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ABSTRACT

The three-dimensional (3D) organization of chromatin plays a critical role in regulating gene
expression and genomic processes like DNA replication, repair, and genome stability. Although
these processes occur at the individual-cell level, most chromatin structure data are derived
from population-averaged assays, such as Hi-C, obscuring the heterogeneity of single-cell
conformations. To address this limitation, we developed a polymer physics-based modelling
framework, the Sequential Bayesian Inference Framework (sBIF), that deconvolutes bulk Hi-C
data to reconstruct single-cell 3D chromatin conformations. To support a broader use of sBIF,
we created ChromPolymerDB, a publicly accessible, high-resolution database of single-cell
chromatin structures inferred by sBIF. The database contains ~10° reconstructed 5 kb-resolution
single cell structures, spanning over 60,000 genomic loci across 50 human cell types and
experimental conditions. ChromPolymerDB features an interactive web interface with tools for
3D structural analysis and multi-omics integration. Users can explore associations between
chromatin conformation and gene expression, epigenetic modifications, and regulatory
elements. The platform also supports comparative analyses to identify structural changes across
cell types, developmental stages, or disease contexts. ChromPolymerDB offers a unique resource
for researchers studying the relationship between genome architecture and gene regulation,
and for advancing comparative 3D genomics. ChromPolymerDB is available online

at https://chrompolymerdb.bme.uic.edu/.

INTRODUCTION

The three-dimensional (3D) organization of chromatin plays a central role in regulating
virtually all genomic processes, including gene expression (1-3), DNA replication, and repair (4).
Chromatin architecture underpins the establishment and maintenance of cellular identity and is
dynamically remodeled during biological transitions such as differentiation (5-7), development

(7-9), and disease progression (10-14). Advances in chromosome conformation capture
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methods - particularly Hi-C - have enabled genome-wide mapping of chromatin interactions,
revealing that genome function is hierarchically organized across length scales, from inter-
chromosomal compartments to topologically associating domains (TADs) and fine-scale

chromatin loops (15-25).

Despite these insights, most Hi-C datasets are derived from bulk populations of ~10° cells
(16), yielding ensemble-averaged contact maps that obscure cell-to-cell variability (26).
Although gene regulation and genome function occur at the level of an individual cell, bulk Hi-C
does not resolve the precise chromatin architecture within any one cell (27-30). Imaging studies
have confirmed substantial heterogeneity in chromatin conformation across single cells (21, 31),
and while single-cell Hi-C methods have emerged to address this limitation (27, 28, 32-34), they
remain constrained by extreme data sparsity. The limited number of contacts detected per cell
prevents reliable reconstruction of genome-wide 3D structures, particularly at the resolution of

TADs and loops (35-38).

To overcome these challenges, we developed the Sequential Bayesian Inference Framework
(sBIF), a polymer-physics-based approach for inferring single-cell chromatin conformations from
population Hi-C data (39). sBIF employs a deep-sampling strategy with minimal physical
assumptions and no adjustable parameters. It has been validated across species, from
Drosophila to human (23, 39-41) demonstrating its ability to reproduce bulk Hi-C patterns while

capturing chromatin heterogeneity at the single-cell level.

To facilitate the broader application of this approach, we established ChromPolymerDB, a
high-resolution, open-access database of single-cell 3D chromatin structures reconstructed
using sBIF. The resource includes ~10% structures at 5 kb resolution, spanning over 60,000
genomic regions across 50 human cell types and experimental conditions. ChromPolymerDB
offers a user-friendly web interface equipped with built-in tools for interactive 3D visualization,
multi-omics integration, and structural analyses (such as 3D locus distances), within individual
samples and across samples, as well as com companion off-line analysis code (such as clustering,
TAD radius of gyration, and multi-body contacts). By enabling cross-modality comparisons with

transcriptomics, epigenomics, and imaging data, the database facilitates the discovery of
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structural rewiring events, such as enhancer hub formation or loop remodeling, that can occur
during cellular transitions or between disparate cell fates. By facilitating access to and analysis of
3D chromatin architectures, we thus anticipate that ChromPolymerDB will prove to be a useful
resource for investigations of chromatin-gene regulation relationships and comparative 3D

genomics.

