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Abstract 

 
High speed bulk data transfer is an important part of many data-intensive scientific 
applications. This paper describes an aggressive bulk data transfer scheme, called 
Reliable Blast UDP (RBUDP), intended for extremely high bandwidth, dedicated- or 
Quality-of-Service- enabled networks, such as optically switched networks. This paper 
also provides an analytical model to predict RBUDP’s performance and compares the 
results of our model against our implementation of RBUDP. Our results show that 
RBUDP performs extremely efficiently over high speed dedicated networks and our 
model is able to provide good estimates of its performance. 

1 Introduction 
Quanta (the Quality of Service Adaptive Networking Toolkit)[QT01] is a toolkit based on our prior work 
on CAVERNsoft, which provided a set of APIs for bridging graphics and networking, to allow developers 
to more easily build applications for collaborative, immersive environments[Leigh97, Park00, Leigh01]. 
CAVERNsoft, and consequently Quanta provide a rich set of tools and data distribution mechanisms 
including: message passing, distributed shared memory, remote procedure calls, remote file I/O, forward 
error corrected UDP, parallel TCP for bulk data transfer, and collaborative performance monitoring. Work 
in Quanta is underway to develop mechanisms for enabling dedicated light path reservations (often 
described as “lambdas”) on optically switched networks; and new protocols for maximizing data delivery 
over these lambdas. Quanta’s experimental testbeds are two optically switched networks Starlight and 
OMNInet. Starlight is a project managed by the University of Illinois at Chicago, to provide an IP-over-
Dence Wave Division Multiplexing (DWDM) peering point for national and international optical networks. 
The goal is to develop a “petri dish” for growing an experimental, optically connected Grid whereby 
clusters of computing resources can directly “dial-up” lambdas between them and use the extreme 
quantities of bandwidth as a long distance system bus [SL01]. Each lambda can provide anywhere between 
1 Gigabit/s to 10Gigabit/s of bandwidth. OMNInet is a project supported by Nortel Networks, SBC 
Communications Inc. and Ameritech to assess and validate next-generation optical technologies, 
architectures and applications in metropolitan area networks [OM02]. 
 
In this paper we address one aspect of our work on Quanta- the development of an aggressive bulk data 
transfer scheme intended for high bandwidth, dedicated- or Quality-of-Service- enabled networks, such as 
those on StarLight and OMNInet. In the following sections we will introduce the problem of bulk data 
transfer over long fat networks; provide an algorithm for a transfer scheme, called Reliable Blast UDP 
(RBUDP); propose an analytical model to predict its performance; and compare the results of our model 
against our implementation of RBUDP.  

2 The Problem of Bulk Data Transfers 
Even if networked applications could make Gigabit “lambda reservations,” it does not however guarantee 
that they will be able to make full use of that bandwidth. This problem is particularly evident when one 
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attempts to perform large bulk data transfers over long distance, high speed networks (often referred to as 
“long fat networks” or LFNs) [Stevens94]. 
 
LFNs such as those between the US and Europe or Asia have extremely high round-trip latencies (at best 
120ms). This latency results in gross bandwidth under-utilization when TCP is used for data delivery. This 
is because TCP’s windowing mechanism imposes a limit on the amount of data it will send before it waits 
for an acknowledgement. The long delays that occur over international networks means that TCP will 
spend an inordinate amount of time waiting for acknowledgments, which in turn means that the client’s 
data transmission will never reach the peak available capacity of the network. Traditionally this is 
“remedied” by adjusting TCP’s window and buffer sizes to match the bandwidth * delay product (or 
capacity) of the network. For example, for a 1Gbps connection between Chicago and Amsterdam, with an 
average round trip time of 150ms, the capacity is 1024*0.15/8 = 19.2 Mbytes. Adjusting TCP window size 
is problematic for several reasons: firstly, on some operating systems (such as IRIX for the SGI,) the 
window size can only be modified by building a new version of the kernel- hence this is not an operation a 
user-level application can invoke. Secondly, one needs to know the current capacity of the network in order 
to set the window size correctly. The current capacity varies with the amount of background traffic already 
on the network and the path to the destination. 
 
