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SUMMARY

Repairing severe human skull injuries requires customized cranial implants, and current visualiza-

tion research aims to develop a new approach to create these implants. Following pre-surgical design

techniques pioneered at the University of Illinois at Chicago (UIC) in 1996, researchers have developed

an immersive cranial implant application incorporating haptic force feedback and augmented reality.

The application runs on the Personal Augmented Reality Immersive System (PARIS(tm)), allowing the

modeler to see clearly both his hands and the virtual workspace. The strengths of multiple software li-

braries are maximized to simplify development. This research lays the foundation to eventually replace

the traditional modeling and evaluation processes.

xii



CHAPTER 1

INTRODUCTION

1.1 Background

Today a medical sculptor utilizes anatomical modeling expertise to sculpt a prosthetic implant. How-

ever even with the aid of automated manufacturing techniques, the design process poses several prob-

lems. Techniques developed at the UIC in 1996 have greatly improved the practice. This thesis aims to

augment these techniques using a new virtual reality display system and customized software tools.

Involving extensive planning during the pre-surfical design process, closing large cranial defects

offers patients therapeutic benefits. These benefits include restoring the shape of the head, protecting

vital brain tissue, minimizing pain, reducing operating and recovery times, and in some cases improv-

ing cognitive capabilities. Unfortunately, several factors limit cranial implant availability. Insurance

companies often will not support this form of reconstruction due to the high labor and material costs.

Because only neurosurgeons and medical modelers possess the specialized anatomical knowledge, as-

sembling the necessary expertise is difficult. Travel expenses for both patients and specialists increase

the overall cost. Currently acrylic polymer is the most commonly used implant material. When used

intra-operatively, the material exudes extreme heat as it solidifies. Exposing the brain to these tempera-

tures can cause tissue damage. For this reason, it is vital that implant design and fabrication takes place

prior to surgery.

1
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Traditional cranial implant fabrication and surgical placement methods are heavily dependent on

subjective skills and procedures requiring specialized knowledge. The cranium’s anatomical complexity

impedes reconstruction without extensive planning. Additionally, the implant design must take into

account features unique to the patient. Pre-surgical cranial implant design and fabrication alleviates

many of these shortcomings.

1.2 Problem Statement

The 1996 UIC approach incorporated a series of expensive manual manufacturing steps to produce

a custom-fitting implant. These techniques serve as a guide for implementing a digital approach com-

bining augmented reality and haptics. Medical sculptors are trained using their hands, and their abilities

are heavily dependent on that fact. The awkward control devices used by traditional VR systems are

not conducive to intricate sculpting techniques. Introducing force feedback allows the user to feel the

virtual defect and implant models, giving the user the sense of touch that is important for 3D modeling

(Massie, 1998). The design process also requires medical sculptors clearly see their hands while mod-

eling an implant. Using augmented reality we can combine real and virtual information, allow real time

interactivity, and manage 3D registration (Azuma, 1997).

1.3 Purpose of the Work

This thesis centers around mutual interests between UIC’s EVL and Virtual Reality in Medicine Lab-

oratory. Force feedback robots often operate adjacent to associated displays, but this mode of operation

is non-intuitive for medical sculptors accustomed to directly working with physical models. By com-

bining graphics and haptics, this thesis presents a prototype environment for examining cranial implant
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design. CrEdit presents an augmented reality environment combining sensory feedback, established by

the following purposes:

• Integrate PHANToM haptics with AR

• Load medical data into 3D environment

• Examine tools required by medical sculptor

• Follow existing interaction metaphors

• Provide foundation for future research

1.4 Significance of the Problem

In 1999 alone, surgeons performed 220,065 cranial procedures (American Association of Neuro-

logical Surgeons, 1999). These operations are complex, requiring the medical skills of craniofacial

specialists. Physically gathering these individuals can be challenging in terms of time and personnel.

Moreover, the current state of the art cranial implant design techniques still occur in clay and wax ma-

terials. These substances do not lend themselves to long-distance collaboration for pre-surgical design

and evaluation purposes (Ray Evenhouse, personal communication, Mar 2001). By taking advantage of

advanced visualization facilities available at UIC, this research aims to provide a foundation for stream-

lining cranial implant creation, ultimately making it a more efficient and more readily-available proce-

dure. As described by Parvati, the graphics and imaging will play increasing roles in medicine (Parvati,

2000). Exploring these roles requires collaboration between the technical personnel and the medical

experts most familiar with the problem domain. Integrating complex graphics displays with haptic force
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feedback poses interaction and computation challenges. Although CrEdit focuses on cranial implants,

the entire system should eventually be applicable to other craniofacial surgical procedures.

1.5 Solution Overview

Stereovision, wide angle-of-view, interactivity and viewer-centered perspective help the participants

understand the depth relationships. Rather than looking at improperly scaled models on a computer

monitor, the user perceives objects at an absolute scale. Combined with the sense of touch supplied

by a PHANToM haptic device (Salisbury and Srinivasan, 1997), this creates a rich sensory environ-

ment for developing a medical implant design application. Connecting these systems across high-speed

networks enables users in different locations to collaborate among shared, virtual, and simulated envi-

ronment (Park et al., 2000). Geographically scattered participants may discuss implant design, surgi-

cal pre-planning, and postoperative evaluation. This also provides educational opportunities, enabling

instructors to interactively present methods and techniques. This thesis presents CrEdit, a prototype

system that allows loading and manipulating data, marking areas of interest, extracting defect geometry,

and feeling virtual bone surfaces.



CHAPTER 2

CONCEPTS AND RELATED WORK

This chaper describes the background concepts in detail. Previous UIC cranial implant techniques

provide the basis for the virtual tools and capabilities. Additionally, the examination of related literature

explores virtual environment concepts applicable for cranial implant design.

2.1 UIC Cranial Implant Design Research

Dr. Fady Charbel, Ray Evenhouse and their team at UIC pioneered a pre-surgical cranial implant

design technique in 1996 (Dujovney et al., 1999). The process produces custom-fitting cranial implants

prior to surgery using the patient’s computed tomography (CT) data. The medical modeler loads the

patient’s CT data into medical computer-aided design (CAD) software and produces a digital model of

the defect area. This polygonal model is exported to a rapid prototyping stereolithography machine.

This computer-aided manufacturing (CAM) process fabricates a physical defect model. The medical

modeler sculpts, molds, and casts the implant based on this model. Shaping the clay on the defect

model, the modeler progressively sculpts the form of the implant’s mold. The modeler then casts the

implant by filling the mold with a medical-grade polymer. After casting, the implant is sterilized and

prepared for surgery. To date, nine patients have received implants using this method.

2.1.1 Personnel

The cranial implant design process involves several personnel. Interaction between these personnel

is currently sequential in nature. Three primary people share information about the patient. The flow of

5
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information begins with the referring clinician. This person provides the initial patient evaluation, and

he passes information in the form of a referral to the neurosurgeon. Because attaching a cranial implant

to a person is an invasive surgical process, the neurosurgeon decides how to proceed considering the

patient’s situation. The neurosurgeon collects the patient’s medical data and provides it to a medical

sculptor. Figure 1 illustrates the flow of information among personnel involved with the cranial implant

design process.

Referring 
Cinician

Medical 
Sculptor

Neurosurgeon

Figure 1: Personnel involved with the cranial implant design process. The referring clinician initiates
communication with the neurosurgeon, who in turn collaborates with the medical sculptor prior to the
surgical procedure.

The referring clinician initiates the process based on the patient’s needs. This clinician may have

little communication with the neurosurgeon and medical sculptor, but he is the one with the most direct

contact with the patient. This history may provide valuable information essential to the design process.

For example, the referring clinician may establish contact with other family members who may exhibit
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similar physical features to the patient. The medical sculptor evaluates this information during the de-

sign process in order to create the custom implant. As the individual performing the actual surgery, the

neurosurgeon must communicate with both the referring clinician and the medical sculptor during the

planning process. Typically, the neurosurgeon does not see the implant prior to its arrival in the oper-

ating room. These communication restrictions complicate movement of information and ideas among

personnel.

2.1.2 Data Acquisition

A digital representation of the patient’s skull is the basis of the implant design process. Using

a General Electric High-Speed Advantage scanner, technicians generate computed tomography (CT)

scans containing 1 mm thick slices. The process archives these images onto optical disk using the

Digital Imaging and Communications in Medicine (DICOM) protocol. The system also sends the im-

ages through the university’s data network to a graphics workstation. Data can then be stored for later

processing or imported directly into other medical software as depicted in Figure 2.

The scanning system collects between 200-300 image slices at 1 mm intervals. Each image is

512x512 pixels with 4096 intensity levels. The gray intensity corresponds to the material density for

the particular pixels. The dataset for a single patient is approximately 250 megabytes, although newer

scanning systems output both higher resolution and thinner slices. As the scanning systems generate

more data, the resulting images grow in size. The medical sculptors require a way to rapidly and

interactively view a 3D reconstruction based on the patient’s scanned data.

Medical sculptors already use CT data for pre-surgical planning. Incorporating this information

into the virtual environment provides another resource available within the digital medium. The direct
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Figure 2: Medical imaging software extracts a 3D model from the patient data. The software provides
an interface for setting threshold values to segment the bone from surrounding tissues.

manipulation of slices is extremely fast, as the application only adjusts texture coordinates without doing

any texture processing. The resolution is limited by available graphics memory.

2.1.3 Defect Specification

Several processing steps must be completed to construct a file suitable for rapid prototyping. Pixel

data from the CT slices undergoes segmentation to extract the skull information. Semiautomatic algo-

rithms in commercial software initiate the segmentation scheme, but each slice is checked and manually

corrected as necessary. The edges of the inner and outer tables of the cranium are identified, and their

contours are converted from a pixel map representation to a vector map. The pixel to vector map con-

version establishes the geometry for each skull outline from the CT slices.
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Pixels and their volumetric equivalent, voxels, are image representations only and do not explicitly

establish the geometry of the objects they represent. Conversely, vector maps are mathematical curves

explicitly defining geometry. Vector maps from each CT slice are then connected to generate a surface

model of the skull. To create an appropriate stereolithography output file for use in rapid prototyping,

the software positions the surface model in the optimal orientation for the build cycle and re-samples

the data into appropriate slice thickness. The re-sampled data now represents a tool path guide for the

stereolithography machine’s model generation process.

The defect geometry file is imported into a stereolithography machine. This system contains a laser

positioned over a vat of liquid polymer. As the laser fires into the polymer, its energy converts the

polymer to a solid mass. As each slice from the CAD file is traced and solidified, the platform on which

the model is being built is lowered. The surface of the developing model is flooded, and polymerization

by the laser beam is repeated. Slice-by-slice, a solid plastic form is gradually created. The finished

model is removed from the vat, drained of excess polymer, and submitted to a final curing stage using

ultraviolet radiation. The final model is a precise physical representation of the patient’s skull and defect

CT data. To save costs, only the portion of the skull immediately surrounding the defect is generated.

