between user activities. Notable cohort charac-

teristics that this system visualizes are weighted associations between symptoms, which are

characteristics that the black-box LSTM uses to make predictions.

Q3. What system implementations work for post-treatment decision-making? Unlike THALIS

and Roses, where we tackled either the clinician’s needs first or considered both clinicians’

and data modelers’ activities, in this project, we focused on design decisions dedicated to

the data modeler. This is because L-VISP aimed to support the evaluation and explana-

tion of black-box models, which are more complex than the modeling approaches from the

previous chapters. However, we support clinician-modeler collaborative analyses and the

interpretation of a simplified version of the model outcomes by clinicians.

Q4. What makes a visual analytics system valuable to biomedical users? We considered the

differences in the mental models of our users (i.e., the clinician’s interest in clear results on

desired cohorts, and the data modelers’ needs to understand why the models take certain
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decisions and output certain predictions). As a result, our system design separates the front-

ends for the data modeler, which are focused on debugging the decisions the models, from

the one dedicated to the clinician, which presents the results without the underlying model

mechanisms, and makes the results appropriate for clinical interpretation. A key feature of

this project is its versatility to both separate workflows and support collaborative workflows,

which enhances hypothesis-making.

Takeaways. A key takeaway from this project was that when working with more com-

plex cohort modeling, such as black-box models, it is more effective to visually separate user

workflows and activities based on the audience category. During the software prototyping

phase, we experimented with different front-end layouts and decided to provide predefined

layouts that supported workflows of interest for each type of user. This is a more guided ap-

proach than what we had in Roses. Another notable finding was to reduce visual information

density when necessary, or in other words, to choose quality over quantity. L-VISP was orig-

inally designed for a large display and incorporated modeling results for all 28 symptoms.

However, this resulted in high information density. As a result, we redirected our efforts

into interpreting modeling results for the symptoms of main interest, namely the 9 HNC

symptoms, after which the modelers stated that they could see the information more clearly

and could make hypotheses faster. Last but not least, another finding was to reuse visual

components for multiple activities and keep a consistent layout across workflows. Given the

project requirements, we minimized variability in the visual component design, and reused

components for different purposes in order to lower cognitive load for end-users with different

modeling expertise (i.e., modelers vs. clinicians), and to keep consistency across activities.

This resulted in a lower learning curve for data modelers and enabled the clinician to quickly

interpret results.
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5.7 Conclusion

L-VISP introduced a visual analytics solution that supports model activity by enhancing

the interpretation of symptom risk modeling for head and neck cancer patient cohorts. Our

domain characterization for black-box cohort risk modeling revealed the different user work-

flows in interdisciplinary clinician - data modeler collaborations. Our proposed system uses

predefined layouts while blending multiple cohort modeling methods to support different

symptom analytical workflows on user-defined or machine-derived cohorts. We use cus-

tom visual encodings to explain model behavior and to evaluate model performance across

different cohorts, and introduce an encoding that visualizes weighted associations between

multivariate, temporal items.

In the following chapter, I will discuss how OpenDBM, THALIS, Roses, and L-VISP

together answer the research questions from Chapter 1, discuss the feedback from our col-

laborators, and present the lessons learned from all projects.
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Chapter 6

Discussion and Conclusion

This dissertation addresses several challenges in visual analytics for cohort modeling for

research in post-treatment care. First, it documents the domain characterization for post-

treatment adverse outcome risk modeling for two applications, in oncology and neurology.

This is a critical step in understanding user tasks and design requirements. Second, it pro-

vides solutions for data visualization challenges, considering scalable, custom encodings that

support multi-stage, temporal, multivariate, incomplete, and associated attributes in patient

cohort data. Through iterative prototyping, several new visualizations are proposed, which

summarize and detect patterns in these cohorts and support post-treatment risk analysis.

Third, this thesis explores the application of unsupervised risk modeling methods for patient

cohorts and proposes a rule mining and clustering approach for risk prediction. Through

considerate design principles, the resulting visual analytics systems present visualization solu-

tions for model evaluation and understanding. These visualizations support human-machine

cohort analysis by focusing on the interpretability and actionability of modeling results in a

clinical context. Finally, since post-treatment decision-making is a multidisciplinary domain,

this work tackles collaborative workflows that visually bring together different data facets

for both clinician and data modeler activities.

