
E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, accepted paper, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

1

Reliable Blast UDP : Predictable High Performance
Bulk Data Transfer

Eric He, Jason Leigh, Oliver Yu,

Thomas DeFanti

Electronic Visualization Laboratory
University of Illinois at Chicago

cavern@evl.uic.edu
www.evl.uic.edu/cavern

Abstract

High speed bulk data transfer is an important part of many data-intensive scientific
applications. This paper describes an aggressive bulk data transfer scheme, called
Reliable Blast UDP (RBUDP), intended for extremely high bandwidth, dedicated- or
Quality-of-Service- enabled networks, such as optically switched networks. This paper
also provides an analytical model to predict RBUDP’s performance and compares the
results of our model against our implementation of RBUDP. Our results show that
RBUDP performs extremely efficiently over high speed dedicated networks and our
model is able to provide good estimates of its performance.

1 Introduction
Quanta (the Quality of Service Adaptive Networking Toolkit)[QT01] is a toolkit based on our prior work
on CAVERNsoft, which provided a set of APIs for bridging graphics and networking, to allow developers
to more easily build applications for collaborative, immersive environments[Leigh97, Park00, Leigh01].
CAVERNsoft, and consequently Quanta provide a rich set of tools and data distribution mechanisms
including: message passing, distributed shared memory, remote procedure calls, remote file I/O, forward
error corrected UDP, parallel TCP for bulk data transfer, and collaborative performance monitoring. Work
in Quanta is underway to develop mechanisms for enabling dedicated light path reservations (often
described as “lambdas”) on optically switched networks; and new protocols for maximizing data delivery
over these lambdas. Quanta’s experimental testbeds are two optically switched networks Starlight and
OMNInet. Starlight is a project managed by the University of Illinois at Chicago, to provide an IP-over-
Dence Wave Division Multiplexing (DWDM) peering point for national and international optical networks.
The goal is to develop a “petri dish” for growing an experimental, optically connected Grid whereby
clusters of computing resources can directly “dial-up” lambdas between them and use the extreme
quantities of bandwidth as a long distance system bus [SL01]. Each lambda can provide anywhere between
1 Gigabit/s to 10Gigabit/s of bandwidth. OMNInet is a project supported by Nortel Networks, SBC
Communications Inc. and Ameritech to assess and validate next-generation optical technologies,
architectures and applications in metropolitan area networks [OM02].

In this paper we address one aspect of our work on Quanta- the development of an aggressive bulk data
transfer scheme intended for high bandwidth, dedicated- or Quality-of-Service- enabled networks, such as
those on StarLight and OMNInet. In the following sections we will introduce the problem of bulk data
transfer over long fat networks; provide an algorithm for a transfer scheme, called Reliable Blast UDP
(RBUDP); propose an analytical model to predict its performance; and compare the results of our model
against our implementation of RBUDP.

2 The Problem of Bulk Data Transfers
Even if networked applications could make Gigabit “lambda reservations,” it does not however guarantee
that they will be able to make full use of that bandwidth. This problem is particularly evident when one

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, accepted paper, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

2

attempts to perform large bulk data transfers over long distance, high speed networks (often referred to as
“long fat networks” or LFNs) [Stevens94].

LFNs such as those between the US and Europe or Asia have extremely high round-trip latencies (at best
120ms). This latency results in gross bandwidth under-utilization when TCP is used for data delivery. This
is because TCP’s windowing mechanism imposes a limit on the amount of data it will send before it waits
for an acknowledgement. The long delays that occur over international networks means that TCP will
spend an inordinate amount of time waiting for acknowledgments, which in turn means that the client’s
data transmission will never reach the peak available capacity of the network. Traditionally this is
“remedied” by adjusting TCP’s window and buffer sizes to match the bandwidth * delay product (or
capacity) of the network. For example, for a 1Gbps connection between Chicago and Amsterdam, with an
average round trip time of 150ms, the capacity is 1024*0.15/8 = 19.2 Mbytes. Adjusting TCP window size
is problematic for several reasons: firstly, on some operating systems (such as IRIX for the SGI,) the
window size can only be modified by building a new version of the kernel- hence this is not an operation a
user-level application can invoke. Secondly, one needs to know the current capacity of the network in order
to set the window size correctly. The current capacity varies with the amount of background traffic already
on the network and the path to the destination.