Several alternative solutions are possible. One solution is to provide TCP with better estimates of the 
current capacity of a link. This is the approach of the WEB100 Consortium [WEB100]. The consortium is 
developing techniques to modify router operating systems to report available bandwidth over a network 
link. Furthermore they are modifying operating systems kernels to allow better monitoring of TCP 
performance. Another solution is to use striped (or parallel) TCP [Park00, Leigh01, Allcock01]. In parallel 
TCP, the payload is divided into N partitions which are delivered over N TCP connections. Both Leigh (in 
CAVERNsoft) and Allcock (in GridFTP) have shown that parallel TCP can provide throughput as high as 
80% of a network’s available bandwidth, however its performance is unstable when excessive numbers of 
sockets are used. Furthermore it is difficult to predict the correct number of sockets to use. 
 
In this paper we take a more aggressive approach by using UDP augmented with aggregated 
acknowledgments to provide a reliable bulk data transmission scheme. We call this Reliable Blast UDP 
(RBUDP). A similar scheme called NetBLT was first proposed in 1985 (RFC969) by Clark et al [Clark88].  
We extend Clark’s work by providing both analytical and experimental results to show that RBUDP can 
provide the performance predictability that is lacking in parallel TCP. Furthermore we will provide an 
equation similar to TCP’s bandwidth*delay product to allow one to predict RBUDP performance. This 
prediction will be useful in the future, for network resource reservation on the Grid. 
 
It is important to remember that we intend aggressive protocols such as parallel TCP and Reliable Blast 
UDP for high speed dedicated links or links over which quality of service is available. We do not intend 
these protocols for use over the broader Internet. 

3 Reliable Blast UDP 
Reliable Blast UDP has two goals. The first is to keep the network pipe as full as possible during bulk data 
transfer. The second goal is to avoid TCP’s per-packet interaction so that acknowledgments are not sent per 
window of transmitted data, but aggregated and delivered at the end of a transmission phase. Figure 1 
below illustrates the RBUDP data delivery scheme. In the first data transmission phase (A to B in the 
figure), RBUDP sends the entire payload at a user-specified sending rate using UDP datagrams. Since UDP 
is an unreliable protocol, some datagrams may become lost due to congestion or an inability of the 
receiving host from reading the packets rapidly enough. The receiver therefore must keep a tally of the 
packets that are received in order to determine which packets must be retransmitted. At the end of the bulk 
data transmission phase, the sender sends a DONE signal via TCP (C in the figure) so that the receiver 
knows that no more UDP packets will arrive. The receiver responds by sending an Acknowledgment 
consisting of a bitmap tally of the received packets (D in the figure). The sender responds by resending the 
missing packets, and the process repeats itself until no more packets need to be retransmitted. 
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In RBUDP, the most important input parameter is the sending rate of the UDP blasts.  To minimize loss, 
the sending rate should not be larger than the bandwidth of the bottleneck link (typically a router). Tools 
such as Iperf [Iperf] and netperf [Netperf] are typically used to measure the bottleneck bandwidth.  In 
theory if one could send data just below this rate, data loss should be near zero. In practice however, other 
factors need to be considered. In our first implementation of RBUDP, we chose a send rate of 5% less than 
the available network bandwidth predicted by Iperf.  Surprisingly this resulted in approximately 33% loss!  
After further investigation we found that the problem was in the end host rather than the network.  
Specifically, the receiver was not fast enough to keep up with the network while moving data from the 
kernel buffer to application buffers.  When we used a faster computer as the receiver, the loss rate 
decreased to less than 2%.  The details of this experiment are further discussed in Section 5.   
 
The chief problem with using Iperf as a measure of possible throughput over a link is that it does not take 
into account the fact that in a real application, data is not simply streamed to a receiver and discarded. It has 
to be moved into main memory for the application to use. This has motivated us to produce app_perf (a 
modified version of iperf) to take into account an extra memory copy that most applications must perform. 
We can therefore use app_perf as a more realistic bound for how well a transmission scheme should be able 
to reasonably obtain. In the experiments detailed in Section 5, we however include both iperf and 
app_perf’s prediction of available bandwidth. 
 

 
Figure 1.  The Time Sequence Diagram of RBUDP 

 
Three versions of RBUDP were developed: 
 

1. RBUDP without scatter/gather optimization – this is a naïve implementation of RBUDP where 
each incoming packet is examined (to determine where it should go in the application’s memory 
buffer) and then moved there. 