Next, I will present how I answer the research questions of this dissertation through the

contributions of the four systems.
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6.1 Research Questions

Q1. How can visualization support cohort analysis? This was supported by the

domain characterization for cohort analysis in the digital biomarker and head and neck

cancer domains. This step was crucial to understand what type of analyses are essential

for domain experts to improve post-treatment hypothesis-making (e.g., the consideration

of a multi-stage patient monitoring protocol and the fact that during treatment, data can

influence post-treatment longitudinal outcomes). A general concept that was essential in all

projects was to visualize different data facets together, at varying levels of detail, to facilitate

understanding of health distributions in cohorts.

Q2. How to visually represent cohorts, their characteristics, and what in-

teractions to support? Designing systems with coordinated multiple views gave us the

flexibility to support different analytical workflows in cohort analyses and interactively com-

bine different attributes together, which is crucial in post-treatment decision-making. This

design choice helped with the adoption of novel encodings for non-conventional data. Al-

though most visual encodings are conventional representations of temporal, multivariate

data, we introduced new encodings when the data characteristics were unconventional. Such

visualizations are the filament plot and the rose glyphs, which summarize multi-stage, mul-

tivariate time series and temporal networks and highlight patterns and associations between

attributes.

Q3. What system implementations work for cohort stratification? Consider-

ing the importance of cohort modeling and XAI in post-treatment decision-making, it was

critical to focus on system implementations that support human-machine workflows, more

specifically, visual analytics for human interpretation of cohort modeling (machine-derived

results). The ACD iterative and incremental design and development on each system, with

regular feedback sessions, enhanced the interpretation, evaluation, and understanding of dif-

ferent methods for cohort modeling, and the analysis of said the results and methods in

conjunction with relevant patient attributes.
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Q4. What makes a visual analytics system valuable for biomedical users?

The systems’ evaluation with domain experts revealed that an essential consideration for

post-treatment cohort research was to enable clinician-data modeler collaborations. This

was supported by visual analytics that focused on interactive modeling activity for data

modelers and appropriate visualizations for the clinical interpretation of the modeling results

for clinicians. OpenDBM explored solutions that target large audiences (i.e., open source,

which can include academics, clinicians, industry researchers, and so on); THALIS focused

on visualizations useful for both clinicians and data modelers, but not on a configurable front-

end; Roses, on the other hand, explored a highly configurable design for domain experts. In

contrast, L-VISP focused on data modeler activities and separated the front-ends between

clinicians and modelers for a more guided analysis.

In the following sections, I present the conclusions resulting from the systems’ evaluations

(i.e., resulting dimensions), then I move to the overall lessons learned from these projects,

and then I touch on the generalizability, limitations, and future work of this dissertation.

6.2 Thematic Analysis

We performed a reflexive thematic analysis on the feedback from domain experts from all

projects, and the results were coded into three dimensions. We investigated actionability,

a concept often evaluated in medical visual analytics (VA) systems [33, 97], which helped

us to understand whether domain experts think the systems are fit to be used in clinical

practice and if they do the work they need to do (i.e., support the tasks and activities

collected during the domain characterization process). A second dimension we looked at was

perceived usefulness. Visual analytics systems usually measure usability, which focuses on

how easy and efficient a system is to use. In our case, one of this dissertation’s goals is to

propose novel visual encodings for complex data, which can result in a slower adoption of

new visualizations, and the users’ need to get accommodated with “change”. In exchange,

we use perceived usefulness as an evaluated dimension, focusing on how much value the
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domain experts believed that the systems provide and whether they think they would benefit

from using the proposed systems in practice. Lastly, as trust is an ongoing challenge in

the visualization community [79, 114], we also looked at this dimension. This helped us

understand whether domain experts trust the systems enough to actually use and consult

them during decision-making. Although recent decades have seen an expansion in medical

visual analytics systems, especially XAI systems, medical experts still choose to trust their

instinct over what a visual analytics system reports. With medicine being such a high-stakes

domain, experts are right to show reluctance to new software; however, we were interested

to see if they show confidence that the systems are dependable and trustworthy. Below,

we present what facilitated the evaluation of these dimensions and provide some example

feedback used to extract them.