Several alternative solutions are possible. One solution is to provide TCP with better estimates of the
current capacity of a link. This is the approach of the WEB100 Consortium [WEB100]. The consortium is
developing techniques to modify router operating systems to report available bandwidth over a network
link. Furthermore they are modifying operating systems kernels to allow better monitoring of TCP
performance. Another solution is to use striped (or parallel) TCP [Park00, Leigh01, Allcock01]. In parallel
TCP, the payload is divided into N partitions which are delivered over N TCP connections. Both Leigh (in
CAVERNsoft) and Allcock (in GridFTP) have shown that parallel TCP can provide throughput as high as
80% of a network’s available bandwidth, however its performance is unstable when excessive numbers of
sockets are used. Furthermore it is difficult to predict the correct number of sockets to use.

In this paper we take a more aggressive approach by using UDP augmented with aggregated
acknowledgments to provide a reliable bulk data transmission scheme. We call this Reliable Blast UDP
(RBUDP). A similar scheme called NetBLT was first proposed in 1985 (RFC969) by Clark et al [Clark88].
We extend Clark’s work by providing both analytical and experimental results to show that RBUDP can
provide the performance predictability that is lacking in parallel TCP. Furthermore we will provide an
equation similar to TCP’s bandwidth*delay product to allow one to predict RBUDP performance. This
prediction will be useful in the future, for network resource reservation on the Grid.

It is important to remember that we intend aggressive protocols such as parallel TCP and Reliable Blast
UDP for high speed dedicated links or links over which quality of service is available. We do not intend
these protocols for use over the broader Internet.

3 Reliable Blast UDP
Reliable Blast UDP has two goals. The first is to keep the network pipe as full as possible during bulk data
transfer. The second goal is to avoid TCP’s per-packet interaction so that acknowledgments are not sent per
window of transmitted data, but aggregated and delivered at the end of a transmission phase. Figure 1
below illustrates the RBUDP data delivery scheme. In the first data transmission phase (A to B in the
figure), RBUDP sends the entire payload at a user-specified sending rate using UDP datagrams. Since UDP
is an unreliable protocol, some datagrams may become lost due to congestion or an inability of the
receiving host from reading the packets rapidly enough. The receiver therefore must keep a tally of the
packets that are received in order to determine which packets must be retransmitted. At the end of the bulk
data transmission phase, the sender sends a DONE signal via TCP (C in the figure) so that the receiver
knows that no more UDP packets will arrive. The receiver responds by sending an Acknowledgment
consisting of a bitmap tally of the received packets (D in the figure). The sender responds by resending the
missing packets, and the process repeats itself until no more packets need to be retransmitted.

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, accepted paper, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

3

In RBUDP, the most important input parameter is the sending rate of the UDP blasts. To minimize loss,
the sending rate should not be larger than the bandwidth of the bottleneck link (typically a router). Tools
such as Iperf [Iperf] and netperf [Netperf] are typically used to measure the bottleneck bandwidth. In
theory if one could send data just below this rate, data loss should be near zero. In practice however, other
factors need to be considered. In our first implementation of RBUDP, we chose a send rate of 5% less than
the available network bandwidth predicted by Iperf. Surprisingly this resulted in approximately 33% loss!
After further investigation we found that the problem was in the end host rather than the network.
Specifically, the receiver was not fast enough to keep up with the network while moving data from the
kernel buffer to application buffers. When we used a faster computer as the receiver, the loss rate
decreased to less than 2%. The details of this experiment are further discussed in Section 5.

