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Abstract—We present the design and development of a crowd-
sourced, data-driven approach to quantifying the flavor of specific
foods. Our approach leverages an interactive smartphone app
with a client-server architecture, and supports future stratified
analysis based on dietary and demographic factors. This ap-
proach has the potential to document taste loss and to empower
patients to describe taste loss symptoms in a more precise,
standardized language.

Index Terms—flavor, taste loss, head and neck cancer

I. INTRODUCTION

Food enjoyment is an important component of quality of
life, and most humans take the ability to detect food flavor for
granted. However, not everyone is that fortunate. Taste loss
(dysgeusia or altered taste) is a common long-term side effect
in head and neck cancer (HNC) patients, affecting a large
percentage of patients during and after treatment, in particular
during and after radiotherapy. Dysgeusia is experienced by
51–100% of patients at the end of radiotherapy and 23–50%
at 1–2 years after treatment [15]. This taste dysfunction can
result from radiation-related damage to the soft tissues in the
head and neck [37], [40]–[42], including taste buds and nerves,
and is a significant toxicity that negatively impacts quality of
life [12], [13], [39]. In dysgeusia, patients may experience a
dulled, changed, or completely lost sense of taste and enjoy-
ment in food [34]. This can lead to decreased appetite and
reduced food intake, impacting overall nutrition and quality
of life [2], [7], [26]. The resultant poor nutritional choices
can then contribute to sarcopenia, or muscle wasting [22],
[29], which is directly associated with increased mortality
and poorer clinical outcomes across multiple datasets [3], [6],
[14]. Loss of taste can also be a symptom of infections like
COVID-19, the common cold, or sinus infections, as well
as neurological conditions like Alzheimer’s, Parkinson’s, or
multiple sclerosis. Other causes include aging (people over
50 experience a reduction in the number of taste buds),
certain medications, poor oral hygiene, vitamin deficiencies

(especially zinc and B12), acid reflux, and head or nerve injury.
However, dysgeusia has been studied mostly in the context of
head and neck cancer [31], [38], due to its prevalence in this
condition.

Strategies to improve taste function and nutrition include
working with a healthcare team, such as nutritionists, to man-
age taste and dietary issues [4], [9]. However, these strategies
are severely impaired by a lack of data and understanding
regarding flavor perception in normal individuals, and the lack
of precise descriptions of taste loss in head and neck patients.
For example, patients in the clinic may state [actual quotes]:
”Things taste different” without being able to explain how
when prompted by the clinician; or ”Doesn’t taste good”,
”It tastes bland”, ”I can handle sweet, but chocolate cake
is terrible”, or ”Tastes like asphalt / cardboard / mud / dirt”.

To overcome these critical issues, we present the develop-
ment of a crowd-sourced, data-driven smartphone approach to
quantifying the subjective perception of flavor in a set of foods.
Following a computational approach to flavor quantification
facilitates access to data from a broad population, and provides
good potential representation of variability with factors like
age or regional cuisine. It also has the potential to empower
patients to describe taste loss symptoms in a precise, standard-
ized language, and to improve patient-doctor communication
through shared verbiage.

II. BACKGROUND AND RELATED WORK

The biomedical clinical perspective on taste and flavor is
generally aligned with the chemical perception through the
taste buds (sweet, salty, sour, bitter, and umami). Biomedical
research on taste loss is focused on the key molecular mecha-
nisms underlying the phenomenon, including genetics, cellular
regeneration, and the role of inflammation, age, metabolism
and obesity on taste perception. Flavor is however multidimen-
sional, and involves interactions of taste and smell [10], [23].
Recent insights from the COVID-19 pandemic have further



Fig. 1. Application front-end, showing the Home, Ratings, and Profile screens.

Fig. 2. Application front-end, showing the rating screens and the application guide.



connected the sense of smell and taste, and have shown that
olfactory training can improve the senses of smell and taste
after viral infections by leveraging neuroplasticity.