Actionability. What helped: gradually presenting results and gradually expanding re-

sults from one project to the next (for example, the rule mining modeling, which was ex-

panded from THALIS to Roses, then the clustering results from Roses influenced the mod-

eling method from the future work project), and the occasional domain experts’ interactions

with the system during in-person campus visits. Clinical practitioners have noted that Roses

and L-VISP were useful for cohort statistics and modeling, but not for in-clinic use by clini-

cians without modeling experience. This was not the case with THALIS, as it is a tool that

supports more general cohort analyses, as a clinician noted that they’d show certain results

to their patients. OpenDBM, on the other hand, was designed for open-source. Example

feedback:

• “I had someone looking away from the camera, this is actually picking up their data”

- noted by a domain expert about OpenDBM, while analyzing an individual’s video

data, noting the importance of knowing when patients don’t look at the camera when

recorded, and thus useful biomarker measurements are not extracted for analyses. They

were able to spot when the patient was not facing the camera by combining the facial

map ( Fig. 6.1.A) with the facial measurements for eyes ( Fig. 6.1.B).
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Figure 6.1: OpenDBM Combination of facial map (A) with facial measurements(B)

• “I say – we’re going to talk about dry mouth and swallowing, cause these two are really

bad– and then there’s all the other stuff. And then I see this [the ARM and heatmap and

filaments], and here’s this other stuff, that is usually at my periphery, but I don’t focus

on, although patients do mention it. If I were sitting with a patient and I’d look at this

interface and ARMs—I get it, hey, there’s actually a LOT of moving parts here [beyond

dry mouth and swallowing], and they’re related, and they have different time sources.

It’s sobering.” - noted by a clinical practitioner when combining patterns from the rule

mining visualization (Fig. 6.2.A), together with the filament plots (Fig. 6.2.B); which

showed understudied patterns in symptom trajectories and associations (clusters). In

this case, they were surprised by how many strong associations drowsiness has with

other symptoms (e.g., fatigue, daily activities).

• “When I see a patient, this [taste-dry mouth] association in the late phase is the default

picture I have in my mind. But here I see that also fatigue connects to drowsiness, and

that these symptoms show up in the acute phase as well, and that I really need to discuss

these issues with my patients.” - noted by the previous clinical practitioner during the

evaluation of the symptom clusters in THALIS for the late stage ( Fig. 6.2.A), as seen

in the cluster with drowsiness at the center.

• “This interface and the ARM provide great preliminary data for so many projects right

off the bat!” ( Fig. 6.2.A)
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Figure 6.2: THALIS post-treatment symptom clusters (A) and trajectories (B)

• “It helps me a lot to analyze and understand the behavior of the Bi-LSTM. The com-

pact, yet informative, representation of [...] allows us to see not only which variables

contribute to the target symptom, but also how important one symptom contributes to

all other symptoms” commented one modeler during the L-VISP evaluation while ana-

lyzing the variable importance view ( Fig. 6.3)

Figure 6.3: L-VISP symptom weighted associations to a selected symptom. A) symptom predictions against ground-
truth. B) variable importance. C) temporal importance. D) Upon selecting swallowing, its corresponding column
shows the influence of the other symptoms on the swallow prediction, and the highlighted items on its corresponding
row show the influence of swallow to the other symptoms’ predictions.

Perceived Usefulness. What helped: case studies, walkthroughs, and hypothesis gen-

eration during these cases. Example feedback:

• “The utility for exploring the data here is very high, if you’re talking about quantitative
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decision-making, this is very strong.” - one clinical practitioner commented about Roses

and its ability to adapt to different analytical tasks through its configurable front-end

– namely the five visualization options for the four quadrants of the interface, which

can be configured for the four treatment options – ( Fig. 6.4). He also noted that the

system is not suitable for clinicians without modeling experience.

• “Very cool, so much better to use for the analysis we did last year, huge time saver”

- noted by a data modeler about the rose glyph projection in Roses ( Fig. 6.4), which

showed more comprehensive modeling results, which were time-based (treatment stage-

based) associations and patterns between symptoms for each treatment (i.e., multiple

sub-cohorts), as opposed to THALIS (“last year”), which showed limited (top 20 rules),

within stage (non-temporal) results/rules for the entire cohort, without considering the

treatment influence over the patient outcomes.