The chief problem with using Iperf as a measure of possible throughput over a link is that it does not take
into account the fact that in a real application, data is not simply streamed to a receiver and discarded. It has
to be moved into main memory for the application to use. This has motivated us to produce app_perf (a
modified version of iperf) to take into account an extra memory copy that most applications must perform.
We can therefore use app_perf as a more realistic bound for how well a transmission scheme should be able
to reasonably obtain. In the experiments detailed in Section 5, we however include both iperf and
app_perf’s prediction of available bandwidth.

Figure 1. The Time Sequence Diagram of RBUDP

Three versions of RBUDP were developed:

1. RBUDP without scatter/gather optimization – this is a naïve implementation of RBUDP where
each incoming packet is examined (to determine where it should go in the application’s memory
buffer) and then moved there.

2. RBUDP with scatter/gather optimization – this implementation takes advantage of the fact that
most incoming packets are likely to arrive in order, and if transmission rates are below the
maximum throughput of the network, packets are unlikely to be lost. The algorithm works by
using readv() to directly move the data from kernel memory to its predicted location in the
application’s memory. After performing this readv() the packet header is examined to determine if
it was placed in the correct location. If it was not (either because it was an out-of-order packet, or
an intermediate packet was lost), then the packet is moved to the correct location in the user’s
memory buffer.

3. “Fake” RBUDP – this implementation is the same as the scheme without the scatter/gather
optimization except the incoming data is never moved to application memory. This was used to
examine the overhead of the RBUDP protocol compared to raw transmission of UDP packets via
Iperf.

Sender Receiver

…

A

B
C

D

E
F

G

UDP data traffic

TCP signaling traffic

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, accepted paper, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

4

Experiments that compare these versions of the protocol, and an analytical model of RBUDP, will be
presented in Section 5.

4 Analytical Model for RBUDP
The purpose of developing an analytical model for RBUDP is two-fold. Firstly we wanted to develop an
equation similar to the “bandwidth * delay product” equation for TCP, to allow us to predict RBUDP
performance over a given network. Secondly we wanted to systematically identify the factors that
influenced the overall performance of RBUDP so that we can predict how much benefit any potential
enhancement in the RBUDP algorithm might provide.

In our model we are attempting to predict the achievable bandwidth (Bachievable)of RBUDP:

total

total
achievable

T
SB =

Where:

Stotal = total data size to send (ie payload)
Ttotal = total predicted send time

Following the RBUDP algorithm, we estimate Ttotal as:

()

() gementachknowledeach send toTime;;;)(*)1(

 thiscall -packets missing transmit toTime;;;)(

payloadmain send toTime;;;
resend

0

N

1i

propackresend

resendudpSendprop

udpSendprop

TTN

TTT

TTT

i

total

+++











++

+=

∑
=

 (1)

Where:

Tprop = propagation delay
TudpSendi = time to send UDP blast on ith iteration.
Nresend = num times to resend (depends on loss%)
Tack = time to acknowledge a blast (at least 1 ACK is always needed)
Li = % packet loss on ith iteration

Specifically:

send

total
udpSend

B
ST =0 ;;; Bsend = chosen send rate = Bavail = available bandwidth

send

udpSendi
udpSendi

B
SLT 1i −−

=
*1

 ;;; Define # of packets to resend in terms of % loss

send

ack
ack

B
ST = ;;; Time to send an acknowledgment

8/





=

packet

total
ack

S
SS ;;; ACK is represented as a bitarray of 1 bit per 1.5K packet

send
packet

total
ack B

S
ST /

*8






=

Spacket = 1.5Kbytes ;;; size limited by Ethernet frame.