MATERIAL AND METHODS
Data Collection

To generate ChromPolymerDB, we collected 50 high-quality human Hi-C samples from
three major public databases: the 4D Nucleome (4DN) Data Portal (42) (n=19), the ENCODE
Portal (43, 44) (n=18), and the Gene Expression Omnibus (GEO) (45) (n=13). To provide data that
might be useful to most researchers, the following criteria were used for sample selection: (1)
human origin; (2) sufficient sequencing depth to achieve 5 kb resolution; and (3) homogeneous
cell populations. In some cases, we merged multiple datasets generated under largely similar
experimental conditions to achieve higher resolution. Overall, our dataset includes 36 normal
cell types (both primary and cultured cells) and 14 disease-associated cell types, covering 10 of

the 11 major human physiological systems (except the urinary system).

Preprocessing Hi-C Data for Modeling

Following a workflow similar to the original sBIF protocol (39), we applied a four-step pre-
processing pipeline to prepare input regions for structural modeling: acquisition of .hic files, TAD
boundary identification, TAD-based segmentation of modeling regions, and filtering sparse

regions.

1) Acquisition of .hic files: Whenever available, hic files aligned to the hg38 reference
genome were directly downloaded from the source database. If only hg19-aligned .hic
files were provided, we converted them to hg38 using HiCLift (46). In cases where no .hic
files existed, we generated them from raw fastq read files as described in the

Supplementary Methods.
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2) TAD boundary calling: We identified TAD boundaries using OnTAD (47) at a 50 kb
resolution with relaxed parameters (penalty=0, Idiff=0.25, Isize=2, minsz=3 and -
maxsz=80) to ensure broad genome coverage for downstream structure modeling. Level
1 (outermost) TADs were selected as modeling units as they generally encompass
complete domain structures.

3) TAD-Based Segmentation of Modeling Regions: Modeling regions were defined by
outermost TAD boundaries. Small TADs (<1Mb) were merged with neighboring domains
if the combined size did not exceed 3.5 Mb, avoiding regions that are too small for
reliable modeling.

4) Filtering sparse regions: Regions with extremely low contact frequency, defined as < 1%
of bins containing any contacts, were excluded. All contacts within such regions were

removed from further analysis to improve modeling accuracy.
Single-cell 3D Structure Reconstruction

We used CHROMATIX (48) to identify statistically significant folding reconstitutive (FoldRec)
Hi-C interactions at 5 kb resolution. These interactions were used both for structural modeling
and for visualization, enabling comparison with experimental Hi-C data (of similar resolution)
and supporting downstream functional analysis. To generate sample-specific background
models, we applied a fractal Monte Carlo approach to simulate large ensembles of chromatin
fibers (500,000 conformations per sample) confined within the nuclear volume. These null
ensembles incorporated only polymer physics and nuclear volume exclusion constraints, with
nuclear sizes listed for each sample in Supplementary Table (49-74). Using a Bag of Little
Bootstraps resampling approach, we derived null distributions of random chromatin contacts.
Experimentally measured population Hi-C contacts were then compared to their corresponding
null distributions, and interactions with a p.adj < 0.05 were retained as statistically significant
FoldRec contacts. Single-cell chromatin structures were reconstructed from these FoldRec
interactions using sBIF (39), which applies sequential Bayesian inference. For each dataset, we
generated an ensemble of 5000 single-cell chromatin conformations. Within each model, two
beads were considered to be in contact if their Euclidean distance was less than 80 nm

(interpreted as a spherical distance threshold), consistent with prior studies (23, 39).
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Database Architecture and Web Implementation

ChromPolyerDB is implemented using a modern architecture. The backend is built with
Flask, which provides RESTful APIs and handles core business logic. The frontend, developed in
React with the Ant Design component library, delivers a consistent and responsive user interface.
Data visualization is powered by D3 s for interactive 2D charts, an embedded IGV,js (75) genome
browser provides track-based views of sequencing signals and annotations directly in the app,
enabling intuitive exploration of biological datasets, and by Threejs for an in-browser 3D
chromosome viewer that supports real-time interaction with structural models. All primary data
is stored in a PostgreSQL database, enabling complex relational queries and scalability to large
datasets. To improve performance, Redis is used as an in-memory caching layer, minimizing

latency for frequently accessed data.