Figure 6.4: Roses five encoding options for configurable workflows

• “I gotta be honest, [...] I get so much material for future research.” “I like that when

a patient is with [oncologist], they want percentages, e.g., 69% of patients have normal
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mucus after 1 week of treatment, and [THALIS] shows that” - declared by a clinician

when looking at the statistics for mucus burden for the selected time point (1 week

post-treatment)( Fig. 6.5).

• “There is so much output data generated [...](L-VISP) is instrumental in facilitating

the exploration of those outputs, comparing the performance of different patient groups,

and visualizing the temporal symptoms importance. In the targeted evaluation, we can

use patient filters that allow for hypothesis testing. The IMV-LSTM generates summary

figures [...] these vary greatly between different cohorts, and it would not be possible to

identify these differences without this” mentioned a modeler about how valuable they

find L-VISP for their research practices ( Fig. 6.3)

Figure 6.5: THALIS cohort longitudinal burden of a selected symptom (mucus) on the bottom left, and the severity
and presence symptom distribution for the entire cohort.

Trust. What helped: showcasing results that confirm existing user knowledge (e.g., rose

glyphs showed high mood-related symptoms at the beginning of treatment due to low patient

morale, which was a known treatment consequence). One domain expert observed during

an in-person demo session, using the rose glyphs, that the dataset was not mature due to

missing data points (i.e., the cohort was under monitoring at that time and as time passed,
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researchers had updated the dataset with more data points) and observed an example of

wrong data summarization because specific time points in the roses showed higher ratings

than they were supposed to. Example feedback:

• “I expected that the more advanced staging you have, the more toxicity you get - it

corrected my assumptions.” - one clinical practitioner noted when evaluating the Sankey-

based encodings from Roses ( Fig. 6.6), observing that certain cohort attributes, such

as tumor size, are not necessarily associated with more severe symptoms.

Figure 6.6: Roses Cohort attribute distribution

• “When I see a patient, this [. . . ] association in the late phase is the default picture

I have in my mind. But here I see that also [. . . ], and that these symptoms show

up in the acute phase as well, and that I really need to discuss these issues with my

patients.” “I can share [this view] with my patients, to explain that pain and swallowing

and fatigue are really tightly related – we don’t know if it’s causation, but they definitely

show up together, so could you please, please, take your pain and anti-inflammatory

meds, and could you please do the swallowing exercises we’ve talked about?”- noted by

a clinical practitioner when analyzing the rule node-link from THALIS, looking at the

late symptom clusters ( Fig. 6.2).

• “I can show these to my colleagues and even my patients” mentioned a clinician during

the L-VISP evaluation, while the modelers trusted the results presented by the models:
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“The LSTM overpredicts for the severe patient cluster and underpredicts for the mild

cluster.” ( Fig. 6.7)

Figure 6.7: L-VISP predictions and errors for two patient clusters: severe symptom burden in A) and mild symptom
burden in B)

6.3 Lessons Learned

Use the activity-centered paradigm in multidisciplinary collaborations. The ACD

paradigm was used in all projects presented, helping to focus on user activities and tasks when

designing visual analytics tools. It enabled a better understanding of the differences in mental

models of the clinician and the modeler, as well as the differences in their analytical interests

and tasks. In addition, it was a good strategy for multidisciplinary remote collaborations,

providing steady progress and a structured design and development of the systems. In

particular, unlike oncological applications, which were designed for a small, targeted audience

of data modelers and clinicians, the neurology application project (OpenDBM) was designed

for the open-source community. Fortunately, we were able to interview domain experts
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representing various institutions and with different backgrounds, from clinicians to academics

and industry data scientists. This resulted in many different interests and tasks for the

project, but the ACD approach supported the prioritization of overlapping tasks, which

resulted in a successful visualization tool. Another benefit of the ACD methodology was

the incremental and iterative design process, which resulted in useful designs due to regular

feedback sessions from the clients. In the end, using the same paradigm for all systems

provided good results and positive feedback on the final systems.