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, accepted paper, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

5

Consequently:

















+++











++







 +=

∑
=

− −

prop
sendpacket

total
resend

send

udpSendi
propresend

send

total
prop

T
BS

SN

B
SLTN

B
STT

i

total

**8
*)1(

)(
resend

1
N

1i

1

 (2)

Given this equation, let us consider two possible situations- one where no loss occurs, and one where loss
does occur. If no loss occurs, we can eliminate the middle term so that the best achievable performance can
be computed using:







 ++






 += prop

sendpacket

total

send

total
propbest T

BS
S

B
STT

**8

prop
sendpacket

total

send

total

total
best

T
BS

S
B
S

SB
2

**8
++

= (3)

In the denominator,
sendpacket

total

BS
S

**8
 is very small compared to other factors and can be omitted.

We can then derive the ratio of Bbest and Bsend as:

total

sendsend

best

S
BRTTB

B
*1

1

+
= (4)

where:
 2*Tprop is RTT (Round Trip Time).

This ratio shows that in order to maximize throughput, we should strive to minimize
total

send

S
BRTT *

 by

maximizing the size of the data we wish to deliver. For example, given Tprop for Chicago to Amsterdam is
55ms, and Bsend is 600 Mbps, and if we wish to achieve a throughput of 90% of the sending rate, then the
payload, Stotal needs to be at least 74.25 Megabytes.

In Section 5.2(Figure 4) we will use equation 3 to compare the theoretical best rate Bbest against
experimental results, over a variety of send rates (Bsend).

Furthermore we will compare Bbest against experimental results with varying payload sizes (Stotal)
(Section5.3, Figure 6).

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, accepted paper, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

6

Now let us turn to consider the situation where loss does occur. We will take a simplifying assumption that
a constant loss rate of L occurs at every pass of the algorithm. We realize that in a real network subsequent
losses in the retransmit phases should be smaller, rather than constant, because we will be retransmitting a
significantly smaller payload at each iteration. However to estimate that accurately would require us to
develop a model for the buffer in the intervening routers too. Hence we can take our simplifying
assumption as a worst-case estimate.

So, given loss rate L, retransmits will occur until the amount of data left is less than 1 packet. Therefore the
number of retransmits required can be estimated as:

 )/(log totalpacketLresend SSN = (5)

The data size of all retransmits is therefore:
 

L
LLSS

StotalSpacketL

totalresend −
−

=
1

)1(*
)/(log

 (6)

We can now plug (5) and (6) back into equation (1) to produce our new estimate of Bachievable given constant
loss rate L. In Section 5.3(Figure 6) we will put this prediction to use comparing an experimental situation
where packet loss was observed.

5 Experimental Results
The testbed network consisted of an OC-12 link (622Mbps) brought by SURFnet from Amsterdam to the
StarLight facility in Chicago. There was little-to-no traffic on the link when the experiments were
performed. Linux PCs were placed at each end of the link. The specifications of each PC are shown in
Table 1 below. Keenhond (in Amsterdam) was the faster PC, Prusin (in Chicago) was the slower one.

Host Name CPU Memory Size
System

Bandwidth
keeshond.nikhef.nl

(Amsterdam)
Pentium III

1.0GHz
2.0G Bytes 258 MByte/s

prusin.sl.startap.net
(Chicago)

Pentium III
650MHz

768M Bytes 171 Mbytes/s

Table 1. Specification of Host PCs in the Experimental Testbed

In the first set of experiments data was sent via RBUDP from the faster PC to the slower PC (from
Amsterdam to Chicago). In the second set of experiments data was sent in the opposite direction. This
allowed us to examine the performance of RBUPD when the bottleneck was either at the processor or in the
network. The three versions of RBUDP described Section 3 were compared against predicted results from
our analytical model. A third set of experiments examined RBUDP throughput for different payload sizes.