Patient reported outcomes collected through questionnaires
typically quantify the degree of taste loss, but do not detail
any specific dimensions of taste loss. The MD Anderson
Symptom Inventory (MDASI) [5] addresses taste loss through
its Head and Neck Module (MDASI-HN), which includes a
specific item on ”problems with tasting”. The MDASI-HN
measures the severity of a patient’s tasting problems based
on their self-reported experience in the last 24 hours. It is a
patient-reported outcome (PRO) measure, meaning it captures
the subjective experience of the patient. The questionnaire is
typically administered weekly during treatment to track the
progression of symptoms. Like all MDASI symptom items,
the tasting problem is rated on a 0–10 scale, where 0 is
”not present” and 10 is ”as bad as you can imagine”. In
clinical practice, the MDASI-HN is sometimes used alongside
other tests to provide a comprehensive assessment of taste.
For example, some studies use objective ”taste strips”, liquid
taste stimuli presented in drops, or edible films that incorporate
chemosensory stimuli [11] in combination with the MDASI-
HN to test for specific taste qualities (sweet, sour, salty,
and bitter) and concentrations. This approach combines the
patient’s subjective perception of taste loss with an objective,
measured result.

Other works consider Likert scales of 4 dimensions of gusta-
tory disturbances: intensity of taste, discomfort, phantogeusie
and parageusia, and general alterations of taste [32], which
are not precise enough to be actionable. Another approach
has developed The Taste Liking Questionnaire (TasteLQ), a
validated tool developed for the Danish population to measure
liking for various tastes and oral sensations, including basic
tastes (sweet, sour, salty, bitter, umami), fat sensation, pun-
gency, and astringency, through 44 food items [17]. There are
no existing distributed, data-driven approaches that leverage
mobile technology to quantify food flavor.

III. METHODS

A. Design Process

The requirements for our approach build on several in-
terviews with HNC radiation oncology clinicians at a major
international cancer treatment center, as part of a long term
inter-disciplinary collaboration that spans more than a decade.
These interviews revealed how imprecise descriptions of taste
loss during clinic appointments led to frustration and a sense
of powerlessness on both the HNC patient and provider
side. They also revealed that the five classical measures of
taste, aligned with the taste bud types, were inadequate in
the clinic (e.g., patients described a loss of piquancy, or
unpleasant textures). Together with the clinicians, we then
performed a literature survey to better understand the multiple
dimensions of taste and flavor. We then designed a protocol
for collecting data through a smart phone app. The protocol
was further enhanced through feedback from our Institutional
Review Board, in particular with respect to using layman

verbiage when describing taste or flavor (e.g., savory rather
than umami). We designed and developed a smart phone app
(Fig. 1 and Fig. 2) based on this protocol. We used an Activity-
Centered Design process [21], through which we iteratively
incorporated feedback from collaborators and early testers to
refine the final design.

B. Flavor and Taste Dimensions

Following a review of taste and flavor dimensions as dis-
cussed in the culinary literature [8], [25], biomedical litera-
ture [17], [28], a social media guide to flavor profiles [27],
and multiple discussions with the HNC clinicians, we agreed
on the following relevant dimensions for studying taste loss:

• Sweet
• Salty
• Sour
• Bitter
• Savory
• Fatty
• Astringent
• Aromatic
• Texture
• Piquancy
The first five dimensions (Sweet, Salty, Sour, Bitter, and

Savory/umami) are associated with the taste bud types, where
Savory/umami denotes the meaty ”mouth-filling” taste notice-
able in foods like anchovies, blue cheese, or mushrooms. Fatty
is the unique sensation of dietary fat detected by the tongue,
distinct from texture and aroma, and which is sometimes
considered the sixth basic taste. Astringent denotes a sensory
sensation of dryness, roughness, and puckering in the mouth,
caused by compounds called tannins and polyphenols that
bind to salivary proteins, and detectable in red wine, unripe
fruit, walnuts, or tea. Aromatic denotes what is perceived by
the nose, and it is thought to be responsible for as much
as 80% or more of flavor; aromatic ingredients include fresh
herbs, spices, or grated lemon zest. Texture denotes the feel,
appearance, or consistency of food, and can range from creamy
to crunchy and crispy. Piquancy denotes the incorrect mouth-
feel of “hotness”, meaning piquancy’s “sharpness” and/or
“spiciness”.

From other dimensions present in our survey, we excluded
Temperature [8] and Heat [25], which are related to the process
of cooking or baking the food, were not directly related to
taste loss, and were also too difficult to control for. We also
did not include The X Factor [8], which denotes what is
perceived through our five physical senses including sight, and
also emotionally, mentally, and even spiritually. However, we
did include diet and cuisine among the demographics data
collected. In addition, we included a comment free-text box
for flavor or taste perceptions not covered by these dimensions
(e.g., metallic, asphalt, cardboard etc.).