2. RBUDP with scatter/gather optimization – this implementation takes advantage of the fact that 
most incoming packets are likely to arrive in order, and if transmission rates are below the 
maximum throughput of the network, packets are unlikely to be lost. The algorithm works by 
using readv() to directly move the data from kernel memory to its predicted location in the 
application’s memory. After performing this readv() the packet header is examined to determine if 
it was placed in the correct location. If it was not (either because it was an out-of-order packet, or 
an intermediate packet was lost), then the packet is moved to the correct location in the user’s 
memory buffer. 

3. “Fake” RBUDP – this implementation is the same as the scheme without the scatter/gather 
optimization except the incoming data is never moved to application memory. This was used to 
examine the overhead of the RBUDP protocol compared to raw transmission of UDP packets via 
Iperf. 
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Experiments that compare these versions of the protocol, and an analytical model of RBUDP, will be 
presented in Section 5. 

4 Analytical Model for RBUDP 
The purpose of developing an analytical model for RBUDP is two-fold. Firstly we wanted to develop an 
equation similar to the “bandwidth * delay product” equation for TCP, to allow us to predict RBUDP 
performance over a given network. Secondly we wanted to systematically identify the factors that 
influenced the overall performance of RBUDP so that we can predict how much benefit any potential 
enhancement in the RBUDP algorithm might provide. 
 
In our model we are attempting to predict the achievable bandwidth (Bachievable)of RBUDP: 

total
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Where: 

Stotal = total data size to send (ie payload) 
Ttotal = total predicted send time 
 

Following the RBUDP algorithm, we estimate Ttotal as:       
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Where: 

Tprop = propagation delay 
TudpSendi = time to send UDP blast on ith iteration. 
Nresend = num times to resend (depends on loss%) 
Tack = time to acknowledge a blast (at least 1 ACK is always needed) 
Li = % packet loss on ith iteration 

 
Specifically: 
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Spacket = 1.5Kbytes  ;;; size limited by Ethernet frame. 
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Given this equation, let us consider two possible situations- one where no loss occurs, and one where loss 
does occur. If no loss occurs, we can eliminate the middle term so that the best achievable performance can 
be computed using: 
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In the denominator, 
sendpacket

total

BS
S

**8
 is very small compared to other factors and can be omitted. 

 
We can then derive the ratio of Bbest and Bsend as: 
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where: 
 2*Tprop is RTT (Round Trip Time). 

This ratio shows that in order to maximize throughput, we should strive to minimize 
total

send

S
BRTT *

 by 

maximizing the size of the data we wish to deliver. For example, given Tprop for Chicago to Amsterdam is 
55ms, and Bsend is 600 Mbps, and if we wish to achieve a throughput of 90% of the sending rate, then the 
payload, Stotal needs to be at least 74.25 Megabytes.   
 
In Section 5.2(Figure 4) we will use equation 3 to compare the theoretical best rate Bbest against 
experimental results, over a variety of send rates (Bsend).  
 
Furthermore we will compare Bbest against experimental results with varying payload sizes (Stotal) 
(Section5.3, Figure 6).  
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Now let us turn to consider the situation where loss does occur. We will take a simplifying assumption that 
a constant loss rate of L occurs at every pass of the algorithm. We realize that in a real network subsequent 
losses in the retransmit phases should be smaller, rather than constant, because we will be retransmitting a 
significantly smaller payload at each iteration. However to estimate that accurately would require us to 
develop a model for the buffer in the intervening routers too. Hence we can take our simplifying 
assumption as a worst-case estimate. 
 
So, given loss rate L, retransmits will occur until the amount of data left is less than 1 packet. Therefore the 
number of retransmits required can be estimated as: 
 

 )/(log totalpacketLresend SSN =        (5) 
 

The data size of all retransmits is therefore: 
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      (6) 

 
We can now plug (5) and (6) back into equation (1) to produce our new estimate of Bachievable given constant 
loss rate L. In Section 5.3(Figure 6) we will put this prediction to use comparing an experimental situation 
where packet loss was observed.  

5 Experimental Results 
The testbed network consisted of an OC-12 link (622Mbps) brought by SURFnet from Amsterdam to the 
StarLight facility in Chicago.  There was little-to-no traffic on the link when the experiments were 
performed. Linux PCs were placed at each end of the link. The specifications of each PC are shown in 
Table 1 below.  Keenhond (in Amsterdam) was the faster PC, Prusin (in Chicago) was the slower one. 