5.1 From the Fast PC to the Slow PC (Amsterdam to Chicago) –
when the Bottleneck is in the Receiving Host Computer

In this experiment, Iperf measured maximum available bandwidth at 576 Mbps, and app_perf measured
maximum possible throughput at 490 Mbps. In Figure 2 we plot these thresholds as lines across the top of
the graph. Plotting the achieved throughput at various sending rates for the three RBUDP algorithms we
notice that at sending rates below the network capacity, RBUDP performs well. I.e. RBUDP gives the
application exactly what the application asks for. We also notice that as the sending rates approach the
capacity of the network, Fake RBUDP achieves almost the same throughput as Iperf, and the lack of

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, accepted paper, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

7

scatter/gather optimization begins to hurt performance because the under-powered CPU is unable to keep
up with handling the incoming packets.

5.2 From the Slow PC to the Fast PC (Chicago to Amsterdam) –
when the Bottleneck is in the Network

We repeated the experiment in the opposite direction. This time the bottleneck is in the network rather than
in the receiving PC. Figures 4 and 5 show that when the host computer is fast enough iperf and app_perf
performances match as do the different implementations of RBUDP. Furthermore there is a close match
between our experimental results and our prediction from equation 3 (which estimated RBUDP
performance when loss rate is zero.)

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700
Sending rate (Mbps)

Th
ro

ug
ht

pu
t (

M
bp

s)

Fake RBUDP NON-Scatter/Gather Scatter/Gather
iperf throughput appperf throughput

Figure 2. RBUDP throughput from Amsterdam to Chicago. Payload is 600MB. Bottleneck is in the

receiving host. When there is insufficient processing power, version of RBUDP that has fewer memory
copies (ie scatter/gather algorithm) performs better.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700

Sending rate (Mbps)

Lo
ss

 ra
te

 (%
)

Fake RBUDP
NON-Scatter/Gather
Scatter/Gather

Figure 3. Loss rate of the first UDP blast from Amsterdam to Chicago.

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, accepted paper, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

8

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700

Sending rate (Mbps)

Th
ro

ug
ht

pu
t (

M
bp

s)

Fake RBUDP NON-Scatter/Gather Scatter/Gather
iperf throughput appperf throughput Best theoretical throughput

Figure 4. RBUDP throughput from Chicago to Amsterdam . Payload is 600MB. Bottleneck is in the

network. When there is sufficient processing power, all versions of RBUDP perform equally well. Our
model (Best theoretical throughput in the graph) also follows closely with our experimental results.

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, accepted paper, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

9

0

100

200

300

400

500

600

0 500 1000 1500 2000
Payload size (MB)

Th
ro

ug
hp

ut
 (M

B
/s

)

Theoretical BW when sending rate is 550 Mbps

Theoretical BW when sending rate is 610 Mbps

Actual BW when sending rate is 550 Mbps

Actual BW when sending rate is 610 Mbps

Figure 6. Throughput vs. Payload Size. RBUDP performs best for large payloads. Our theoretical

predictions at 610Mbps (assuming a 7% packet loss) and 550Mbps (with no loss) are able to bound the
performance of our experimental results.

Firstly, the results show that RBUDP performs best for large payloads. Secondly the results show that a 7%
packet loss does not impact throughput greatly for large payloads. Thirdly our analytical models for no loss
and 7% loss provide good boundaries for our experimental results.

6 Conclusions
RBUDP is a very aggressive protocol designed for dedicated- or QoS-enabled high bandwidth networks
(such as our aforementioned IP-over-DWDM testbeds). It eliminates TCP’s slow-start and congestion
control mechanisms, and aggregates acknowledgments so that the full bandwidth of a link is used for pure
data delivery. For large bulk transfers, RBUDP can provide delivery at precise, user-specified sending rates.
RBUDP performs at its best for large payloads rather than smaller ones, because with smaller payloads the
time to deliver the payload approaches the time to acknowledge the payload. The scatter-gather algorithm
to reduce memory copies, provides better performance over the non-scatter-gather algorithm for slower
CPUs. This benefit is expected to increase for faster networks.