RESULTS
Database overview

ChromPolymerDB is a comprehensive, publicly accessible resource that hosts large-scale,
high-resolution, single-cell 3D chromatin data, coupled with an interactive web interface for
structural analysis and multi-omics integration capabilities (Figure 1). The database contains
~10® individual chromatin conformations reconstructed using sBIF, spanning more than 60,000
genomic regions at 5 kb resolution across 50 human cell types and experimental conditions
(Supplementary Table S1). These datasets encompass 36 normal, healthy cell types and 14
disease samples, collectively representing 10 of the 11 major human physiological systems
(excluding the urinary system). Beyond data access, ChromPolymerDB offers a suite of analytical
tools, including locus-specific 3D visualization, structural measurements, and multi-omics
integration, enabling both detailed single-sample interrogations and comparative analysis

across cell types and conditions.
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Figure 1. Overview of the ChromPolymerDB database. The example illustrates FoldRec-identified
interactions and experimental Hi-C data in Calu3 cells, representative single-cell chromatin
conformations from Calu3 and IMR90 cells, and calculated distance distributions between
genomic elements of interest.

Single-Sample Insights: Chromatin Architectures at the MYC Locus in Human Lung Cancer

Cells

ChromPolymerDB enables detailed analysis of 3D chromatin organization within individual
samples, supporting spatial regulatory investigations. Users can query statistically significant 2D

folding interactions (FoldRec, see Methods) and reconstruct complete 3D genome structures.

As a case study, we analyzed the MYC locus (chr8: 127,200,000 — 127,750,000 bp) in Calu3
lung adenocarcinoma cells, which exhibit high MYC expression. MYC, a well-known oncogene, is
regulated by multiple upstream enhancers (76-78) and plays a central role in tumor initiation
and progression (79-81), making it an ideal target for chromatin architecture studies. Before

reconstructing of single-cell 3D chromatin structures, we examined 2D Hi-C contact maps and
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epigenomic profiles to identify putative functional cis- regulatory elements. Users can define
regions of interest by genomic coordinates or gene name (Figure 2A). ChromPolymerDB then
displays the experiment-derived Hi-C heatmap of that locus (lower triangle) and CHROMATIX-
derived FoldRec interactions (upper triangle) (Figure 2B). In Calu3 cells, the FoldRec interactions
reveal contacts between the MYC promoter with multiple upstream regions, highlighting the
potential regulatory significance of the chromatin organization in this region. Users can further
overlay epigenomic tracks directly from the ENCODE Portal or upload their own custom tracks
(e.g. histone modifications, transcription factor binding, or chromatin accessibility) for integrated
analysis. This analysis enables identification of potential genomic loci of interest, such as
regulatory elements, promoters, transcription factor binding sites or other functional regions,
thereby facilitating an investigation of how these epigenetic features are related to the
chromatin structure. For the MYC locus, DNase-seq, H3K27ac, H3K4mel, H3K4me3 and
H3K27me3 ChIP-seq profiles, together with ChromHMM annotations, identified six putative
regulatory enhancers (Figure 2D). Several have been experimentally linked to MYC regulation in
cancers (78, 82), including prostate cancer (83, 84), B-cell malignancies (82), and colorectal

cancer (85). RNA-seq data confirmed MYC overexpression in Calu3 cells (Figure 2C).