 

Host Name CPU Memory Size 
System 

Bandwidth 
keeshond.nikhef.nl 

(Amsterdam) 
Pentium III 

1.0GHz 
2.0G Bytes 258 MByte/s 

prusin.sl.startap.net 
(Chicago) 

Pentium III 
650MHz 

768M Bytes 171 Mbytes/s 

 
Table 1.  Specification of Host PCs in the Experimental Testbed 

 
In the first set of experiments data was sent via RBUDP from the faster PC to the slower PC (from 
Amsterdam to Chicago). In the second set of experiments data was sent in the opposite direction. This 
allowed us to examine the performance of RBUPD when the bottleneck was either at the processor or in the 
network. The three versions of RBUDP described Section 3 were compared against predicted results from 
our analytical model. A third set of experiments examined RBUDP throughput for different payload sizes. 

5.1 From the Fast PC to the Slow PC (Amsterdam to Chicago) – 
when the Bottleneck is in the Receiving Host Computer 

In this experiment, Iperf measured maximum available bandwidth at 576 Mbps, and app_perf measured 
maximum possible throughput at 490 Mbps.  In Figure 2 we plot these thresholds as lines across the top of 
the graph. Plotting the achieved throughput at various sending rates for the three RBUDP algorithms we 
notice that at sending rates below the network capacity, RBUDP performs well. I.e. RBUDP gives the 
application exactly what the application asks for. We also notice that as the sending rates approach the 
capacity of the network, Fake RBUDP achieves almost the same throughput as Iperf,  and the lack of 
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scatter/gather optimization begins to hurt performance because the under-powered CPU is unable to keep 
up with handling the incoming packets. 

5.2 From the Slow PC to the Fast PC (Chicago to Amsterdam) – 
when the Bottleneck is in the Network 

We repeated the experiment in the opposite direction. This time the bottleneck is in the network rather than 
in the receiving PC. Figures 4 and 5 show that when the host computer is fast enough iperf and app_perf 
performances match as do the different implementations of RBUDP. Furthermore there is a close match 
between our experimental results and our prediction from equation 3 (which estimated RBUDP 
performance when loss rate is zero.) 
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Figure 2. RBUDP throughput from Amsterdam to Chicago. Payload is 600MB. Bottleneck is in the 

receiving host. When there is insufficient processing power, version of RBUDP that has fewer memory 
copies (ie scatter/gather algorithm) performs better. 
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Figure 3. Loss rate of the first UDP blast from Amsterdam to Chicago. 
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Figure 4. RBUDP throughput from Chicago to Amsterdam . Payload is 600MB. Bottleneck is in the 

network. When there is sufficient processing power, all versions of RBUDP perform equally well. Our 
model (Best theoretical throughput in the graph) also follows closely with our experimental results. 
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Figure 6. Throughput vs. Payload Size. RBUDP performs best for large payloads. Our theoretical 

predictions at 610Mbps (assuming a 7% packet loss) and 550Mbps (with no loss) are able to bound the 
performance of our experimental results. 

 
Firstly, the results show that RBUDP performs best for large payloads. Secondly the results show that a 7% 
packet loss does not impact throughput greatly for large payloads. Thirdly our analytical models for no loss 
and 7% loss provide good boundaries for our experimental results. 

6 Conclusions 
RBUDP is a very aggressive protocol designed for dedicated- or QoS-enabled high bandwidth networks 
(such as our aforementioned IP-over-DWDM testbeds). It eliminates TCP’s slow-start and congestion 
control mechanisms, and aggregates acknowledgments so that the full bandwidth of a link is used for pure 
data delivery. For large bulk transfers, RBUDP can provide delivery at precise, user-specified sending rates. 
RBUDP performs at its best for large payloads rather than smaller ones, because with smaller payloads the 
time to deliver the payload approaches the time to acknowledge the payload. The scatter-gather algorithm 
to reduce memory copies, provides better performance over the non-scatter-gather algorithm for slower 
CPUs. This benefit is expected to increase for faster networks. 
 
We have provided an analytical model that provides a good prediction of RBUDP performance. This 
prediction can be used as a rule of thumb in a manner similar to the bandwidth * delay product for TCP. 
Furthermore this prediction can be used to estimate how future ideas for improving the algorithm might 
impact RBUDP performance. 
 
Work has begun to combine our work with similar work at the Laboratory for Advanced Computing, at the 
University of Illinois at Chicago to add rate and congestion control to RBUDP to produce a complete data 
transfer protocol called LambdaFTP, for parallelized data distribution over optically switched networks. 
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