Figure 3 depicts the resulting model.

The UIC pre-surgical implant process generates a defect model from the patient’s CT data. This

model serves as the basis for sculpting the implant with clay and wax in the next step of the process.

2.1.4 Implant Fabrication

The stereolithography model serves as a physical template for fabricating the final implant. Mod-

eling clay is applied to the plastic model of the patient’s defect. The clay is contoured to represent the
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Figure 3: Stereolithography process generates a physical defect model from the digital model file. This
physical model is used as a guide during the fabrication process.

inner prosthesis surface. A silicone rubber mold is made of this composite piece, and dental stone is

poured into this mold. This produces a physical model of the defect that serves as the foundation upon

which the implant is built.

A dental grade wax is used to fill the negative space representing the skull defect. Care is exercised in

maintaining appropriate contour and thickness to assure the best cosmetic appearance following implan-

tation. Figure 4 displays several tools and materials used by the sculptor during the modeling fabrication

process.

When the wax pattern for the implant is completed, the remaining half of the mold can be poured.

Registration notches are cut into the defect side of the mold, so that the two mold halves can be perfectly

realigned. Dental stone is poured to form the top half of the mold.
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Figure 4: After the stereolithography model forms a cast, the medical modeler sculpts the implant in a
dentral-grade wax. The meticulous nature requires using precision tools while sculpting the implant.

The mold halves are separated and the wax is removed, leaving a negative space to receive the

implant material. Medical-grade acrylic monomer liquid and polymer powder are mixed to form a soft,

pliable mass and carefully packed into the mold to avoid air entrapment. The mold is then closed,

tightly clamped, and placed in a hot-water bath to slow-cure the resin. Following the prescribed cure

time, the solid implant is removed from the mold. Additional curing in an oven releases any residual

free monomer trapped in the implant. After trimming and polishing, the finished implant is sent to the

operating suite for sterilization.

2.1.5 Surgical Procedure

Surgical implantation is the final step of the process. Depending on the bone defect location, the

surgeon positions the patient in the appropriate position. After shaving and cleansing the surgical site,

the surgeon drapes the patient according to the cranial defect. The implant is fixed in place with a
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minimum of three titanium plates and screws. The surgeon seals the incision using sutures and closes

the skin with staples.

2.2 Related Literature

Previous work explores both computer-aided cranial implant design and immersive modeling, but

the challenges of unifying these concepts into an immersive cranial implant design application have not

been examined. Any immersive modeling tools must be appropriate for the tasks, as the medical modeler

requires specific tools and capabilities. Related literature explores computer-assisted cranial implant

design, 3D user interaction, immersive modeling, tele-immersion, and finally, augmented reality.

2.2.1 Cranial Implants

Key related work leverages computer-aided design during the planning process, and several methods

successfully created cranial implants. Taha et al. combines rapid prototyping and commercial modeling

software (Taha et al., 2001), as it uses implicit surfaces to create a filled implant. This commerical

software is strictly designed for desktop interaction. There are no immersive capabilities. Another

method by Burgert et al. utilizes skull symmetry and numerical analysis to provide solutions in certain

cases (Burgert et al., 2003). If symmetry cannot be exploited, then this approach does not provide a

solution. Irregular defects that cross the axis of symmetry would thus not be treatable.

While UIC uses medical modeling software to build the defect, these projects construct the implant

entirely in software. In either case, such tools require complex interaction techniques. These tools are

somewhat automated, as they rely on the computer to perform calculations rather than using the medical

sculptor’s specialized anatomical knowledge. Additionally, users operate only within 2D windows that

lack immersive 3D user interaction. These 2D interactions are difficult to bring into a virtual environ-
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ment (Mine, 1996). If anatomical training involves sculpting with clay and wax, as at UIC, the virtual

environment demands interaction with natural techniques rather than flat 2D windows.

Using a commercial haptics modeling package, Bibb et al. sculpted cranial implants in a streamlined

process that reduced total time from four days to three hours (Bibb et al., 2002). They used SensAble’s

commercial FreeForm modeling tool for the sculpting process. Digitally designing the cranial implant

can provide a quicker and cheaper process.

In addition to the design, the surgical process may also benefit from pre-surgical planning. Keeve

et al. (Keeve et al., 1996) used finite element method techniques to computationally simulate tissue

deformations during maxillo-facial surgery. These calculations did not preserve real-time interactivity,

however. INPRES (Salb et al., 2002) simulated cut trajectories to determine the optimal surgical so-

lutions for selected craniofacial patient data sets. Integrating a HMD and camera-registered views of

the surgical environment, INPRES investigated risk reduction through preoperative planning within a

virtual environment.

The cranial implant design process pioneered at UIC serves as a guide for incorporating virtual and

augmented reality enhancements. The inherent spatial and tactile nature of medical modeling requires

strong cues to both depth and touch, and meeting these needs within a virtual environment requires

specific 3D interaction tools. Defining these needs, examining how different technologies meet them,

this research demonstates a way to integrate them.

2.2.2 3D User Interaction

Moving beyond a 2D display means that both rendering and user interaction must occur in a 3D

workspace. Conducting user interaction within this 3D workspace presents several challenges.
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A key aspect of 3D modeling is the use of 3D input during the process. (Nishino et al., 1998)

provided users with two tracked gloves, and these gloves specified parametric objects displayed on

a wall-sized projection screen. Using spatial and pictographic gestures, users defined parameters for

quadratic surfaces.

Another issue is bimanual interaction. Real-world interaction often involves using both hands. The

CAD application 3-draw (Sachs et al., 1991) provided bimanual interaction for specifying, deforming,

and refining geometric shapes. Following a sequential series of steps, users specified geometry that was

fit to splines and curves to form surfaces.

Finally, the lack of physical constraints on user input movements prevents a mechanism for stopping

actions that may move beyond their bounds (Hinkley et al., 1994). The introduction of force feedback

addresses this weakness. Although commercial products such as SensAble’s FreeForm have been used

for medical modeling (Kling-Petersen et al., 2000), these tools are closed to custom development. Re-

searchers cannot add targeted features supporting tele-immersion to the existing software.

These dynamic input methods utilize 3D input for creating 3D objects. The addition of force feed-

back provides physical interaction that assists with the spatial input. Given the fact that medical sculp-

tors work with real objects during the traditional sculpting process, the task of providing virtual tools

requires 3D interaction techniques that support existing sensory experiences with sight and touch.

2.2.3 Immersive Modeling

Modeling within an immersive environment presents unique challenges. Programming tools often

provide easy creation of simple geometric shapes such as boxes, spheres, cylinders, and lines. How-



15

ever, the issues surrounding 3D input complicate interaction, as modeling techniques designed for 2D

windowed interaction do not always carry over to an immersive environment.

Several techniques have explored creating geometry within immersive environments. HoloSketch

(Deering, 1995), one of the first immersive modeling applications, presented a non-immersive stereo

display to the user. The user sculpted geometry using basic 3D primitives. The head-mounted dis-

play modeler 3DM (Butterworth et al., 1992) followed CAD techniques like requiring specific axes and

providing extensive 2D menus and windows. It is also important to load existing models into an environ-

ment. VIRUSES (Szymanski, 1995) provided an immersive environment for loading and manipulating

model files within the CAVE. More recent work has examined free drawing through the 3D workspace.

A system described by Schkolne et al. (Schkolne et al., 2002) created 3D models using gesture move-

ments on an immersive workbench system. This last approach comes closer to the modeling approach

most relevant cranial implant design.

Medical modelers at UIC sculpt using clay rather than sophisticated computer modeling packages,

so any modeling techniques should follow similar interaction paradigms. With volume modeling, users

sculpt by filling in space as they move through the environment. Recent experiments at Frauenhaufer

(Deisinger et al., 2000) found that surveyed experienced and inexperienced VR users preferred free-form

volume modeling to geometric modeling.

Volume modeling builds upon implicit modeling techniques to create 3D objects defined as vol-

umes rather than only surfaces. Blinn introduced a generalized method for algebraic surface drawing,

also referred to as “blobby” objects (Blinn, 1982). By combining spheres and cylinders, he represented

surfaces defined by implicit functions resulting from a combination of the objects. The surfaces were
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defined by all points fulfilling the implicit function F (x, y, z) = 0. Among the implicit modeling tech-

niques described by Bloomenthal (Bloomenthal, 1989), shape skeletons can define primitives resulting

in blended surfaces. Using a series of base shapes, implicit surfaces are offset from those shapes by

user-defined distance values. Galyean and Hughes incorporated interactivity with implicit functions to

provide volume sculpting (Galyean and Hughes, 1991) by representing the results within volume data

structures rather than surfaces. They defined volumes by a characteristic function representing clay, with

a value of 1.0 representing the presence of clay and a value of 0.0 representing elsewhere. A surfacing

algorithm presented the clay volume contour for rendering. Solid modeling interfaces may be extended

for blends, sweeps, and revolutions as described by Grimm et al. (Grimm et al., 1995).

Due to the performance requirements, volume modeling poses extra challenges to immersive en-

vironments. Optimized data structures streamline calculations and maximize storage. Ferley, et al.

utilized binary search trees to create dynamic sculpting tools (Ferley et al., 1999). An overview of other

volume modeling representations is provided by Nielson (Nielson, 2000). Volumetric sculpting requires

optimized algorithms to preserve interactivity. Ayasse and Mueller created voxel-based modeling tools

by sacrificing precision for interactivity (Ayasse and Mueller, 2001). Other approaches are described in

the literature (Ferley et al., 1999) (Wong et al., 2000) (Pyo and Shin, 2002) (Matsumiya et al., 2000).

Volumetric sculpting presents the user interactions most analogous to the medical sculptors’ training.

CAD techniques require more detailed knowledge of underlying mathematical primitives, whereas the

direct manipulation presented by volume sculpting is similar to real-life solid modeling with materials

such as clay.



17

2.2.4 Tele-Immersion

The different participants shown in Figure 1 might be located at different facilities. Networked

collaboration might enhance their ability to communication while investigating a cranial implant design.

(Wood et al., 1997) stated the need for multi-user collaboration as enhancing scientific visualization

analysis. Similar benefits might hold advantages for different personnel consulting among each other

during the cranial implant design process. A comprehensive review of networked virtual environments

is available from Singhal and Zyda (Singhal and Zyda, 1999).

