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ABSTRACT 

The three-dimensional (3D) organization of chromatin plays a critical role in regulating gene 

expression and genomic processes like DNA replication, repair, and genome stability. Although 

these processes occur at the individual-cell level, most chromatin structure data are derived 

from population-averaged assays, such as Hi-C, obscuring the heterogeneity of single-cell 

conformations. To address this limitation, we developed a polymer physics-based modelling 

framework, the Sequential Bayesian Inference Framework (sBIF), that deconvolutes bulk Hi-C 

data to reconstruct single-cell 3D chromatin conformations. To support a broader use of sBIF, 

we created ChromPolymerDB, a publicly accessible, high-resolution database of single-cell 

chromatin structures inferred by sBIF. The database contains ~108 reconstructed 5 kb-resolution 

single cell structures, spanning over 60,000 genomic loci across 50 human cell types and 

experimental conditions. ChromPolymerDB features an interactive web interface with tools for 

3D structural analysis and multi-omics integration. Users can explore associations between 

chromatin conformation and gene expression, epigenetic modifications, and regulatory 

elements. The platform also supports comparative analyses to identify structural changes across 

cell types, developmental stages, or disease contexts. ChromPolymerDB offers a unique resource 

for researchers studying the relationship between genome architecture and gene regulation, 

and for advancing comparative 3D genomics. ChromPolymerDB is available online 

at https://chrompolymerdb.bme.uic.edu/. 

 

INTRODUCTION 

The three-dimensional (3D) organization of chromatin plays a central role in regulating 

virtually all genomic processes, including gene expression (1–3), DNA replication, and repair (4). 

Chromatin architecture underpins the establishment and maintenance of cellular identity and is 

dynamically remodeled during biological transitions such as differentiation (5–7), development 

(7–9), and disease progression (10–14). Advances in chromosome conformation capture 
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methods - particularly Hi-C - have enabled genome-wide mapping of chromatin interactions, 

revealing that genome function is hierarchically organized across length scales, from inter-

chromosomal compartments to topologically associating domains (TADs) and fine-scale 

chromatin loops (15–25). 

Despite these insights, most Hi-C datasets are derived from bulk populations of ~106 cells 

(16), yielding ensemble-averaged contact maps that obscure cell-to-cell variability (26). 

Although gene regulation and genome function occur at the level of an individual cell, bulk Hi-C 

does not resolve the precise chromatin architecture within any one cell (27–30). Imaging studies 

have confirmed substantial heterogeneity in chromatin conformation across single cells (21, 31), 

and while single-cell Hi-C methods have emerged to address this limitation (27, 28, 32–34), they 

remain constrained by extreme data sparsity. The limited number of contacts detected per cell 

prevents reliable reconstruction of genome-wide 3D structures, particularly at the resolution of 

TADs and loops (35–38).  

To overcome these challenges, we developed the Sequential Bayesian Inference Framework 

(sBIF), a polymer-physics-based approach for inferring single-cell chromatin conformations from 

population Hi-C data (39). sBIF employs a deep-sampling strategy with minimal physical 

assumptions and no adjustable parameters. It has been validated across species, from 

Drosophila to human (23, 39–41) demonstrating its ability to reproduce bulk Hi-C patterns while 

capturing chromatin heterogeneity at the single-cell level. 

To facilitate the broader application of this approach, we established ChromPolymerDB, a 

high-resolution, open-access database of single-cell 3D chromatin structures reconstructed 

using sBIF. The resource includes ~108 structures at 5 kb resolution, spanning over 60,000 

genomic regions across 50 human cell types and experimental conditions. ChromPolymerDB 

offers a user-friendly web interface equipped with built-in tools for interactive 3D visualization, 

multi-omics integration, and structural analyses (such as 3D locus distances), within individual 

samples and across samples, as well as com companion off-line analysis code (such as clustering, 

TAD radius of gyration, and multi-body contacts). By enabling cross-modality comparisons with 

transcriptomics, epigenomics, and imaging data, the database facilitates the discovery of 
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structural rewiring events, such as enhancer hub formation or loop remodeling, that can occur 

during cellular transitions or between disparate cell fates. By facilitating access to and analysis of 

3D chromatin architectures, we thus anticipate that ChromPolymerDB will prove to be a useful 

resource for investigations of chromatin-gene regulation relationships and comparative 3D 

genomics.  