Using sBIF, we reconstructed 5,000 single-cell chromatin structures for this region, and the
most representative single-cell conformations are displayed by default. Users can evaluate the
accuracy of the reconstructed models by comparing the aggregate contact map derived from
the simulated single-cell structures with the experimental Hi-C contact map (Figure 2D). The
database enables users to switch seamlessly among all available structures for visualization or
analysis. Distance measurements can be performed for any selected pair or group loci, such as
enhancer-promoter pairs or multi-body contacts. For each selection the 3D distance in the
displayed structure and the distribution of pairwise distances across the full set of 5,000 models
can be calculated. To demonstrate the databases capabilities, we reconstructed single cell
chromatin structures of the MYC locus (defined as described above) in the Calu3 cells. While
bulk Hi-C maps suggest that all putative enhancers can contact the MYC TSS, our single-cell
reconstructions reveal substantial heterogeneity in these interactions. To quantify this variability,

we performed off-line analysis of the bead locations of the 5,000 reconstructed single-cell
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structures and found that 45.5% (2,275 in 5,000) exhibit at least one enhancer in contact with the
MYC TSS. Of these 37.5% (1,871 in 5,000) structures had a single enhancer-promoter contact,
14.8% (336) had two enhancers in proximity, and 3% (68 in 5,000) show three enhancers
contacting the MYC TSS. Thus, ~18% of enhancer—promoter interactions occur in multibody
configurations at the single-cell level, indicating that cooperative enhancer activity is a common

feature of MYC regulation in these cells.

We further evaluated each putative enhancer's tendency to participate in multibody
interactions with the MYC TSS (Figure 2E). Enhancers [, III, and IV preferentially formed multibody
contacts, with Enhancer I strongly enriched for three-enhancer interactions (Fold Enrichment = 5)
and Enhancer III and IV favoring two-enhancer contacts (Fold Enrichment = 2 and 1.82). In
contrast, Enhancer VI was more often involved in single enhancer-promoter interactions (Fold
Enrichment = 1.19). Notably, most three-enhancer multibody interactions were formed by
specific enhancer combinations such as (IV, V, VI) (54.4%), (I, IV, VI) (20.6%) and (I, II and III)
(8.8%), suggesting that both long-range chromatin folding and local transcription factor binding

may underlie cooperative MYC regulation.

To illustrate this variability, we highlight two representative structures. In one case (Figure
2G), only Enhancer IV is in close spatial proximity to the MYC promoter, with the remaining five
enhancers located further away. In the second example (Figure 2H), three enhancers (I, I and III)

cluster together with the MYC TSS, exemplifying a multibody configuration.

To further explore this spatial heterogeneity, users can perform ensemble-level clustering of
single-cell structures. For the MYC locus, k-means clustering identified five distinct chromatin
subgroups (Figure 3A; Supplementary Methods), each displaying unique structural patterns
(Figure 3A, B). We also compared features such as the pairwise distance between Enhancer III
and the MYC promoter (Figure 3C), as well as the radius of gyration of this region (Figure 3D),
revealing substantial variation across the five subgroups. These structural differences may
correspond to distinct regulatory states and could be integrated with other single-cell datasets,

such as scRNA-seq or chromatin tracing (see, for example, Figure S1).
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Figure 2. 3D chromatin architecture at the MYC locus in Calu3 cells. (A) Two strategies for
querying genomic regions (B) Hi-C heatmap of the MYC locus in Calu3 cells (lower triangle:
experiment Hi-C; upper triangle: the FoldRec interactions). (C) FoldRec interactions overlaid with
epigenomic profiles. Six putative enhancers (Enhancers [ to VI) are underlined in red (chr8:
127,215,000-127,220,000), orange (chr8: 127,295,000-127,300,000), green (chr8: 127,400,000-
127,405,000), blue (chr8: 127,505,000-127,510,000), purple (chr8: 127,585,000-127,590,000) and
pink (chr8: 127,670,000-127,675,000). TSS is underlined in yellow (chr8: 127,735,000-
127,740,000). (D) Comparison between simulated Hi-C heatmap (upper triangle) and experiment
Hi-C heatmap (lower triangle). (E) Fraction of enhancer-promoter contact types for each putative
enhancer, annotated with fold enrichment values. (F) Distribution of 3D distances between all
putative enhancers and the MYC TSS across all generated structures. (G) Example single-cell

chromatin structure with enhancer IV and the MYC TSS highlighted, illustrating close spatial
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proximity. (H) Example single-cell chromatin structure with three putative enhancers (red,

orange, and green) and the MYC TSS (yellow) highlighted.
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Figure 3. K-means clustering of single-cell chromatin structures of the MYC locus in Calu3 cells.
(A) Heatmap of pairwise 3D distance features for all single-cell conformation of the MYC locus (B)