Tele-immersion results from connecting multiple immersed participants, although the diversity of

visualization environments allows for non-immersed collaborators. Shastra (Anupam and Bajaj, 1994)

was an early multimedia collaborative design system. Although Shastra did not provide immersion, it

did utilize a layered architecture to mediate changes among participants. Architecture components han-

dled transmission of audio, images, video, and geometry data. Due to the requirements of immersive

displays, tele-immersion in EVL has utilized a client-server approach. With this approach, users interact

through multiple clients connected to a central server. Blackboard (van Liere et al., 1998) stored simula-

tion and visualization information in a central database, associating named variables with attributes and

data. In EVL, CAVERNsoft (Park et al., 2000) provides services uniquely tailored for tele-immersive

applications. It contains clients and servers for common network protocols along with enhanced mod-

ules providing tools for tele-immersion. Built upon CAVERNsoft, the Tele-Immersive Data Explorer

(TIDE) (Sawant et al., 2000) was designed to address the separation of data access and rendering re-

sponsibilities for the real-time querying of publicly available data servers. TIDE relied on a central data
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server to broker communication among the immersive environment, the remote data servers, and other

participants.

The nanoManipulator (Hudson et al., 2003) used the Model-View-Controller paradigm to manage

event-based triggers that resulted in data changes. This non-blocking communication allowed for a

separation between the interactivity and the network latency. Even with latency and jitter complications

resolved, the nature of tele-immersion still poses human problems. Mortensen et al. found collaboration

involving the manipulation of shared objects difficult to implement (Mortensen et al., 2002). Rather than

the network performance, reviewers indicated that the graphics and lack of tactile feedback were larger

barriers to completing the tasks.

Within the larger scope of the medicine, medical collaboratories (Rugelj and Svigelj, 1997) will

continue to build upon the needs for processing, transmitting, and archiving medical information. The

cranial implant design process involves several participants, each with a different set of skills essential

to the overall procedure. Providing a tele-immersive medium for pre-surgical planning, design, and

evaluation is highly desirable.

2.2.5 Augmented Reality

Visual information alone does not provide enough sufficient information for medical sculptors de-

signing cranial implants. They are trained using their hands, so they must be able to interact directly

with their hands. The sculptors also rely on the feel of surfaces, and touch feedback is an essential cue

for their work. A virtual cranial implant design tool should combine the proprioceptive information

sculptors expect by using their arms and hands, and haptic feedback should simulate the presence of

virtual objects that do not materially exist. The virtual environment must be “augmented” to integrate
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real interaction and haptic feedback. As defined by Azuma (Azuma, 1997), augmented reality systems

display real and virtual information, allow real-time interactivity, and manage 3D registration.

Previous AR implementations exhibit different features and consequences of their designs. Ples-

niak and Pappu presented haptics coincident with a holographic display (Plesniak and Pappu, 1998).

Their holographic system ran at a low framerate, and there was no haptic cue to object interpenetration.

Interestingly, a goal of their system was to provide AR tools to a skilled craftsperson, similar to the

notions presented in this thesis of presenting virtual tools to a skilled medical sculptor. Integrating real

and virtual imagery, Billinghurt and Kato created a two-user augmented puzzle-solving environment

(Billinghurst and Kato, 2002) using video projected with HMDs. With a medical focus on volume vi-

sualization, MediDesk (Wohlfahrter and Encarnação, 2000) tracked a plastic pad for stylus interaction

with the Visible Human dataset.

Haptics provides an additional sensory feedback contributor to the AR experience. By collocating

graphics and haptics, Bouguila et al. noted a relationship between perceived depth and physical dis-

parity (Bouguila et al., 2000). Adjusting the haptic feedback to correspond with the graphics display

significantly improved perception. Fischer and Vance incorporated a PHANToM with the C6 CAVE-

like display (Fisher and Vance, 2002). They scaled the PHANToM to operate within the extent of the C6

workspace, but the PHANToM and its stand occluded the projection displays. Reinig and Eskin (Reinig

and Eskin, 2002) describe the requirements for accurate collocation of haptics and graphics, but they

restrict the user’s head to a fixed position.

By combining visual feedback with real-world information, AR systems provide extra information

not available on other VR implementations. Registered interaction collocates the graphics with real-
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world objects, enhancing interactivity. The addition to touch provides feedback to an additional element

of the human sensory system. These improvements are all particularly advantageous to a system that

aims to provide medical sculptors with the best available environment for cranial implant design.



CHAPTER 3

APPROACH

The proposed solution involves enhancing virtual reality so that the modeler may work efficiently.

A user must see his hands, and a new prototype display systems fills this need. Interface tools have

been designed considering the 1996 UIC process. The description of this system reveals areas for future

development. Real environments are difficult to simulate (Hollerbach, 2000), so this research focuses

strictly on presurgical design rather than surgery simulation.

Some existing approaches to cranial implant design were discussion in 2.2.1. However, a key moti-

vation for CrEdit is the use of immersive projection technologies combined with force feedback. Force

feedback provides improved situation awareness, and it serves as a better mode for manipulation tasks

(Taylor, 1999). The unique capabilities required for haptics dictates custom software development

(Potts, 2000), so the usage scenario is an important consideration.

Examining this scenario also requires identifying hardware choices and software capabilities. Es-

posito defined several essential questions for virtual reality user interface (Esposito, 1996). One question

involved how any virtual body in the environment compares with user, and how that body moves. CrEdit

relies on augmented reality, projecting the virtual environment over the real world. As a result, virtual

representations align very well with the modeler’s arms. The magnetic tracking system records move-

ments and orientations; that information is also available from the robot. The virtual tools are controlled

through direct interaction. Due to the tactile nature of cranial implant design, CrEdit addresses Espos-

21
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ito’s question of output modalities by generating force feedback as well as graphics. Collocating the 3D

graphics with the haptic representation provides an illusion of touching virtual objects.

3.1 Usage Scenario

Figure 5: A medical modeler touches a virtual skull using PARIS. The stylus corresponds to a tool held
in the right hand, while a virtual hand tracks the position of the left hand. A real model remains visible
on the table.

Sitting at PARIS as shown in Figure 5, the modeler interacts with the system in a manner similar to

the methods pioneered at UIC in 1996. Any patient or family photographs are scanned and saved to the

computer. The modeler then converts the patient’s skull CT data into polygon geometry. The application
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loads all models and photographs into default positions. After adjusting positions as needed, the modeler

may manipulate the skull data to obtain the best view of the defect. A pencil tool creates 3D annotations

and highlights the edge of the defect. This defect outline serves as input for calculating a defect model

separate from the entire skull. The user traces the defect edge interactively, so even irregularly shaped

defect geometry may be extracted. Viewing the defect, the sculptor makes annotations indicating where

to attach bolts during the surgery. Feeling the surface of the defect allows the modeler to determine how

to sculpt the patient’s implant. Referring to the digitized photographs, the sculptor builds material into

the hole, slowly shaping the implant. When the work is completed, the application saves the model file

to disk for evaluation and eventual fabrication.

3.2 Benefits of Virtual Reality

With the current UIC traditional modeling approach, several steps remain labor-intensive and ex-

pensive. Although trained specialists create the implants, the process remains heavily dependent on

subjective skills and procedures. Stereolithography is a relatively slow process, and the price increases

directly with the volume and overall dimensions of the model being built. For example, an entire skull

takes 16 hours and costs approximately $1700 in time and materials. A separation of responsibilities

exists between the modeler designing the implant and the doctor performing surgery. Assembling these

specialists for consultation and evaluation can be difficult.

Medical sculptors work directly with their materials. Any translation of these skills into a virtual

environment requires as much similarity as possible. Claymore (Mitsunobu et al., 1998) demonstrated

direction manipulation of three-dimensional objects augmented with a sense of force feedback. This
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sense of touch enhanced the feeling of working with a virtual object by providing the sensation of an

actual object.

Using a commercial haptics modeling package, Richard Bibb sculpted cranial implants in a stream-

lined process that reduced total time from four days to three hours (Bibb et al., 2002). Digitally designing

the cranial implant can provide a quicker and cheaper process.

Immersive technology provides three additional advantages over standard desktop-based user in-

teraction. First, the viewer-centered perspective provided by head tracking presents a 3D view based

on the user’s current head position and orientation. Minor head movements easily reveal 3D cues to

depth based on motion parallax. Second, a properly configured display system maintains size con-

stancy. Displayed objects exhibit consistent scale with a 1:1 ratio to “real world” measurements. Third,

the co-located graphics and haptics representations avoid a visual discrepancy. Typical haptics usage

requires separating the graphics display and haptics feedback.

3.3 Materials

This research relied upon two very specific materials. First, a see-through augmented reality display

provides a large visible workspace. Second, a desktop-sized stylus rendered force feedback to simulate

a sense of touch. These materials provide specific features essential to designing cranial implants within

a virtual environment. This section describes the PARIS display, the PHANToM haptic device, and the

configuration process required to integrate the two.

3.3.1 PARIS

One of the first VR systems designed within VR, the Personal Augmented Reality Immersive System

(PARIS) incorporates significant improvements over previous projection-based virtual reality displays
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(Johnson et al., 2000). Previous systems such as the CAVE and the ImmersaDesk support 3D vision

well, managing separate stereo images for each eye and tracking head motion. There remain at least

two important depth perception cues, occlusion and accommodation, that are not supported correctly in

previous displays (Bouguila et al., 2000). For instance, in a conventional projection-based virtual reality

display, an object in front of the hand is obstructed by the hand itself. This occlusion causes a visual

conflict because the hand, which should be behind the object, appears in front of the object. The object

should be visible in front of the hand. The half-silvered mirror in the PARIS display superimposes the

displayed image over the hands. One does not occlude the other. In contrast to the PARIS mirror, Wloka

and Anderson explored a video-based approach for resolving occlusion (Wloka and Anderson, 1995).

The second depth cue, accommodation, refers to muscles controlling the eye to adjust sharpness. In a

conventional VR display the eye will always focus on the display screen, which is typically significantly

farther than arm’s reach. The PARIS display is designed so that the hands and the virtual object are

the same distance as the image of the screen. Unique to the PARIS, these projection improvements are

particularly important for sculpting. The modeler’s hands, the constructed implant, and the patient’s

data are all visible in the same working volume.

As shown in Figure 6, PARIS provides a large workspace that almost completely fills the user’s field

of vision. Space under the mirror is available for additional interaction. CrEdit uses a haptic device

placed under the PARIS mirror to generate a sense of touch when interacting with the environment.

3.3.2 PHANToM

The PHANToM (Salisbury and Srinivasan, 1997) is a commercially available haptic force feedback

robot available from SensAble Technologies. It measures both position and orientation, thus providing
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Figure 6: PARIS configuration.

six degrees of freedom. It generates only position-based force feedback, although other models can

generate torque forces. As shown the Figure 7, the PHANToM’s robotic arm sits atop the desk surface.