 

MATERIAL AND METHODS 

Data Collection 

        To generate ChromPolymerDB, we collected 50 high-quality human Hi-C samples from 

three major public databases: the 4D Nucleome (4DN) Data Portal (42) (n=19), the ENCODE 

Portal (43, 44) (n=18), and the Gene Expression Omnibus (GEO) (45) (n=13). To provide data that 

might be useful to most researchers, the following criteria were used for sample selection: (1) 

human origin; (2) sufficient sequencing depth to achieve 5 kb resolution; and (3) homogeneous 

cell populations. In some cases, we merged multiple datasets generated under largely similar 

experimental conditions to achieve higher resolution. Overall, our dataset includes 36 normal 

cell types (both primary and cultured cells) and 14 disease-associated cell types, covering 10 of 

the 11 major human physiological systems (except the urinary system). 

Preprocessing Hi-C Data for Modeling 

        Following a workflow similar to the original sBIF protocol (39), we applied a four-step pre-

processing pipeline to prepare input regions for structural modeling: acquisition of .hic files, TAD 

boundary identification, TAD-based segmentation of modeling regions, and filtering sparse 

regions.  

1) Acquisition of .hic files: Whenever available, hic files aligned to the hg38 reference 

genome were directly downloaded from the source database. If only hg19-aligned .hic 

files were provided, we converted them to hg38 using HiCLift (46). In cases where no .hic 

files existed, we generated them from raw fastq read files as described in the 

Supplementary Methods. 
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2) TAD boundary calling: We identified TAD boundaries using OnTAD (47) at a 50 kb 

resolution with relaxed parameters (penalty=0, ldiff=0.25, lsize=2, minsz=3 and -

maxsz=80) to ensure broad genome coverage for downstream structure modeling. Level 

1 (outermost) TADs were selected as modeling units as they generally encompass 

complete domain structures. 

3) TAD-Based Segmentation of Modeling Regions: Modeling regions were defined by 

outermost TAD boundaries. Small TADs (<1Mb) were merged with neighboring domains 

if the combined size did not exceed 3.5 Mb, avoiding regions that are too small for 

reliable modeling. 

4) Filtering sparse regions: Regions with extremely low contact frequency, defined as < 1% 

of bins containing any contacts, were excluded. All contacts within such regions were 

removed from further analysis to improve modeling accuracy. 

Single-cell 3D Structure Reconstruction  

        We used CHROMATIX (48) to identify statistically significant folding reconstitutive (FoldRec) 

Hi-C interactions at 5 kb resolution. These interactions were used both for structural modeling 

and for visualization, enabling comparison with experimental Hi-C data (of similar resolution) 

and supporting downstream functional analysis. To generate sample-specific background 

models, we applied a fractal Monte Carlo approach to simulate large ensembles of chromatin 

fibers (500,000 conformations per sample) confined within the nuclear volume. These null 

ensembles incorporated only polymer physics and nuclear volume exclusion constraints, with 

nuclear sizes listed for each sample in Supplementary Table (49–74). Using a Bag of Little 

Bootstraps resampling approach, we derived null distributions of random chromatin contacts. 

Experimentally measured population Hi-C contacts were then compared to their corresponding 

null distributions, and interactions with a p.adj < 0.05 were retained as statistically significant 

FoldRec contacts. Single-cell chromatin structures were reconstructed from these FoldRec 

interactions using sBIF (39), which applies sequential Bayesian inference. For each dataset, we 

generated an ensemble of 5000 single-cell chromatin conformations. Within each model, two 

beads were considered to be in contact if their Euclidean distance was less than 80 nm 

(interpreted as a spherical distance threshold), consistent with prior studies (23, 39). 
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Database Architecture and Web Implementation 

        ChromPolyerDB is implemented using a modern architecture. The backend is built with 

Flask, which provides RESTful APIs and handles core business logic. The frontend, developed in 

React with the Ant Design component library, delivers a consistent and responsive user interface. 