Average 3D distance heatmaps for each of the five identified subclusters. (C) Distribution of 3D
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distances between putative enhancer III and the MYC TSS across the five subclusters. (D)

Distribution of the radius of gyration for the MYC locus in each subcluster.

Cross-Sample Comparison: Distinct Regulatory Mechanisms at the MYC Locus

ChromPolymerDB also enables direct comparison of chromatin structures across cell types,
developmental stages, or disease states, providing a powerful framework for uncovering
differences in regulatory mechanisms. The same structural analysis tools described in Single-
Sample Insights can be applied to multi-sample datasets, allowing side-by-side evaluation of
experimental Hi-C heatmaps, FoldRec interactions, and reconstructed 3D chromatin

conformations.

As a demonstration, we compared MYC locus regulation in three cell types with contrasting
MYC expression and epigenetic landscapes: Calu3 lung adenocarcinoma cells (aberrantly high
MYC expression), GM12878 B-lymphoblastoid cells (15, 42) (high MYC expression), and primary
CD14" monocytes (43, 44) (negligible MYC expression). The observed epigenetic patterns are
consistent with RNA-seq profiles displayed in Figure 4A. Epigenetic analysis (Figure 4A) revealed
that Calu3 and GM12878 share two upstream enhancers (I and II), while Calu3 have four
additional enhancers active (I, IV, V and VI), which are absent in the other two cell types.
GM12878 harbors one unique enhancer (Enhancer VII), and monocytes contain two distinct
enhancers that lack contact with the MYC TSS in the Hi-C data, suggesting that a regulatory

relationship is unlikely, based on the available Hi-C data.

We reconstructed 5000 single-cell chromatin structures for all three cell types using sBIF to
assess their spatial organization and multibody enhancer-promoter interaction patterns (Figure
4B-C). In both Calu3 and GM12878, active enhancers were positioned closer to the MYC TSS
than in monocytes, consistent with the absence of active epigenetic marks and low MYC
expression in the latter. However, the overall regulatory architectures differed markedly between

the three cell types. (Figure 4A).
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In Calu3, the most frequent multibody enhancer combinations were enriched, whereas these
same configurations were 9.6-fold less frequent in GM12878, likely due to missing enhancer
activities in that cell type. GM12878's active enhancers ([, I and VII) occasionally colocalized with
the MYC TSS in the single cell assemblies, but did not form stable multibody interactions,
indicating a distinct mode of cooperative regulation to Calu3 cells (Figure 4D). Enhancer -
Promoter contacts occurred in only ~10% of GM12878 single-cell structures (446/5,000),
compared to substantially higher frequencies in Calu3 cells. Among GM12878 contacts, 1.8%
involved three enhancer and 10.3% involved two, underscoring the reduced prevalence of

multibody configurations in GM12878 than Calu3.
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Figure 4. Case study of distinct regulatory mechanisms at the MYC Locus across cell types. (A)
FoldRec interactions overlaid with epigenomic profiles for the MYC locus of Calu3 (left),
GM12878 (middle) and monocytes (right). In Calu3 cells, six putative enhancers are underlined in
red, orange, green, blue, purple and pink; the MYC TSS is underlined in yellow; and the
GM12878-specific enhancer underlined in brown (chr8: 127,560,000-127,565,000). (B)
Representative single-cell chromatin structures for Calu3 (left) GM12878 (middle) and
monocytes (right). (C) Distributions of 3D distances between all seven putative enhancers and
the MYC TSS across all generated structures in Calu3 (left) GM12878 (middle) and monocytes
(right). (D) Comparison of 3D distances between GM12878 enhancers and the MYC TSS in Calu3
(left) and GM12878 (right) structures.