The typical configuration places the device adjacent to a monitor. CrEdit locates the PHANToM under

the PARIS screen, thus making placing it directly in the visual workspace.

3.3.3 Device Configuration

Configuring PARIS involves aligning the coordinate systems, thus enabling graphics and haptic soft-

ware packages to maintain collocated model representations. Screen projection corner measurements

establish the location of the window into the virtual environment. A world origin is chosen, and all

measurements must be taken relative to that origin position.
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Figure 7: SensAble’s PHANToM Desktop is a commercially available haptic robot with force feedback
capabilities. Image courtesy SensAble Technologies.

Adding haptics to an augmented reality environment creates problems because these multiple coor-

dinate systems must be measured and aligned (Vallino and Brown, 1999). Once aligned, the union of

graphics and haptic representations presents a very compelling illusion to the user. Burdea noted the

limitation of haptic devices’ available workspaces (Burdea, 2000). PARIS presents a large workspace

to the user, but the haptic workspace is limited only by the haptic device’s available range. The PHAN-

ToM Desktop moves through approximately 25% of the visible work area. Magnetic tracking provides

additional work space throughout the remaining visible area.
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3.4 Software Libraries

As defined by (Preston and Lever, 1996), scene graphs provide an object-oriented way to represent

scene components as individual objects. Each node within a scene graph encapsulates state information.

This state may describe properties such as lighting, coordinates, transformations, and material colors.

The structural organization provides the relationships between different nodes within the scene graph.

Scene graphs make graphics software easier to write, but there is a trade off between generalization and

performance (Sowizral, 2000).

The evolution of scene graphics started with a language specifically for generating graphics with

sophisticated hardware, GL (Silicon Graphics, Inc). Programmers desiring reuse and extensibility de-

signed structured hierarchies for encapsulating graphics state information (Zeleznik et al., 1991). This

scene graph approach represented graphics as programmable objects with easily modified properties.

These capabilities provided a structured way to utilize objects, textures, and other graphical features.

(Zeleznik et al., 1991) incorporated time and behavior as first-class notions, thus providing relationships

beyond just shape descriptions and rendering characteristics. The Inventor framework (Strauss and

Carey, 1992; Wernecke, 1994a) built upon these ideas and added mechanisms for interactivity, manipu-

lation, and animation. Inventor became the basis for the original Virtual Reality and Modeling Language

(VRML) format used for transmitting 3D models across the world wide web. Development of Performer

(Rohlf and Helman, 1994) targeted scene graph optimization by taking advantage of multiple proces-

sors to more rapidly generate and display images. GL has evolved into OpenGL, a widely-supported

graphics hardware language standard on numerous operating systems. SGI made Inventor available as

open source in 2000, and Performer is available in a limited capacity as well. Ongoing scene graph
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development projects, such as Coin3D, OpenSG, and OpenRM, continue to evolve with support for the

latest OpenGL capabilities.

Generating usable models requires converting between the toolkits’ data representations. Employing

separate toolkits maximizes the strengths of each. Figure 8 illustrates the responsibilities and relation-

ships among the three toolkits. CAVELib and GHOST provide input by sampling user positions from

tracking and haptic hardware, respectively. VTK generates geometry using volume modeling methods.

VTK data structures may be easily converted to Open Inventor scene graph nodes. Once VTK finishes

calculations, it converts the results to an Open Inventor model. This scene graph is loaded into the main

application and used for visualization and graphical interaction. The application also converts the result-

ing triangle geometry to GHOST’s scene graph. GHOST communicates with the PHANToM hardware

and generates force feedback that coincides with the environment’s graphics. Figure 8 illustrates how

data flows among the primary software libraries.

Coin3D serves as the central data representation, but CrEdit converts data structures among OIV,

VTK, and GHOST as needed. Each library contributes a specific set of capabilities toward the overall

system design.

First, the CAVE Library (Cruz-Neira et al., 1993) manages the graphics by providing the low-level

connections between the operating system, tracking hardware, and projection display. The CAVELib

creates multiple windows for each graphics display and synchronizes rendering into stereo buffers. Al-

though PARIS is a single-display system, the CAVELib provides portability to multiple-display systems.

In addition to managing each display, the CAVELib calculates the viewer-centered perspective projec-

tion based on data received from the tracking system.
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Figure 8: Data flow among software libraries

Second, Open Inventor provides a higher-level interface for programming graphics. Silicon Graph-

ics, Inc. created the Open Inventor toolkit in 1992 (Strauss and Carey, 1992). This scene graph library

included the notion of direct manipulation directly within the scene graph. Animation and interaction

were included within different scene graph components, thus creating a comprehensive structure for

managing nodes and their relationships with each other. OIV provides a number of common computer

graphics structures including vectors and matrices. The OIV file format served as the basis for the

VRML modeling specification (Bell et al., 1995). The flexible file format is human readable, and the

robust file operations simplified verifying the scene graph structure during development.
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SGI released OIV as open-source software in 2000 (Silicon Graphics Inc., ). OIV was also licensed

by TGS, who has made numerous enhancements and provided additional capabilities to the scene graph.

Simultronics in Motion released Coin3D (Simultronics in Motion, ) as an open-source library conform-

ing to the OIV 2.1 API header files. CrEdit was originally implemented using TGS Inventor 3, but

development switched to Coin3D in early 2002 due to developmental support and the ability to examine

the library’s source code. This flexibility was key when examining conversion from the OIV geometry

to the haptics library.

PHANToM device control is available through the third essential library, the GHOST SDK (Sens-

Able Technologies, 2001). This library handles all low-level device communication with the hardware,

and it also provides a software programming interface for creating the haptic environment. A key

GHOST feature is the fact that, like OIV, it stores geometry and behavior information in a scene graph.

Finally, the fourth library provides significant computational capabilities. The Visualization Toolkit

(Schroeder et al., 2003) contains a comprehensive library of algorithms for converting data into visual

representations. VTK does not use a scene graph, but instead relies on a modular data pipeline. Data

originates in sources, and applications interconnect data visualization modules in order to provide a

pipeline from the data into a resulting visualization.

Each library has a unique role to play within CrEdit’s design. The integration must allow these

libraries to cooperate with each other. Relying on each library’s strengths allows application develop-

ment to focus on the communication among the libraries. Because each library handles different types

of data, an early step in the design process was identifying how information would be passed among the

libraries.



32

3.5 Identifying Library Responsibilities

Implementing communication among the libraries required categorizing data behavior. Each library

has its own approach for combining separate data sets into a single result. In order to provide data to each

library within its own format, CrEdit must convert among the various representations. The CAVELib is

very light-weight, as it only manages windows and OpenGL contexts. Coin3D and GHOST have scene

graphs, while VTK organizes data through a series of modules connected in a visualization pipeline.

Analyzing these characteristics was the essential first step before creating the software implementation.

CAVELib creates the graphics window and OpenGL context based on the current operating sys-

tem. CrEdit was initially prototyped on SGI IRIX, but primary development moved to Microsoft Win-

dows 2000 once the PHANToM become available for introducing haptics. Additional development

occurred using MacOS X. The CAVELib created the platform specific graphics window using the X

Window System, Microsoft Foundation Classes, and Cocoa Framework. Beyond window management,

the CAVELib also calculates and maintains the camera projection matrix based on magnetic tracking

information. The CAVELib thus manages the following reponsibilities:

• Create all operating system windows

• Create and maintain the OpenGL graphics context

• Maintain the OpenGL projection matrix

• Maintain the OpenGL model matrix

• Report head and hand tracker positions and orientations
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While the CAVELib handles all projection and viewport information, OIV manages the graphics

rendering. OIV also serves as the central data representation, as its scene graph provides an ordered

structure that may be easily read to and from the hard disk. As the central data representation, OIV’s

duties are essential:

• Represent all data as scene graph geometry

• Load scene data to and from the disk

• Render the scene graph using the CAVELib projection matrices

• Unify the various coordinate systems visually

• Update to reflect to user interactions

GHOST controls the PHANToM, and in doing so creates its own thread for the haptic servo loop.

This thread maintains a 1000 Hz update frequency to provide consistent haptic rendering. GHOST’s

responsibilities may be summarized as follows:

• Mediate low-level PHANToM hardware communication

• Manage haptic control thread

• Represent geometry from the haptic scene graph

• Report PHANToM position, orientation, and stylus button

VTK’s primary responsibility is applying implicit functions to interactively created geometry. Mak-

ing the OIV scene graph geometry available to the VTK pipeline requires a conversion process. This
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conversion makes available the many visualization algorithms present within VTK, and it also lets VTK

apply operations directly within its own pipeline.

• Convert OIV geometry for processing within the VTK pipeline

• Apply implicit functions to geometry

• Convert the VTK pipeline into OIV geometry after processing

Defining these libraries’ responsibilities was the essential first step before designing CrEdit’s soft-

ware architecture. Because each library has a different set of capabilities, it was important to identify

how each library would interact with the data.



CHAPTER 4

METHODOLOGY

The software techniques used in this research provide methods for integrating the different software

components. This section describes the methodology integrating the different software libraries into the

cranial implant application.

4.1 Software Integration

Several software components integrate the CAVE, OIV, GHOST, and VTK libraries. The libraries’

different strengths cater to different responsibilities required by the application. Because each library

has its own data representation, producing conversions among them requires examining how best to

share information. Each library fills a unique role within CrEdit’s overall design, and those roles must

interplay with each other in order to provide the best combination of the capabilities.

As the library with the most comprehensive collection of classes and data structures, OIV provides

the core representation. OIV provides classes for scene processing, dynamic hierarchy traversals, ge-

ometric primitives, user interaction, and event handling. None of the other libraries can offer such a

comprehensive array of capabilities, but CAVELib, GHOST, and VTK do provide functionality unavail-

able in the standard OIV API. As CrEdit moves data among the CAVELib, GHOST, and VTK libraries,

it relies on OIV to serve as the unifying library. Therefore, most of the additional classes that have been

designed communicate only with OIV. The OIV scene graph is the central data repository.

35
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4.1.1 OIVAppShell

Open Inventor renders graphics using view information obtained from an SoCamera node placed

within a scene. This node sets up the camera’s location and frustum, but it is not well suiting for use

in CAVE-like immersive environments. The CAVE contains multiple screens that require their own

projection parameters. OIV encapsulates scene graph traversals into actions. A SoGLRenderAction

traverses the scene graph for OpenGL rendering. This action class assumes that certain structures are in

place within the scene graph, and OIV provides a meta-class to manage a scene for rendering.