Data visualization is powered by D3.js for interactive 2D charts, an embedded IGV.js (75) genome 

browser provides track-based views of sequencing signals and annotations directly in the app, 

enabling intuitive exploration of biological datasets, and by Three.js for an in-browser 3D 

chromosome viewer that supports real-time interaction with structural models.  All primary data 

is stored in a PostgreSQL database, enabling complex relational queries and scalability to large 

datasets. To improve performance, Redis is used as an in-memory caching layer, minimizing 

latency for frequently accessed data. 

 

RESULTS 

Database overview 

        ChromPolymerDB is a comprehensive, publicly accessible resource that hosts large-scale, 

high-resolution, single-cell 3D chromatin data, coupled with an interactive web interface for 

structural analysis and multi-omics integration capabilities (Figure 1). The database contains 

~108 individual chromatin conformations reconstructed using sBIF, spanning more than 60,000 

genomic regions at 5 kb resolution across 50 human cell types and experimental conditions 

(Supplementary Table S1). These datasets encompass 36 normal, healthy cell types and 14 

disease samples, collectively representing 10 of the 11 major human physiological systems 

(excluding the urinary system). Beyond data access, ChromPolymerDB offers a suite of analytical 

tools, including locus-specific 3D visualization, structural measurements, and multi-omics 

integration, enabling both detailed single-sample interrogations and comparative analysis 

across cell types and conditions. 
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Figure 1. Overview of the ChromPolymerDB database. The example illustrates FoldRec-identified 

interactions and experimental Hi-C data in Calu3 cells, representative single-cell chromatin 

conformations from Calu3 and IMR90 cells, and calculated distance distributions between 

genomic elements of interest. 

 

Single-Sample Insights: Chromatin Architectures at the MYC Locus in Human Lung Cancer 

Cells 

        ChromPolymerDB enables detailed analysis of 3D chromatin organization within individual 

samples, supporting spatial regulatory investigations. Users can query statistically significant 2D 

folding interactions (FoldRec, see Methods) and reconstruct complete 3D genome structures.  

        As a case study, we analyzed the MYC locus (chr8: 127,200,000 – 127,750,000 bp) in Calu3 

lung adenocarcinoma cells, which exhibit high MYC expression. MYC, a well-known oncogene, is 

regulated by multiple upstream enhancers (76–78) and plays a central role in tumor initiation 

and progression (79–81), making it an ideal target for chromatin architecture studies. Before 

reconstructing of single-cell 3D chromatin structures, we examined 2D Hi-C contact maps and 
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epigenomic profiles to identify putative functional cis- regulatory elements. Users can define 

regions of interest by genomic coordinates or gene name (Figure 2A). ChromPolymerDB then 

displays the experiment-derived Hi-C heatmap of that locus (lower triangle) and CHROMATIX-

derived FoldRec interactions (upper triangle) (Figure 2B). In Calu3 cells, the FoldRec interactions 

reveal contacts between the MYC promoter with multiple upstream regions, highlighting the 

potential regulatory significance of the chromatin organization in this region. Users can further 

overlay epigenomic tracks directly from the ENCODE Portal or upload their own custom tracks 

(e.g. histone modifications, transcription factor binding, or chromatin accessibility) for integrated 

analysis. This analysis enables identification of potential genomic loci of interest, such as 

regulatory elements, promoters, transcription factor binding sites or other functional regions, 

thereby facilitating an investigation of how these epigenetic features are related to the 

chromatin structure. For the MYC locus, DNase-seq, H3K27ac, H3K4me1, H3K4me3 and 

H3K27me3 ChIP-seq profiles, together with ChromHMM annotations, identified six putative 

regulatory enhancers (Figure 2D). Several have been experimentally linked to MYC regulation in 

cancers (78, 82), including prostate cancer (83, 84), B-cell malignancies (82), and colorectal 

cancer (85). RNA-seq data confirmed MYC overexpression in Calu3 cells (Figure 2C).   