These findings highlight ChromPolymerDB’s capacity to reveal cell type-specific regulatory
mechanisms, demonstrating that even with similar MYC expression levels, Calu3 and GM12878
employ fundamentally different enhancer repertoires, degrees of multi-assembly, and cell-to-

cell variability in chromatin organization.

DISCUSSION

Recent advances in single-cell technologies have enabled high-resolution investigation of
diverse biological modalities including transcription (86, 87), epigenetics modifications (88, 89),
and chromatin structures (21, 27, 33). These approaches have transformed our understanding of
cellular heterogeneity, revealing subpopulations and regulatory cell states that remain invisible
in bulk analyses. However, generating accurate, high-resolution chromatin structures for
individual single cells remains experimentally challenging and computationally intensive, limiting

their accessibility to the broader research community.

To address these limitations, we developed sBIF to infer single-cell chromatin architectures
from population Hi-C data (39). While sBIF achieves high structural resolution, its computational
cost and technical complexity have restricted widespread adoption. ChromPolymerDB was

therefore created as a publicly accessible, large-scale resource that delivers, high-resolution
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single-cell 3D chromatin structures alongside interactive tools for structural visualisation,

analysis, and multi-omics integration.

Over the past years, several chromatin structure databases have been developed, greatly
facilitating research in chromatin organization. For example, databases such as HiChIPdb (90),
the 3D Genome Browser (91), 3DIV (92), and LoopCatalog (93) provide cross-species, high-
resolution two-dimensional chromatin contact information at the bulk level, offering valuable
support and laying the foundation for subsequent advances in chromatin structure research.
However, the focus of these databases remains largely on two-dimensional bulk data, with
limited coverage of three-dimensional structures and capacity to capture single-cell
heterogeneity. In addition, databases such as GSDB (94) , Nucleome Browser (95), and 3Disease
Browser (96) have provided three-dimensional chromatin structure data with two-dimensional
chromatin contact information, representing important progress toward more comprehensive
and in-depth insights into chromatin organization. While highly valuable, these resources still

have room for improvement in terms of resolution and sample coverage.

In contrast, ChromPolymerDB contains ~10® single-cell chromatin structures spanning
more than 60,000 genomic regions at 5 Kb resolution, across 50 diverse human cell types and
experimental conditions. This scale enables both in-depth analyses within a single cell type and

systematic comparisons across multiple cellular contexts.

Utility of our database is illustrated through two case studies at the MYC locus. In human
lung cancer Calu3 cells, single-cell reconstructions revealed extensive heterogeneity in
enhancer-promoter spatial interactions that was obscured in bulk Hi-C data. This heterogeneity
likely reflects regulatory variability relevant to MYC overexpression and provides hypothesis for

targeted functional testing.

Beyond single sample analysis, ChromPolymerDB enables cross-sample comparisons to
identify cell type-specific differences in regulatory architecture. Comparing MYC locus
regulation in Calu3, GM12878, and primary CD14" monocytes revealed marked contrast in
enhancer usage, multibody interaction frequency, and spatial variability. These newly discovered

differences could not be fully resolved from bulk Hi-C or epigenetic profiles alone. These
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findings underscore the critical role of single-cell structural data in uncovering the regulatory

logic underlying gene expression.

By integrating such structural information with other genomic and epigenomic datasets,
ChromPolymerDB will serve as a valuable platform that supports hypothesis generation,
comparative 3D genomics, and mechanistic studies of gene regulation. Looking forward, we
plan to expand the database to include additional species, incorporate new high-quality Hi-C
datasets, and implement advanced structure analysis algorithms and more intuitive user tools.
Integration with other single-cell omics modalities, (e.g., sSCRNA-seq and single-cell epigenomics)
will further enable multi-modal analyses, offering a more comprehensive view of genome

organization and regulation.

We anticipate that ChromPolymerDB will serve as a key community resource that can
bridge the gap between raw chromatin conformation data and biological insight, thereby
accelerating research in genome biology, regulatory genomics, and disease-associated

chromatin remodeling.
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