The OIV SoSceneManager class wholly manages a single scene graph. However, SoSceneManager

relies on a single SoCamera node to generate the perspective projection. As an application applies its

SoRenderAction, the SoCamera node provides the appropriate OpenGL viewport functions. The OIV

scene graph may only contain a single active camera node. This restriction complicates rendering the

same scene graph to multiple displays, since each display requires its own camera viewing the same

scene graph. Because the CAVELib calculates the OpenGL matrices itself, the OIVAppShell class sets

up that information in the SoGLRenderAction state. This implementation functions identically to the

SoCamera node by setting up the appropriate state information. The TGS Open Inventor manual (TGS,

Inc., 2002) demonstrated the general requirements for setting up state information. The key steps may

be summarized as follows:

• Use CAVEGetViewport() to fetch the viewport parameters.

• Initialize the SoGLRenderAction with the results.

• Use CAVEGetPosition() for the eye position.
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• Use CAVEGetVector() for the eye viewing direction.

• Use CAVEGetProjection() for the projection matrix.

• Use glGetFloatv() to fetch the current GL MODELVIEW MATRIX

• Use glGetFloatv() to fetch the current GL PROJECTION MATRIX

• Set the corresponding state variables.

As far as rendering is concerned, these steps complete the link between the CAVELib matrices and

the OIV render traversal. The CAVELib provides the dynamically updating viewport and projection

matrices, and OIV uses those parameters for rendering the structured scene graph. This approach takes

advantage of OIV’s ease of programming while maximizing the CAVELib’s projection management.

4.1.2 OIV-GHOST Integration

Open Inventor and GHOST both store data in scene graphs containing varying node types, and

making the two libraries interact demands careful management. Open Inventor includes textures, shapes,

transformations, manipulators, and cameras. Although Open Inventor allows lateral state inheritance

during scene traversal, GHOST only allows top-down inheritance. Open Inventor also allows the same

node to appear multiple times in a scene graph. GHOST prohibits this repetition. As described by

(Wang, 1999), conversion between OIV and GHOST requires maintaining separate scene graphs.

These structural differences are most important for transformations. Open Inventor stores transfor-

mations as matrices within nodes. Multiple SoTransform nodes result in accumulated transformation

matrices. GHOST’s gstSeparator nodes contain a single transform matrix. Storing multiple transform
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matrices requires chaining gstSeparators. Software must manage changes in either scene graph and

reflect those changes in the other representations.

4.1.3 coinevents Library

Coin3D implements most of the original OIV API. However, OIV targets 2D mouse-based user in-

teraction within a window. It does not handle 3D events containing position and orientation information.

The CAVE’s tracking devices report 3D positions and orientations. GHOST reports the PHANToM’s

3D position and orientation as well. Exploiting the similar representations allows programming for a

single type of user interface event regardless of the originating device.

The Inventor Toolmaker (Wernecke, 1994b) details OIV’s object-based event paradigm. Rather than

functionally polling devices and responding to events, an OIV application generates events and passes

them into the scene graph. Event-handling via SoHandleEventAction thus becomes another type of

traversal similar to OpenGL rendering. The idea is that nodes within the scene graph respond to events

rather than application specific source code.

Event generation responsibility falls upon the application. Typically OIV GUI widgets capture these

events based on operating and window systems. The CAVELib creates CrEdit’s windows, so the ap-

plication must manually generate events. Figure 9 illustrates how CrEdit generates events for passing

throughout the rest of the application. SbTrackerInfo encapsulates tracker position and orientation in-

formation. To fit within the event paradigm, the coinevents library provides the SoTrackerEvent class.

The library stores button press and release events using SoControllerButtonEvent objects.
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WandController

HapticController SoControllerButtonEvent

SoTrackerEvent

CrAvatar

CrTool

Figure 9: The controller classes generate custom Coin3D user interaction events for uniform handling
by other classes.

4.1.4 vtkoiv Library

The Visualization Toolkit executes a pipeline that performs a series of filters on data sources. VTK

refers to its visualization result objects as actors. As VTK does not provide a scene graph, Open Inven-

tor integration requires implementing collaboration classes that move data between the two libraries.

Two classes, vtkOIVSource and vtkActorToIV, serve as the bridges between the VTK pipeline and the

Open Inventor scene graph. Conversion from VTK to Open Inventor is based on Paul Rajlich’s VTK to

Performer (Rajlich, ) implementation. An application assembles VTK modules into a pipeline. The con-

nections between these modules define the visualization parameters and behaviors. Once executed, the

pipeline generates visual results into a vtkActor object. This object contains the visualization geometry

and materials.
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points lines polys strips

VTK Pipeline vtkActor

Figure 10: vtkActorToIV converts a vtkActor into an OIV SoShapeKit with geometry duplicating the
actor’s points, lines, polygons, and triangle strips.

The first class, vtkOIVSource, converts Open Inventor geometry to a data source at the beginning

of VTK’s pipeline. This conversion process makes any geometry contained in the OIV scene graph

available as input for VTK operations. The defect and implant tools described in sections 4.3.2 and

4.3.3 rely heavily on this capability, as it leverages OIV’s interactivity with VTK’s geometry process-

ing. CrEdit plugs vertex-based Open Inventor geometry directly into the VTK pipeline. When VTK

executes the pipeline, it assembles the visual representation of the result into a vtkActor. The actor

object encompasses all geometry and rendering options as configured in the pipeline.

Converting VTK’s visualization geometry back to the OIV scene graph falls as a responsibility to the

second class, vtkActorToIV. vtkActorToIV processes the resulting vtkActor to extract its geometry. It

converts the resulting triangles and materials into an Open Inventor scene graph. This processing makes

available VTK’s comprehensive algorithms while retaining Open Inventor scene graph organization.
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The conversion algorithm is applicable to integration between VTK other scene graph libraries (Patrick

Muller, personal communication, Dec 2003).

4.1.5 QAvatar Library

In a tele-immersive application, users require visual representations of other participants in the

shared environment. Avatars should convey essential information about the identity and actions of their

users. EVL avatars typically include several key pieces of information. First, avatars have unique names

identifying themselves to other users. Second, tracking information allows avatars to represent where

their users are within the environment. For CrEdit, this tracker information includes the following: the

head position and orientation in world coordinates; the wand position and orientation; and finally, the

PHANToM position and orientation. QAvatar is designed to provide several key improvements over the

previous avatar implementations:

• Cleanly separates networking implementation from the data requirements.

• User subclasses are not as tightly dependent upon each other.

• Drops notion of callbacks and instead notifies individual objects.

• Very effecient server uses threads and signals to reduce CPU load.

• Easily configures across platforms using CMake.

Once the avatar data packets are determined, it is essential to examine how they are sent. The

QAvatarManager’s self avatar stores the data buffers, but the application must fetch the appropriate data

from their sources. Consider the approach used for previous Performer avatars, in which multiple files

called CAVEGetPosition() whenever it was needed. There were a lot of local values stored in disjointed
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source code locations. Using the CAVEGetPosition() calls from anywhere in the code is not a clean

design. Although this function accesses shared memory maintained by the CAVELib, the application

treats this data in a globally accessible manner. Also, the PHANToM does not operate through the

CAVELib. CrEdit requires a consistent approach to reporting positions to other avatars. The wand

and PHANToM already provide tracking information via CrController classes. The SoTrackerEvent

contains all the required information, and all the CrTools already respond to those events for doing all

interaction. The avatars update by responding to the same events.

Using the event model provides a consistent flow of information. Rather than having various parts

of code querying tracker information, a better approach maintains a consistent data flow. The tracker

information is grabbed once, and it’s automatically sent to all pertinent components of an application

on a per-frame basis. The head tracker is not attached to any classes in the source code, but it can still

be easily packaged into a tracker event. The QAvatar library integrates an event-observation model with

existing avatar concepts.

QAvatarManager

QAvatarListenerQAvatarFactory QAvatar

1

1

1

*

1

*

Figure 11: QAvatar library classes.
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The main avatar class manages three buffers for aux, hello, and tracker data. It knows the specifics

about the data that is inserted into those buffers, and subclasses must implement methods to pack and

unpack any specific data to and from those buffers.

One way to remove coupling between concrete manager and avatar classes is to use the Factory

Method design pattern. This pattern encapsulates instantiation within a separate object. By creating

different factories, different concrete avatar classes may be created. The key advantage to this approach

is that a base manager class can easily create instances of concrete avatar subclasses.

The old code triggered C callbacks when responding to network messages. I use a modification

of the Observer Pattern that is a less generic. The Observer Pattern typically uses a “pull” approach

in that Observers must request information from the Subject. This class “pushes” the data within spe-

cific notification methods. Listener classes respond to those messages without having to request state

information from the notifier. Information may still be requested from the avatar object to extract buffer

information.

This class manages the networking between multiple users. It creates the hash tables that map

multiple users to local avatar objects. Messages are sent to a server by querying its own “self avatar.”

This localizes all representation within avatar objects. The manager does nothing more than manage

network communication. Any listeners attached to the manager are notified when new messages arrive.

The application’s QAvatarManager could be a CrControllerObserver. When the controllers are up-

dated, their SoTrackerEvents will propogate to the QAvatarManager via CrControllerObserver::handleEvent().

However, using CrControllerObserver will not work for receiving avatar information. This class oper-

ates on a 1:1 ratio. There is only one CrController observered by a single CrControllerObserver. A
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CrController is still a Subject, so the user’s own CrAvatar instance can still be an Observer of the con-

troller device. This allows the avatar to easily respond to movement events regardless of whether they

originate from the wand or the PHANToM.

4.2 Application Design

This section describes the developed CrEdit classes. Each application component had to provide

specific methods for sharing information among the software libraries and their different data represen-

tations.

The user specifies the environment parameters into a text configuration file. The application’s CrEd-

itConfig class parses through these files and initializes the available models and images. The config-

uration file also provides the user name and data identification. These parameters associate the given

environment options with a given set of data for a single user. This configuration allows creating separate

configuration files for each user or each set of parient data.

Figure 12 contains a sample configuration file excerpt. The PATIENTID identifies the data, and the

application uses its value for networking management. The file also provides a string USERID for shar-

ing the user’s name with other participants within the virtual environment. When collaborating, CrEdit

connects to the remote server and port specified by the SERVER parameter. Providing these options

through a text file make it easy to configure the basic paramegers for the environment. An essential pa-

rameter is the PHANTOMOFFSET parameter. This setting contains the translation offset, described in

3.3.3, that provides the coordinate system transformation from the CAVELib to the PHANToM device.