        Using sBIF, we reconstructed 5,000 single-cell chromatin structures for this region, and the 

most representative single-cell conformations are displayed by default. Users can evaluate the 

accuracy of the reconstructed models by comparing the aggregate contact map derived from 

the simulated single-cell structures with the experimental Hi-C contact map (Figure 2D). The 

database enables users to switch seamlessly among all available structures for visualization or 

analysis. Distance measurements can be performed for any selected pair or group loci, such as 

enhancer-promoter pairs or multi-body contacts. For each selection the 3D distance in the 

displayed structure and the distribution of pairwise distances across the full set of 5,000 models 

can be calculated. To demonstrate the databases capabilities, we reconstructed single cell 

chromatin structures of the MYC locus (defined as described above) in the Calu3 cells. While 

bulk Hi-C maps suggest that all putative enhancers can contact the MYC TSS, our single-cell 

reconstructions reveal substantial heterogeneity in these interactions. To quantify this variability, 

we performed off-line analysis of the bead locations of the 5,000 reconstructed single-cell 
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structures and found that 45.5% (2,275 in 5,000) exhibit at least one enhancer in contact with the 

MYC TSS. Of these 37.5% (1,871 in 5,000) structures had a single enhancer-promoter contact, 

14.8% (336) had two enhancers in proximity, and 3% (68 in 5,000) show three enhancers 

contacting the MYC TSS. Thus, ~18% of enhancer–promoter interactions occur in multibody 

configurations at the single-cell level, indicating that cooperative enhancer activity is a common 

feature of MYC regulation in these cells. 

        We further evaluated each putative enhancer’s tendency to participate in multibody 

interactions with the MYC TSS (Figure 2E). Enhancers I, III, and IV preferentially formed multibody 

contacts, with Enhancer I strongly enriched for three-enhancer interactions (Fold Enrichment = 5) 

and Enhancer III and IV favoring two-enhancer contacts (Fold Enrichment = 2 and 1.82). In 

contrast, Enhancer VI was more often involved in single enhancer–promoter interactions (Fold 

Enrichment = 1.19). Notably, most three-enhancer multibody interactions were formed by 

specific enhancer combinations such as (IV, V, VI) (54.4%), (I, IV, VI) (20.6%) and (I, II and III) 

(8.8%), suggesting that both long-range chromatin folding and local transcription factor binding 

may underlie cooperative MYC regulation.  

      To illustrate this variability, we highlight two representative structures. In one case (Figure 

2G), only Enhancer IV is in close spatial proximity to the MYC promoter, with the remaining five 

enhancers located further away. In the second example (Figure 2H), three enhancers (I, II and III) 

cluster together with the MYC TSS, exemplifying a multibody configuration.  

      To further explore this spatial heterogeneity, users can perform ensemble-level clustering of 

single-cell structures. For the MYC locus, k-means clustering identified five distinct chromatin 

subgroups (Figure 3A; Supplementary Methods), each displaying unique structural patterns 

(Figure 3A, B). We also compared features such as the pairwise distance between Enhancer III 

and the MYC promoter (Figure 3C), as well as the radius of gyration of this region (Figure 3D), 

revealing substantial variation across the five subgroups. These structural differences may 

correspond to distinct regulatory states and could be integrated with other single-cell datasets, 

such as scRNA-seq or chromatin tracing (see, for example, Figure S1).  
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Figure 2. 3D chromatin architecture at the MYC locus in Calu3 cells. (A) Two strategies for 

querying genomic regions (B) Hi-C heatmap of the MYC locus in Calu3 cells (lower triangle: 

experiment Hi-C; upper triangle: the FoldRec interactions). (C) FoldRec interactions overlaid with 

epigenomic profiles. Six putative enhancers (Enhancers I to VI) are underlined in red (chr8: 

127,215,000-127,220,000), orange (chr8: 127,295,000-127,300,000), green (chr8: 127,400,000-

127,405,000), blue (chr8: 127,505,000-127,510,000), purple (chr8: 127,585,000-127,590,000) and 

pink (chr8: 127,670,000-127,675,000). TSS is underlined in yellow (chr8: 127,735,000-

127,740,000). (D) Comparison between simulated Hi-C heatmap (upper triangle) and experiment 

Hi-C heatmap (lower triangle). (E) Fraction of enhancer-promoter contact types for each putative 

enhancer, annotated with fold enrichment values. (F) Distribution of 3D distances between all 

putative enhancers and the MYC TSS across all generated structures. (G) Example single-cell 

chromatin structure with enhancer IV and the MYC TSS highlighted, illustrating close spatial 
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proximity. (H) Example single-cell chromatin structure with three putative enhancers (red, 

orange, and green) and the MYC TSS (yellow) highlighted. 