Focus on domain sense and actionability. When designing visual analytics systems

that focus on interpreting modeling results, usually referred to as XAI applications, it is

important to focus on the application domain. More specifically, on how to make modeling

results useful in a clinical setting. One way we supported actionability and domain sense was

through custom visualizations. Some examples are: mapping patient-modeled multivariate

spatial and non-spatial measurements on anatomical locations for a more approachable be-

havior interpretation for clinicians, in an attempt to humanize the data; providing additional

context (i.e., adding clinician-targeted visualizations) for a more transparent data interpre-

tation by clinicians; incorporating client knowledge into the systems for more trust in the

modeled results (i.e., showing associations between specific symptoms from the literature

to introduce new, more complex symptom associations). Another way to support action-

ability and domain sense was to focus on interactions and data analysis common to risk

analysis. Some examples were patient against cohort analysis, which is available in all pro-

posed systems, stratification of the patient cohort using user-selected attributes (present in

OpenDBM, THALIS, and L-VISP), and connecting different data facets for a comprehensive

outcome risk composition analysis.

Use visual scaffolding to introduce novel encodings. Although the proposed sys-

tems use custom visualizations and coordinated multiple views, which are critical to connect

different data facets for comprehensive cohort analyses, each project introduces a novel

encoding (i.e., the anatomical mask, the filament plot, the rose glyph, and the variable im-
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portance matrix). These novel encodings, although they sometimes attracted reticence from

some users, ended up being crucial components in describing complex concepts in analytical

workflows. This was due to the presentation of client knowledge through the encodings,

which helped with faster adoption of these designs, and due to the repeated use of these

encodings when presenting project updates, which was a consequence of the ACD iterative

process. The ACD incremental design process, which started with paper prototypes and then

moved to digital prototypes, also helped with the introduction of these encodings to clients.

In general, a balanced blend of standard encodings, such as scatterplots and barplots, and

custom encodings helped with the adoption of novel visual representations.

6.4 Generalizability

Although the proposed visualization systems are designed for particular clients, tasks, and

datasets, many concepts can be generalized to other visual analytics applications. First,

these systems visualize cohorts that are heterogeneous, temporal, and multivariate, with

most visual encodings suitable for other research domains (e.g., the matrix-based encoding

in THALIS for multivariate, temporal distributions in cohorts with missing data points,

Sankey-based encoding for multivariate cohort summarization, interactive scatterplots for

item against cohort or cluster analysis, correlation matrix for multivariate attributes, etc.).

Generalizable analytical tasks that these systems support are: association and pattern de-

tection, interpretation of model output, and risk prediction, which can be found in other

domains such as sports [65], (historical) documents [203], weather [173], financial [109], and

visual analytics, etc. The novel encodings can also be applied in other domains. The anatom-

ical representation from THALIS inspired the facial mapping encoding used in OpenDBM;

in both cases, there was a need to provide context for multivariate attributes and map

them to spatial locations. These types of representations can be reused in other medical

applications. The filament plot summarizes temporal attributes and can be used in other

applications where comparing and summarizing time series is a crucial task. An example is

135



an aircraft simulation publication [151] where we reused the filament plot to represent I/O

parameters of aircraft simulation ensemble members. The rose glyph was essential in the

representation of temporal networks with temporal nodes and was used to show associations

and trajectory similarity in multivariate attributes. The rose glyph projection, representing

temporal networks, is a contribution to summarizing and clustering associated, overlapping

time series. By itself, the glyph can be used as a compact temporal representation, where

comparing large sets of temporal items (n >20) is a key task. Another proposed encoding,

the variable importance matrix, is used to expose LSTM-based model memories and can be

used in other projects that use LSTMs. Moreover, this encoding supports the visualization

of weighted associations between temporal and non-temporal items.