Force feedback is a key feature for using PARIS, but remote users may not have the required hard-

ware. Interaction must still be available with only traditional tracking devices. CrEdit abstracts the
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PATIENTID VisibleHuman
USERID Chris
SERVER laurel.evl.uic.edu 7000
PENCILCOLOR 0.1 0.8 0.7

# In cradle: -0.0767584 -3.94836 0.00686898
# From floor: 0 29.75 26.25
PHANTOMOFFSET 0.0 33.63 -21.19

SKULLFILE data/VisibleHuman_skull.iv

REFIMAGE data/implantplacement.sgi
REFIMAGE data/sculpttools.sgi
REFIMAGE data/stloutput.sgi

SLICEVOLUME head-ct 268.76 268.76 1
SLICEIMAGE rsna-data/new-png/GEImages-25000.png
...

Figure 12: Sample CrEdit configuration file.

CAVELib and GHOST control devices. A combination of the Observer and Strategy patterns (Gamma

et al., 1995) separates controllers and user interface tools. This facilitated development during instances

when only one controller was available, and it is important to provide a standard definition for device

configuration (Potts, 2000). CrEdit implements interaction within Tools that respond to Controllers.

Figure 13 illustrates the relationships between the Controller and Tool classes. The WandController

and HapticController classes communicate with the CAVELib and GHOST toolkits, respectively. As

devices’ states change, Controllers notify their Observers. Every Tool is a separate Strategy, and each



46

Controller
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Figure 13: Controllers implement device communication for different tool implementations.
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responds uniquely to Controller events. Force feedback responses may be customized within a Tool, but

such behaviors only apply when observing a HapticController.

4.3 Capabilities

Traditionally, the medical modeler utilizes patient and family photographs for reference. These digi-

tal photographs provide visual cues for guiding the implant design. Rather than cluttering the workspace

with numerous photographs, the modeler may instead load digital images directly into the virtual en-

vironment. These images may be moved freely thought the environment. Transparent images may be

positioned directly in relation to the CT data. Because it is not important to feel the images as planar

surfaces, these images are manipulated using the tracked pointer rather than the haptic device.

The design process requires an anatomically correct model of the patient’s skull. Preprocessing

converts the patient’s skull CT data into Open Inventor geometry. Decimation reduces the detail so

that the model will not impede interactivity within the virtual environment. This model is subsequently

converted into the haptic library’s scene graph for haptic rendering and tool interaction.

Due to the smaller size of the PHANToM workspace in comparison to the PARIS visual display,

the Wanda provides interaction with other objects within the environment. By casting a 3D ray from

the Wanda position into the environment, the grabber tool can select and move other objects. This

functionality is secondary to the other tools, all of which focus more directly on the needs for cranial

implant design.

4.3.1 Line Drawing Tool

The first basic tool is a 3D pencil with which the user may mark points of interest. The conversion

of CT data into geometry can result in threshold errors, and the resulting geometry may not accurately
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reflect the structure of the skull. The pencil tool allows users to draw and write freely, indicating those

scanning errors or where to place clamps when attaching the implant to the bone during surgery. A

simple erasure mode deletes the last line drawn by the user.

The line drawing algorithm works within the state enscapsulation paradigm provided by OIV. CrEdit

creates the line shape, but user interactions continue to refine the vertices stored as the shape’s coordinate

attributes. The OIV SoLineSet class represents a set of 3D line strips. The line drawing tool tracks the

current line number as well as the current vertex number within that line. By representing the drawing

within the scene graph, the lines become a persistent state easily accessible in the same manner as any

other geometry.

When executing the VTK pipeline, it’s important for lines to have the same coordinate reference as

the skull geometry. This alignment simplifies setting up calculations involving the lines and skull. A

SoGetMatrixAction calculates the transformation matrix to convert from the PHANToM’s coordinates

into the skull’s coordinates. This transformation is applied to each vertex as the user draws lines. The

entire scene graph under the PHANToM offset is already affected by a transform. Therefore, the action

must be applied to the root of the sub-graph rather than the root of the entire scene.

With the correct values for the points on the line, CrEdit also integrates the lines into two key steps

of the implant design process. These lines are used for both defect and implant generation.

4.3.2 Defect Specification Tool

As described in 2.1.3, defect specification is another important part of the planning process. The

modeler must indicate the boundary of the cranial defect. Using the haptic feedback as a guide, the

modeler can trace along that edge of the bone as depicted in Figure 14. The modeler specifies the defect
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by pressing the PHANToM stylus button to outline the edge. Semi-transparent spheres indicate the vol-

ume included as part of the defect. Portions of the skull within the blue spheres will be extracted. This

process calculates the resulting data based on where the spheres were drawn. Depending on the com-

plexity of the defect, this process could take only a few minutes. Contrasted with the stereolithography

fabrication, extracting the defect in the virtual environment takes less time. The modeler may then begin

designing the implant.

Figure 14: The modeler specifies the defect by interactively outlining its edges..

Defect Specification Steps

- Interactively indicate the edge of the defect.

- Select any additional surrounding areas.

- Apply the boolean geometry operation.
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A key feature of the application design goals was the ability to interactively select the defect area

with a cutting operation. It turns out that VTK does not implement implicit functions with polygon data.

In order to create the behavior desired, the ideal solution involves creating a VTK method for converting

any geometry into an implicit function. That is a gargantuan task requiring extensive mathematical

details. For the cutting operation, there is a feasible workaround.

I have spent a lot of time trying to figure out a way to add implicit distance functions to VTK. It’s

really not trivial to do so. I have gathered quite a bit of documentation about the process, but trying to

get things to work was proving to be quite the complex and time-consuming task. I decided to instead

stick with the VTK implicit primitives.

My first approach involved trying to connect the points of the line with cylinders. One caveat is

that vtkCylinder creates infinite cylinders. There are no caps. The documentation states that if caps are

needed then vtkImplicitBoolean can be used. That makes the creation a little more complex. Each line

segment must then be evaluated against a cylinder, two planes, and two spheres. To make matters worse,

the transformation matrix which can be applied with an implicit function operations on the points, not

the function itself. This means that I have to determine the transformation matrix to get the correct

transform, and then I have to calculate its inverse to apply to the points!

In process of assembling the code for the above approach, I noticed that the radii for the sphers

were almost always much larger than the distance between any two points in a drawn line. Rather than

going through the trouble of positioning planes and cylinders, I could get the desired effect by using

only spheres. The surface results were similar to the desired defect area.
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Figure 15: Defect geometry before and after filling in the edge using a vtkRuledSurfaceFilter.

There was still an obvious problem with the clipping operation. Because CrEdit uses a polygon-

based representation of the geometry, it does not create a solid defect. These problems becomes most

clearly evident after the clipping operation. Without the sense of an object’s interior, the clipping leaves

open edges as shown in Figure 15. After ordering the vertices located along the edges, CrEdit orders

them using a vtkStripper. It subsequently uses a vtkRuledSurfaceFilter to connect the edges and create

the appearance of a solid defect model.

With the addition of the extra steps, the pipeline must execute some separate components. This

branching results in two different geometries. vtkAppendPolyData combines the two pipeline branches,

thus creating the end result as a single geometry object.

Because the VTK-OIV conversion code is written to stand on its own, it returns its result packaged

within a SoShapeKit. Using this collection of nodes would requires minor processing to traverse the

shape kit and extract the geometry. CrEdit directly retrieves lines, triangles, or polygons from the
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output. This specialization allows easy extraction of the geometry that has been output from the VTK

pipeline.

SoVertexShape vtkOIVSource
(converts to PolyData)

vtkActor

vtkClipPolyData
(applies implicit fn)

SoLineSet vtkOIVSource
(converts to PolyData)

vtkImplicitFunction

vtkCutter
(applies implicit fn) vtkStripper vrkRuledGridFulter vtkAppendPolyData

Figure 16: The VTK defect construction pipeline processes the OIV lines and skull geometry.

The VTK defect pipeline integrates OIV and VTK geometry to generate a focused area of the origi-

nal model. As shown in Figure 16, the pipeline begins with two conversions from OIV geometry. First,

CrEdit converts the cranium model into vtkPolyData using the vtkOIVSource class described in 4.1.4.

This process converts the OIV geometry coordinates into vtkPolyData. Second, any lines drawn by

the user with the defect tool must also be converted into vtkPolyData. vtkOIVSource handles the line
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conversion as well. These conversions are the first step in the defect generation process, as they prepare

the data for passing through the VTK pipeline.

The VTK pipeline starts with the two converted geometries. As shown on the left side of Figure 16,

one vtkOIVSource contains the skull’s triangle geometry, and the other vtkOIVSource contains the

lines drawn by the modeler. A vtkImplicitFunction creates collective spheres along each point within

the lines. These are spheres are used for constructive solid geometry, basically defining boundaries for

performing addition and subtraction on the geometry. After VTK finishes processing the pipeline, then

CrEdit converts the resulting vtkActor into OIV geometry containing the defect.

Figure 17: The defect after interactive specification.

The resulting vtkActor, once loaded into the environment as shown in Figure 17, closely resembles

the starting defect model shown in Figure 3.
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4.3.3 Implant Generation Tool

Translating the sculptors’ dexterous work with clay into the virtual environment is a challenging

task. Following previous work demonstrating users’ preferences for volumetric sculpting (Deisinger et

al., 2000), CrEdit implements implant generation through the use of implicit modeling. This approach

is analogous to squirting a tube of toothpaste. For this proof of concept implementation, the implant

generation tool generates polygonal models representing volumetric sculpting techniques.

CrEdit’s implant generation tool builds upon the both the line drawing and defect specification tools.

The tool maintains its own line as the modeler draws, indicating the area that must be filled in with the

implant. The tool’s representation is similar to the other line tools, so the consistency reinforces the

fact that interaction is the same as well. As shown in Figure 18, the white-color implant generation tool

shows an approximate of the implant volume while the user draws in the hole.

Figure 18: After the modeler draws the implant, CrEdit fills in the geometry.
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In order to create the implant geometry, the tool requires lines serving as a skeletal frame for the

volumetric representation. The tool creates a 3D voxel grid within a static boundary volume. This grid

is a 3D lattice structure, and each point in the lattice serves as an implicit function evaluation point.

Each point within the lattice represents a summation of the distance from the closest line. Below the

determined distance radius, the point is considered “inside” the volume; outside the threshold, the point

is considered “outside” the volume. Through the VTK pipeline, CrEdit provides the user with tools for

constructing the skeletal frame for the volumetric representation.

SoVertexShape vtkOIVSource
(converts to PolyData)

vtkActor

vtkAppendPolyDatavtkVoxelModeller vtkContourFilter

Figure 19: The VTK implant generation pipeline.
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The CrEdit implant generation tool executes a VTK pipeline similar to the defect specification tool.