 

Figure 3. K-means clustering of single-cell chromatin structures of the MYC locus in Calu3 cells. 

(A) Heatmap of pairwise 3D distance features for all single-cell conformation of the MYC locus (B) 

Average 3D distance heatmaps for each of the five identified subclusters. (C) Distribution of 3D 
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distances between putative enhancer III and the MYC TSS across the five subclusters. (D) 

Distribution of the radius of gyration for the MYC locus in each subcluster. 

 

Cross-Sample Comparison: Distinct Regulatory Mechanisms at the MYC Locus  

ChromPolymerDB also enables direct comparison of chromatin structures across cell types, 

developmental stages, or disease states, providing a powerful framework for uncovering 

differences in regulatory mechanisms. The same structural analysis tools described in Single-

Sample Insights can be applied to multi-sample datasets, allowing side-by-side evaluation of 

experimental Hi-C heatmaps, FoldRec interactions, and reconstructed 3D chromatin 

conformations. 

        As a demonstration, we compared MYC locus regulation in three cell types with contrasting 

MYC expression and epigenetic landscapes: Calu3 lung adenocarcinoma cells (aberrantly high 

MYC expression), GM12878 B-lymphoblastoid cells (15, 42) (high MYC expression), and primary 

CD14+ monocytes (43, 44) (negligible MYC expression). The observed epigenetic patterns are 

consistent with RNA-seq profiles displayed in Figure 4A. Epigenetic analysis (Figure 4A) revealed 

that Calu3 and GM12878 share two upstream enhancers (I and II), while Calu3 have four 

additional enhancers active (III, IV, V and VI), which are absent in the other two cell types. 

GM12878 harbors one unique enhancer (Enhancer VII), and monocytes contain two distinct 

enhancers that lack contact with the MYC TSS in the Hi-C data, suggesting that a regulatory 

relationship is unlikely, based on the available Hi-C data.  

        We reconstructed 5000 single-cell chromatin structures for all three cell types using sBIF to 

assess their spatial organization and multibody enhancer-promoter interaction patterns (Figure 

4B-C). In both Calu3 and GM12878, active enhancers were positioned closer to the MYC TSS 

than in monocytes, consistent with the absence of active epigenetic marks and low MYC 

expression in the latter. However, the overall regulatory architectures differed markedly between 

the three cell types. (Figure 4A).  
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      In Calu3, the most frequent multibody enhancer combinations were enriched, whereas these 

same configurations were 9.6-fold less frequent in GM12878, likely due to missing enhancer 

activities in that cell type. GM12878’s active enhancers (I, II and VII) occasionally colocalized with 

the MYC TSS in the single cell assemblies, but did not form stable multibody interactions, 

indicating a distinct mode of cooperative regulation to Calu3 cells (Figure 4D). Enhancer - 

Promoter contacts occurred in only ~10% of GM12878 single-cell structures (446/5,000), 

compared to substantially higher frequencies in Calu3 cells. Among GM12878 contacts, 1.8% 

involved three enhancer and 10.3% involved two, underscoring the reduced prevalence of 

multibody configurations in GM12878 than Calu3.  
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Figure 4. Case study of distinct regulatory mechanisms at the MYC Locus across cell types. (A) 

FoldRec interactions overlaid with epigenomic profiles for the MYC locus of Calu3 (left), 

GM12878 (middle) and monocytes (right). In Calu3 cells, six putative enhancers are underlined in 

red, orange, green, blue, purple and pink; the MYC TSS is underlined in yellow; and the 

GM12878-specific enhancer underlined in brown (chr8: 127,560,000-127,565,000). (B) 

Representative single-cell chromatin structures for Calu3 (left), GM12878 (middle) and 

monocytes (right). (C) Distributions of 3D distances between all seven putative enhancers and 

the MYC TSS across all generated structures in Calu3 (left), GM12878 (middle) and monocytes 

(right). (D) Comparison of 3D distances between GM12878 enhancers and the MYC TSS in Calu3 

(left) and GM12878 (right) structures. 