6.5 Limitations

The limitations of this work include items related to domain-specific applications. Although

the design lessons learned from each project can be applied to other medical visualization

systems, most of this work is aimed at clients with modeling experience, from data scientists

to clinicians. Considering the limited number of users for most of the presented projects, the

proposed work is evaluated using qualitative methods, through case studies, demonstrations,

client observations, and direct feedback, and lacks quantitative evaluation. Moreover, since

most of this work is focused on relatively new domains in clinical research, the designs

presented focus on the actionability of the model over simplicity. In particular, there are

limitations with respect to the availability of patient data that was used to develop and

evaluate these projects. Considering the limited samples of patients with particular attributes

for some of these projects (e.g., small samples of patients with specific treatment plans) and

missing data points, the modeling results can present biases. Further data limitations include

that one of the projects used synthetic data during the development and evaluation stages,

while the other projects used manually extracted data from patient health records, which

can be erroneous.
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6.6 Future Work

Several extensions could be explored with some of this thesis’s projects. One extension

would be to improve the scalability of the L-VISP interface and support the analysis of more

symptoms. This would be solved through using symptom clusters for symptoms with similar

trajectories, instead of individual symptoms. Another future direction would be to support

a guided exploration of the configurable interface from Roses. This could be enhanced

through predefined workflows that could be selected from a menu, similar to L-VISP. Natural

language queries could be used to faster generate desired workflows for clinicians or data

modelers. The queries would configure the front-end with appropriate visual components

(e.g., “Show me LSTM predictions”), on desired cohorts (e.g., “for female patients that had

neck surgery”). This last extension would work well for L-VISP and Roses, which support

multiple analytical workflows. It would help modelers to debug cohort modeling faster and

clinicians to collaborate and find patients with similar characteristics to assess the risk for

new patients.

There have been tens of visual analytics systems proposed throughout the years in the

medical domain. In consequence, another direction would be to look into design standards

for medical visual analytics applications in multidisciplinary clinician-modeler collaborations.

What is a good design balance? Should we focus on one type of audience or both? A good

step towards this direction would be to revise Guo’s survey [79] that categorizes medical

visual analytics into cohort, outcome, and prognosis analysis, and connect these to each type

of audience and their corresponding tasks. Another relevant and newly proposed framework

by Bernard [18] characterizes how humans, data, and models contribute and benefit from

visual analytics processes. Combining the two studies and clearly characterizing each type of

audience and how they play into medical visual analytics would help to create some standards

for designing such systems.

Given the fast rise of Generative AI, a recent study from Monadjemi et al. [143] is propos-

ing an updated theoretical framework for mixed-initiative (MI), human-machine analysis.
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They pose very relevant questions for this dissertation, namely: how do artificial agents and

humans contribute to MI visual analytics tasks? What are the characteristics of the MI tasks

and the visual analytics environment? Although AI agents for medical visual analytics are

out of scope in this dissertation, it is a concept that is rising fast and will shape the future

of medical visual analytics. As for the MI framework, this dissertation has focused on less

automated frameworks, where human agents (users) play a detrimental role in knowledge-

centric tasks. However, the survey states that mixed-initiative systems improve accuracy in

comparison to either a human or an artificial agent performing the task alone. In conse-

quence, this survey is an excellent start for the new directions that can be explored in MI

visual analytics for medical applications.

6.7 Conclusion

In conclusion, this thesis presented visual analytics methods that can facilitate heterogeneous

cohort analysis for post-treatment care. This work documented the design, development, and

evaluation of several visual analytics systems for cohort analysis. It did that by establish-

ing the domain requirements for risk modeling in two medical applications, in neurology

and oncology, then designing visualization systems that blend risk modeling with custom

visualizations for patient cohorts, and by evaluating the usefulness of these systems for clin-

ical research. The proposed visual analytics systems tackled data modeling and visualiza-

tion challenges, supporting human-machine analysis in clinician-data modeler collaborations.

This dissertation introduced novel encodings for multivariate, temporal, multi-stage patient

cohorts, with unconventional characteristics such as multi-stage, associated spatial and non-

spatial measurements, and with weighted associations, and adapts and proposes alternative,

rule mining-based, outcome risk modeling approaches. The evaluated dimensions and the

lessons learned presented important considerations for future research in visual analytics de-

signed for multidisciplinary collaborations. More specifically, this research provided a deeper

understanding of key considerations when doing research with domain experts from an ap-
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plication domain (doctors) and data modelers, and on how data visualization designers can

present the results generated by data modelers. Data visualization helped patient care re-

search by finding and documenting more consistent patterns in patient cohorts. Many of the

research lessons and contributions could be expanded to other application domains, not just

medicine. Returning to this dissertation research statement, I conclude that this dissertation

presents contributions that show that visual analytics can improve post-treatment research.
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