As shown in Figure 19, the pipeline uses the lines as input for distance calculations performed within

the vtkVoxelModeller. The voxel modeller calculates each voxel’s distance from the input geometry.

If the voxel is within a given threshold distance, then the voxel is marked as binary on. If the voxel is

not within the threshold, then the voxel is marked as binary off. This more compact binary storage is

the vtkVoxelModeller’s difference from the vtkImplicitModeller. The use of binary values rather than

distances leads to slight increases in performance as well as reduced data size.

4.3.4 Slice Tool

Following demonstrations of CrEdit and PARIS to GE Medical Systems in 2003 (GE Medical Sys-

tems, personal communication, 2003), development included the ability to view volumetric medical

slice data. The algorithm simply maps a sequence of 2D CT images into a 3D OpenGL texture. Three

slices interactively move through the image data in the axial, sagital, and coronal plane as shown in

Figure 20.

CrEdit updates the slices’ alignment by implementing the Observer pattern. Each time the modeler

touches the skull surface, a touch notification event triggers updating the slices. This notification process

is tied directly into the slice tool, so that tool becomes a mechanism for interactively exploring the 3D

images originally used to construct the skull geometry.

Medical sculptors already use CT data for presurgical planning. Incorporating this information

into the virtual environment provides another resource available within the digital medium. The direct

manipulation of slices is extremely fast, as CrEdit adjusts only the texture coordinates without doing
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Figure 20: The Slice Tool explores image-based medical slices.

any processing on the CPU. The resolution is limited by available graphics memory, but the projected

workspace only provides 1280x1024 pixels.



CHAPTER 5

DISCUSSION

This chapter discusses system evaluation by examining comments from medical experts. This feed-

back provides insight to the needs and desires of the specialists to whom the problem domain is directly

relevant. This chapter also explores several other potential applications of the integrated technology

and software techniques. Through the course of CrEdit development, over forty demonstrations have

been provided. Visitors came from diverse specialties and countries, and their interests indicate a strong

appeal for the haptic augmented environments possible using PARIS.

5.1 Demonstrations

PARIS demonstrations at conferences yielded feedback from professionals in computer science,

radiology, rehabilitation, and other fields. An early version of CrEdit was demonstrated on PARIS

at SuperComputing 2002 in Baltimore, Maryland as shown in Figure 21. Located in the FakeSpace

booth, PARIS drew visualization and supercomputing experts from laboratories and companies includ-

ing NASA, the United States Department of Energy, Apple Computer, SARA, and TGS. Visitors ex-

pressed surprise when they encountered the force feed co-located with the virtual skull graphic, and

many noted how intuitive the system felt.

Following the positive feedback at SC2002, Fakespace requested another demonstration several

months later at the Medicine Meets Virtual Reality 2003 conference in Newport Beach, California.

Attendees included computer scientists, surgeons, medical researchers, and other medical professionals.

58
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Figure 21: CrEdit demonstration on PARIS at SC2002 in Baltimore, Maryland.

This conference showcased cutting-edge applications of virtual reality and simulation technologies for

medicine. Visitors especially liked the large screen, as the enveloping field of view immersed them

into the environment. The head tracking provided a unique capability not available on other systems

including the Reach-In configuration demonstrated in the adjacent booth.

General Electric Medical Systems visited EVL in early 2003, and their interest in CrEdit led to

a demonstration in GE’s Technology Pavilion at the Radiological Society of North America 2003 in

Chicago, Illinois. Over 40,000 attendees visited this conference, and the CrEdit demonstration on

PARIS was a highlight of GE’s demonstrations of innovative technologies.

5.2 Domain Expert Evaluation

CrEdit development took place in tight collaboration with Ray Evenhouse, who was the medical

sculptor in the implant process described in Section 2.1. He noted the advantages of CrEdit as particu-
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larly related to the 3D view, sensory perception, and collaboration potential. (Ray Evenhouse, personal

communication, Mar 2005).

While medical sculptors work with clay and wax, neurosurgeons are more familiar with imaging

technologies such as CT and MRI. They have a higher familiarity with 2D computer images and 3D

reconstructions from those image, and PARIS provides a natural extension of those displays within its

inclusion of stereoscopic presentation. Stereo brings the graphics one step closer to the 3D of the real

world. Head tracking enables taking advantage of motion parallax as a depth cue. The large workspace

is extremely valuable, as it allows placing auxiliary patient or procedure information elsewhere in the

environment. The workspace provides ample room for visual cues that might aid the implant design for

a specific patient.

CrEdit’s haptic force feedback creates a sense of touch that approximates working with physical

objects. The PHANToM stylus shape is similar to many of the sculpting tools used during cranial im-

plant fabrication. Tactile evaluation is essential to the design process. Although sculptors use numerous

photographs as references, the most important evaluation is done by physically touching a model to

examine how it feels. Evenhouse says that students are instructed that, “When it feels right, then it’s

right” (Ray Evenhouse, personal communication, Mar 2005).

Networking could significantly enhance collaboration among all participants in the design process,

including the sculptor, physician, surgeon, as well as the patient. Rather than the technical decisions

made by the sculptor, the patient and surgeon should be responsible for making the critical aesthetic

decisions (Ray Evenhouse, personal communication, Mar 2005). The patient and relatives have more
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direct knowledge of the ideal implant shape. This opportunity for including patients in the process is

unique, and it would more directly involve them throughout the design and evaluation procedures.

Fady Charbel, MD is the head of the UIC’s Department of Neurosurgery. He visited EVL for a

CrEdit demonstration in spring 2004 Figure 23, Appendix A. During his visit, Dr. Charbel noted the

intuitive ease with which he could determine bone thickness. The tactile sensation conveyed the bone

properties in a matter of seconds (Fady Charbel, personal communication, Apr 2004).

Pravin Patel, MD, Chief of Plastic and Maxillofacial Surgery at the Shriner’s Hospital for Children

in Chicago examined PARIS during a visit in April 2003. He noted the unique blend of technologies

as a potential for future work in facial surgery in addition to cranial implants (Pravin Patel, personal

communication, Apr 2003).

Using a digital process allows for easier corrections and changes in course during the design process.

As changes are made to the model, CrEdit could maintain a full history. Working in clay, mistakes can

force sculptors to start over. A digital design process incorporating undo and redo history would allow

faster exploration, and it would eliminate the more time-consuming and expensive steps of the implant

process. If the tools are sufficiently refined, then the collaborators may explore variants of a particular

implant prior to surgery.

5.3 Rehabilitation

The second PARIS was delivered to the Rehabilitation Institute of Chicago’s (RIC) Sensory Motor

Performance Program in May 2003. The Robotics Laboratory investigates physical motor performance,

examining how the human body performs movements to accomplish certain tasks. Integrating PARIS

with a PHANToM 3.0 robot, RIC is applying the techniques described in this thesis to stroke reha-
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bilitation by examining functional skills for daily living (Patton et al., 2004; Scharver et al., 2005).

PARIS provides a large workspace otherwise unavailable, and the PHANToM 3.0 provides a larger

haptic workspace than the PHANToM Desktop used for CrEdit development.

Beyond using a larger PHANToM, the RIC development also includes work integrating PARIS with

the Whole Arm Manipulator (WAM) and HapticMASTER (van der Linde et al., 2002) robotic devices.

These devices are able to generate significantly stronger forces than the PHANToM, an important feature

when working with subjects who might not have full arm strength. The stronger robots can compensate

for the effects of gravity, reducing the muscular effort required to move through the virtual workspace.

These devices have different coordinate systems than the PHANToM, but the procedures developed

using CrEdit still apply.

Explorations of applying virtual reality to rehabilitation are very recent (Sveistrup, 2004), but the

combinations of visual, auditory, and tactile feedback yield diverse opportunities. With the second

PARIS, RIC possesses the unique equipment for pursuing this research using the very same hardware

and software techniques developed for CrEdit.

5.4 Other Potential Applications

CrEdit demonstrations have been shown to David Byrne of the Talking Heads (David Byrne, per-

sonal communication, 2004) and science fiction author Bruce Sterling during his visit to EVL (Goldfayn,

2004). Their positive reactions highlight the interest in applying augmented reality systems like PARIS

to other problem domains.

National Geographic research fellow and paleontologist Paul Sereno examined PARIS and CrEdit

in February 2004 (Paul Sereno, personal communication, Feb 2004). He has been excavating dinosaur
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fossils encased in limestone. The fragile nature of the very thin cranial bones requires investigating

virtual methods. The bone is too delicate to manually separate from the rock. Digital processing would

simplify visually separating the bone from the surrounding rock, thus providing the opportunity for

virtual analysis.

The CT images slices described in Section 4.3.4 were originally developed as part of a demonstration

for GE Medical Systems at the Radiological Society of North America 2003 conference. The company

expressed an interest in applying PARIS as a potential 3D radiology workstation of the future. Rather

than scrolling through 2D images on a display, a radiologist could directly interact in 3D with a patient’s

image data. (GE Medical Systems, personal communication, Mar 2004)

The application of the development techniques used while creating CrEdit to other disciplines

demonstrates the technology’s usefulness. Collocated graphics and haptics within an immersive en-

vironment open avenues beyond CrEdit’s capabilities.



CHAPTER 6

CONCLUSIONS

Developing this application on PARIS revealed several issues with both the hardware and software.

Lessons learned from these experiences are already being incorporated into future research plans.

6.1 Lessons Learned

Through the course of this research, it became clear that additional improvements would be needed.

Several hardware issues revealed themselves during demonstrations and subsequent development. The

first PARIS was a production prototype, and the available hardware revealed several areas for future im-

provement. The software techniques utilized in realizing CrEdit’s implementation worked well enough

to extend to similar projects using different hardware.

6.1.1 Hardware Issues

The PARIS demonstration at Supercomputing 2002 intended to utilize acoustic tracking. The con-

fined area under the mirror created significant feedback to the audio hardware. Software driver limi-

tations prevented solving these complications. Magnetic tracking has been used as a fallback method

while development addresses the acoustic tracking problems.

Magnetic tracking requires a base sensor unit, and that unit is currently mounted under the table at

which the modeler sits. The head and hand are both tracked using magnetic trackers. However, if these

trackers move too close to the sensor unit, then interference negates tracking. As a result, the wand
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sensor cannot be used directly in front of the modeler. The PHANToM is available in this area, but this

limitation remains something to address.

Another drawback to this sensor position is that any table movement will offset the measurements

for the entire environment. By definition, augmented reality depends on registration of real and virtual

objects (Azuma, 1997). Any table or mirror movement compromises calibration. Future hardware

designs must minimize any interference and maximize stability.