      These findings highlight ChromPolymerDB’s capacity to reveal cell type-specific regulatory 

mechanisms, demonstrating that even with similar MYC expression levels, Calu3 and GM12878 

employ fundamentally different enhancer repertoires, degrees of multi-assembly, and cell-to-

cell variability in chromatin organization.  

 

DISCUSSION 

        Recent advances in single-cell technologies have enabled high-resolution investigation of 

diverse biological modalities including transcription (86, 87), epigenetics modifications (88, 89), 

and chromatin structures (21, 27, 33). These approaches have transformed our understanding of 

cellular heterogeneity, revealing subpopulations and regulatory cell states that remain invisible 

in bulk analyses. However, generating accurate, high-resolution chromatin structures for 

individual single cells remains experimentally challenging and computationally intensive, limiting 

their accessibility to the broader research community. 

        To address these limitations, we developed sBIF to infer single-cell chromatin architectures 

from population Hi-C data (39). While sBIF achieves high structural resolution, its computational 

cost and technical complexity have restricted widespread adoption. ChromPolymerDB was 

therefore created as a publicly accessible, large-scale resource that delivers, high-resolution 
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single-cell 3D chromatin structures alongside interactive tools for structural visualisation, 

analysis, and multi-omics integration. 

        Over the past years, several chromatin structure databases have been developed, greatly 

facilitating research in chromatin organization. For example, databases such as HiChIPdb (90), 

the 3D Genome Browser (91), 3DIV (92), and LoopCatalog (93) provide cross-species, high-

resolution two-dimensional chromatin contact information at the bulk level, offering valuable 

support and laying the foundation for subsequent advances in chromatin structure research. 

However, the focus of these databases remains largely on two-dimensional bulk data, with 

limited coverage of three-dimensional structures and capacity to capture single-cell 

heterogeneity. In addition, databases such as GSDB (94) , Nucleome Browser (95), and 3Disease 

Browser (96) have provided three-dimensional chromatin structure data with two-dimensional 

chromatin contact information, representing important progress toward more comprehensive 

and in-depth insights into chromatin organization. While highly valuable, these resources still 

have room for improvement in terms of resolution and sample coverage. 

        In contrast, ChromPolymerDB contains ~10⁸ single-cell chromatin structures spanning 

more than 60,000 genomic regions at 5 Kb resolution, across 50 diverse human cell types and 

experimental conditions. This scale enables both in-depth analyses within a single cell type and 

systematic comparisons across multiple cellular contexts. 

        Utility of our database is illustrated through two case studies at the MYC locus. In human 

lung cancer Calu3 cells, single-cell reconstructions revealed extensive heterogeneity in 

enhancer-promoter spatial interactions that was obscured in bulk Hi-C data. This heterogeneity 

likely reflects regulatory variability relevant to MYC overexpression and provides hypothesis for 

targeted functional testing.  

        Beyond single sample analysis, ChromPolymerDB enables cross-sample comparisons to 

identify cell type-specific differences in regulatory architecture.  Comparing MYC locus 

regulation in Calu3, GM12878, and primary CD14+ monocytes revealed marked contrast in 

enhancer usage, multibody interaction frequency, and spatial variability. These newly discovered 

differences could not be fully resolved from bulk Hi-C or epigenetic profiles alone. These 
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findings underscore the critical role of single-cell structural data in uncovering the regulatory 

logic underlying gene expression.  

        By integrating such structural information with other genomic and epigenomic datasets, 

ChromPolymerDB will serve as a valuable platform that supports hypothesis generation, 

comparative 3D genomics, and mechanistic studies of gene regulation. Looking forward, we 

plan to expand the database to include additional species, incorporate new high-quality Hi-C 

datasets, and implement advanced structure analysis algorithms and more intuitive user tools.  

Integration with other single-cell omics modalities, (e.g., scRNA-seq and single-cell epigenomics) 

will further enable multi-modal analyses, offering a more comprehensive view of genome 

organization and regulation.  

We anticipate that ChromPolymerDB will serve as a key community resource that can 

bridge the gap between raw chromatin conformation data and biological insight, thereby 

accelerating research in genome biology, regulatory genomics, and disease-associated 

chromatin remodeling.  
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