We have provided an analytical model that provides a good prediction of RBUDP performance. This
prediction can be used as a rule of thumb in a manner similar to the bandwidth * delay product for TCP.
Furthermore this prediction can be used to estimate how future ideas for improving the algorithm might
impact RBUDP performance.

Work has begun to combine our work with similar work at the Laboratory for Advanced Computing, at the
University of Illinois at Chicago to add rate and congestion control to RBUDP to produce a complete data
transfer protocol called LambdaFTP, for parallelized data distribution over optically switched networks.

7 Acknowledgments
We would like to thank Cees de Laat at SARA for providing the endpoint in Amsterdam to perform these
experiments.

The virtual reality and advanced networking research, collaborations, and outreach programs at the
Electronic Visualization Laboratory (EVL) at the University of Illinois at Chicago are made possible by
major funding from the National Science Foundation (NSF), awards EIA-9802090, EIA-9871058, EIA-
0115809, ANI-9980480, ANI-9730202, ANI-0123399 and ANI-0129527, as well as the NSF Partnerships
for Advanced Computational Infrastructure (PACI) cooperative agreement ACI-9619019 to the National
Computational Science Alliance. EVL also receives funding from the US Department of Energy (DOE)

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, accepted paper, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

10

Science Grid program and the DOE ASCI VIEWS program. In addition, EVL receives funding from the
State of Illinois, Microsoft Research, General Motors Research, and Pacific Interface on behalf of NTT
Optical Network Systems Laboratory in Japan.

StarLight is a service mark of the Board of Trustees of the University of Illinois at Chicago and the Board
of Trustees of Northwestern University.

8 References
[Allcock01] W. Allcock, J. Bester, J. Bresnahan, et al., Data Management and Transfer in High-

Performance Computational Grid Environments. Parallel Computing, 2001.

[Arnaud01] B. St. Arnaud, R. Hatem, W. Hong, M. Blanchet, F. Parent, Optical BGP Networks,
http://www.canet3.net.

[Clark88] D. D. Clark, M. L. Lambert, L., Zhang, NETBLT: A High Throughput Transport
Protocol : ACM pp. 353-359, 1988.

[Iperf] http://dast.nlanr.net/Projects/Iperf/

[Leigh01] J. Leigh, O. Yu, D. Schonfeld, R. Ansari, et al., “Adaptive Networking for Tele-
Immersion,” in Proc. Immersive Projection Technology/Eurographics Virtual
Environments Workshop (IPT/EGVE), May 16-18, Stuttgart, Germany, 2001.

[Leigh97] J. Leigh., A. Johnson, T. A., DeFanti, Issues in the Design of a Flexible Distributed
Architecture for Supporting Persistence and Interoperability in Collaborative Virtual
Environments,. In the proceedings of Supercomputing '97 San Jose, California, Nov 15-
21, 1997.

[Netperf] http://netperf.org/netperf/NetperfPage.html

[OM02] www.evl.uic.edu/activity/template_act_project.php3?indi=147

[Park00] K. Park, Y. Cho, N. Krishnaprasad, C. Scharver, M. Lewis, J. Leigh, A. Johnson,
“CAVERNsoft G2: A Toolkit for High Performance Tele-Immersive Collaboration,”
Proceedings of the ACM Symposium on Virtual Reality Software and Technology 2000,
October 22-25, 2000, Seoul, Korea, pp. 8-15

[QT01] www.evl.uic.edu/cavern/teranode/quanta

[SL01] www.startap.net/starlight

[Stevens94] W. R. Stevens, "TCP/IP Illustrated," vol. 1: Addison Wesley, 1994, pp. 344-350.

[Stevens98] W. R. Stevens, “Unix Networking Programming, Volume 1, Second Edition: Networking

APIs: Sockets and XTI,” Addison Wesley, 1998, pp.357.

[WEB100] www.web100.org

[Zang01] H. Zang, J. P. Jue, L. Sahasrabuddhe, B. Mukherjee, IEEE Communications Magazine,

September 2001, pp.100-108.