The project image resolution remains an issue. PARIS is built to include a high-end projector, yet it

only exhibits a maximum 1280x1024 pixel resolution. For image data including CT scans, significantly

higher resolution would be ideal. Higher resolution allows seeing more information on the projected

display, and that’s especially important for image-based medical information. The cost of the projector

also presents a barrier to the initial cost of the system. Projector capabilities must improve in terms of

resolution and affordability.

6.1.2 Software Techniques

Identifying the common capabilities of the multiple libraries facilitated application development.

Managing separately the haptic and graphic representations reduced development by relying on existing

libraries.

These software techniques are being applied by the Rehabilitation Institute of Chicago to design

stroke rehabilitation software using the second manufactured PARIS(tm) (Patton et al., 2004). As de-

scribed in 5.3, the RIC research integrates the larger PHANToM 3.0 for a tremendously increased haptic

work area. Other devices such as the WAM and HapticMaster do not have the high-level capabilities

provided by GHOST, but they do provide lower-level communication. The low-level device communi-
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cation required by these additional devices is not available in the current version of GHOST, but it is

available in SensAble’s OpenHaptics toolkit. Future development taking place at this lower-level will

require similar abstractions between the haptics and graphics representations.

The tool abstraction described in 4.2 provides a high-level way for accepting 3D user interaction.

CrEdit used this abstraction excessively during development and testing. It was also essential when the

PHANToM was unavailable on a particular development machine.

6.1.3 Defect and Implant Specification

Using the traditional process, manufacturing a stereolithography defect model can take several hours

and cost almost $2000. Using PARIS, the user may rapidly specify the defect interactively. Depending

on the complexity of the injury, the medical modeler can outline a defect in less than one minute.

Implant modeling requires further development. Using VTK is convenient, but it is slow and does

not fully integrate with the notion of a scene graph

6.2 Implications for Future Research

Full effectiveness cannot be determined without testing with real patient data. Volume sculpting

requires further attention now that developers have obtained familiarity with the hardware. As part

of a three-year research grant, evaluation will compare digital models against traditionally constructed

models. The digital tools will be refined continuously. Over the next two years, EVL and the VRMedLab

will implement and profile the networking between PARIS and other immersive display systems. A new

PARIS with tracking and hardware improvements will also be built as part of this research.

Separating computational resources, we will explore how best to take advantage of clustered com-

puting. Only Open Inventor and the CAVELib are tied directly to the graphics hardware. VTK and the
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GHOST SDK, both of which primarily perform calculations, do not require graphics processing. These

libraries may run on high-performance processors. Clusters may allow partitioning the computational

tasks across multiple machines. Intelligently managing computer resources could enable multiple users

to securely share medical data, analysis material, evaluation sessions, and more actively steer implant

construction.

Figure 22: CrEdit environment with simulated patient information systems.
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The consultation components can be applied to any area where medical professionals would benefit

from a rich visualization environment combined with superior teleconferencing tools. We will explore

these other areas in the third year of the grant. Figure 22 depicts the environment enhanced with potential

patient information and medical CT slices. These capabilities were demonstrated to radiologists at the

Radiological Society of North America’s 2003 conference. There is interest in utilizing this system for

the pre-operative consultation and planning related to reconstructive surgery. As network capabilities

improve, the application can transmit more data to more clients. Future research hopes to determine

definitively that utilizing a networked virtual reality system will minimize the consultation time and

cost to the patient, surgeon, and manufacturer.

6.3 Contributions

CrEdit’s development streamlined the process of integrating a haptic force feedback device with an

projected-based augmented reality display. Focusing on cranial implant design, the development process

identified needs and capabilities. After identifying how available libraries addressed these issues, CrEdit

incorporated intercommunication among these different libaries. As each library tended to its own

responsibilities, their strengths contributed to the overall design.

The collated graphics and haptics are an essential combination. PARIS is a unique display due

to its large, see-through mirror. Integrated haptics required some trial and error, but the process was

eventually refined to a specific series of steps. After calibrating the screen, measure the device origin,

and storing configuration values, the system presents a convincing illusion of graphics and haptics within

the workspace (Scharver et al., 2004a; Scharver et al., 2004b).
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CrEdit’s design separates the hardware devices from the software tools. The controller and tool

implementation allows using the software with both the PHANToM and the Wanda. This abstraction

proved extremely useful during development, as the PHANToM hardware was not required for quick

testing. Additionally, this abstraction significantly eased the integration of the HapticMASTER with

RIC’s PARIS, a process urgently completed within three days. This flexibility would not have been so

easily accomplished without CrEdit’s foundation.

This research establishes the foundation for a grant from the National Institutes of Health. NIH

grant N01-LM-3-3507 “A Tele-Immersive System for Surgical Consultation and Implant Modeling,”

defines goals to integrate graphics, haptics, and networking to create a distributed volumetric modeling

application for tele-immersive cranial implant design. CrEdit directly led to this grant award.

In summary, this thesis presents the following contributions:

• Collocates the PHANToM’s haptics with immersive 3D graphics

• Abstracts controller devices, thus allowing interaction and programming flexibility

• Integrates CAVELib, OIV, GHOST, and VTK libraries following an organized data flow among

their different geometry representations

• Loads patient medical data into the 3D environment

• Provides VTK pipelines for cranial defect and implant generation

• Implements prototype tools according to the needs of medical sculptors designing cranial implants

• Establishes a foundation for future research including tool refinement and enhanced tele-collaboration



70

As described in the previous chapter, the contributions contained within this thesis extend beyond the

problem domain of cranial implant design. The development paradigm is applicable at sites possessing

the other PARIS installations. The prototype system at EVL serves as the main development system for

the NIH research grant, and it will also be used to explore alternative tracking methods. The second

PARIS is actively involved with stroke rehabilitation research at the Rehabilitation Institute of Chicago,

and researchers are integrating that system with other powerful robotic devices. Finally, a third system

at the Illinois Technology, Research, Education, and Communications Center (TRECC) runs CrEdit as

a demonstration application. These systems all include the software developed for this thesis, and the

techniques proposed herein establish an example for future application development.
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Appendix A

LETTER FROM FADY CHARBEL, MD

The attached letter shown in Figure 23 was received following a visit to EVL including a CrEdit

demonstration. As the surgeon who performed implants in the original UIC implant process, his reac-

tions to the system are particularly encouraging.
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Appendix A (Continued)

Figure 23: Letter from Fady Charbel, MD, head and professor, UIC Department of Neurosurgery.
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Appendix B

BUILDING AND RUNNING CREDIT

CrEdit has been built using several different libraries that provide graphics, haptics, and networking

capabilities. Building CrEdit from source code requires several toolkits, but the configuration process is

one that works in a cross-platform manner. This approach made the transition from Windows to Linux

very easy. The libraries and their versions are as follows:

• CAVELib 3.1.1

• Coin3D 2.3.0 with thread-safety enabled

• GHOST 4.0

• QUANTA 0.4

• VTK 4.5

These libraries should be installed and available to the compiler. The source has been tested on

Windows 2000 with Visual Studio 6, Red Hat 9 with GCC 3.3, and MacOS X 10.3 with GCC 3.3. The

CrEdit source code configures using CMake from Kitware.

B.1 Source Organization

The source code is organized into several directories. This organization makes it easier to keep

source code separate from application models and other data. The libraries described in section 3.4 are

designed for inclusion with other projects, so they may be built independently from the main source

code.
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Appendix B (Continued)

coinevents contains the 3DUI events library

qavatar contains the QUANTA avatar library

vtkoiv contains the VTK-OIV integration library

CrEdit contains the application sources and data files

data stores all medical skull and image data used during development

models contains 3D models used by the application source code

rsna-data contains image slides originally added for demonstration at the RSNA conference

src contains the CrEdit source code

Everything configures relative to the very top directory containing the contents listed above. This

organization was required due to the the way CMake handled subdirectories. This limitation is no longer

in place, and recent development versions of CMake allow for better structuring of the source code.

Written by the same authors as the Visualization Toolkit, CMake is a cross-platform make utility.

Its strength is that it uses text files to generate platform-specific build files. CMake creates makefiles

for UNIX systems, and it creates Visual Studio Project files for Windows. The GUI allows changing

paths and variables very easily. CMake also supports out-of-source build directories, thus preventing

compiled object and build files from polluting the source tree. The first step of the configuration process

is to specify those two directories to CMake. The CMake GUI provides a convenient interface for

selecting these two locations.

CMake uses a single CMakeLists.txt file to configure the entire source tree. CrEdit includes several

additional CMake modules for finding OpenGL, CAVELib, GHOST, and Inventor libraries. One must
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Appendix B (Continued)

specify to CMake the appropriate include and link locations if the libraries are not available in their

default locations. CMake then generates the appropriate files for compiling the CrEdit and its required

libraries. Two specific options are unique to the software interactions. First, COIN DLL must be set on

Windows systems if Coin3D is compiled as a dynamic link library. Second, USE STD NAMESPACE

manages the use of ANSI namespaces with C++ headers. GHOST includes its own C++ Standard Tem-

plate Library, and namespaces cause conflicts when compiling CrEdit on Windows. However, building

CrEdit on Linux does require the use of namespaces.

B.2 Running CrEdit

After configuring and compiling the source code, one needs to make sure that a configuration file is

available. This configuration file must include the required information discussed in Section 4.2.

The build process generates the executable, but the data files must be available in the current working

directory path. In addition to the configuration file, any associated data must be available. Typically,

this requirement is satisfied by making certain that all application models and data files are available

from the same working path. One may then execute CrEdit from within that directory. These steps will

ensure that CrEdit may load everything properly into the virtual environment.

1. Start trackd to run the tracking system.

2. Change to the main CrEdit directory.

3. Execute CrEdit by specifying the path to the built executable along with the desired configuration

file: (buildPath)/credit.exe VisibleHuman.config
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Appendix B (Continued)

With tracking up and running, CrEdit will display with the correct registration on PARIS. The hap-

tics and graphics alignment might need periodic adjustment, but resolving any errors requires recali-

brating the display system. Refer to the trackd and CAVELib documentation for proper configuration

of those software components.

While running CrEdit, one may use the want buttons to cycle through the available tools. The

PHANToM stylus activates tools which use the stylus for interaction, but several key commands trigger

defect generation. These extra interactions are summarized as follows:

Wand button1 cycle backward through PHANToM tools

Wand button3 cycle forward through PHANToM tools

Wand button2 + button3 reset all object locations

Keyboard S key show the skull model, sometimes hidden after defect generation

Keyboard F1 key generate the defect mesh by calculating defect tool geometry calculations

One manipulates the primary skull geometry using the PHANToM, but the Wand provides the ability

to select and move other objects in the scene. The light sources, reference images, and other models

may be moved freely through the environment. The PHANToM remains the primary interaction device

for the skull and modeling tools.
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