C. Demographics Data

Through discussions with our clinician collaborators we
compiled the following list of demographics data to collect:



Sweet Salty Sour Bitter Umami Fatty Astringent Piquant Aromatic
Sweet Potato Soy Sauce Yogurt Dark Coffee Soy Sauce Olive Oil Red Wine Black Pepper Strawberry
Strawberry French Fries White Vinegar Dark Chocolate Parmesan Avocado Black Tea Chili Garlic
Nutella Potato Chips Pickles Tonic Water Salami Milk Walnuts Ginger Parmesan
Brownie Parmesan Lemon Slice Garlic Almonds Dark Coffee Yellow Onion Dark Coffee
Honey Orange Juice Bacon Eggs Dark Chocolate
Yellow Banana Dark Chocolate Black Tea
Orange Juice Parmesan Yellow Onion
Milk Chocolate Bacon
Pear
Syrup

TABLE I
FOODS GROUPED BY DOMINANT TASTE DIMENSION

• Age Group
• Gender
• Nationality
• Ethnicity/Race
• Regional Cuisine (Indian, Mexican, Chinese, Thai, other)
• Diet (e.g., low-carb/vegan/gluten-free)
• What foods do you normally eat
The Age Group information was included due to the docu-

mented relationship between taste loss and advanced age [30].
The Regional Cuisine list was tailored in this case to capture
spicy cuisine and to reflect the population typically treated at
the medical center. The Diet information was included due
to evidence that habitual carbohydrate consumption affects
a person’s sensitivity to sweetness, with lower sugar diets
potentially increasing sensitivity to sweet tastes [16].

D. Food List Design

The current food list was carefully curated following a struc-
tured selection process. We began by collecting commonly
consumed food items from online sources and dietary surveys
in the United States. The preliminary list was then compared
with the validated item pool of the Danish Taste Liking Ques-
tionnaire (TasteQL), which provided a scientifically grounded
reference for taste-based categorization [17]. To finalize the
list, we applied four key principles:

• Familiarity: foods should be widely recognized, espe-
cially by U.S. participants

• Clear Taste Profile: each food should strongly represent
one primary taste dimension

• Ease Of Use: items must be ready-to-eat without requir-
ing cooking or preparation

• Balanced Representation: ensuring that each taste group
is covered by at least three examples to avoid bias

We also excluded items with high taste variability (taste
heavily dependent on brand or preparation) or with multiple
overlapping dominant flavors. Items with variability due to
varying ripeness, added ingredients or flavorings were reduced
to the simplest version and explicitly labeled (e.g., ”yogurt:
plain, unsweetened”, ”banana: yellow, ripe”). Foods requiring
preparation were either removed or explicitly labeled with
usage instructions. The resulting set (Table I) consists of 36
items that are consistent, easy to evaluate, and taste-specific,
making them particularly well suited for the goals of this study.

Fig. 3. System architecture for the mobile application, showing the client and
server sides of the application.

E. System Architecture

The mobile application (Fig. 3) is developed using the Expo
Framework (React Native), providing a cross-platform solution
for both Android and iOS. The backend relies entirely on Fire-
base, a cloud-based Backend-as-a-Service (BaaS) platform,
where Firestore is used as the real-time NoSQL database to
store user data, and Firebase Authentication manages secure
user login and session handling. The Firestore database is
structured to separate static user information from dynamic
input. Each user has a unique document containing two key
sections: a single document for demographic data and a
subcollection for individual food taste ratings. This design
supports modular data access and efficient querying, while
keeping a clear separation of concerns.

IV. RESULTS AND DISCUSSION

Figure 1 shows the resulting application front-end. Figure 2
shows the food rating interface for two types of food, and the
application help screen. The front-end leverages a Kiviat dia-
gram (a filled-in radar chart) to encode the multivariate flavor
dimensions, due to its proven effectiveness in multivariate data
similarity visual detection [20].

In a controlled experiment, we provided twelve subjects
with food samples and asked them to rate their flavor profile.
Some subjects elected to not try some of the foods. Figure 4
shows the mean and example flavor profile ratings for Dark
Chocolate. Bitterness is prevalent. The quantitative flavor
profile is shown in Table II. Figure 5 shows the mean and
example profile ratings for Almond. All responders identified



Fig. 4. Dark chocolate flavor profile mean ratings (twelve responders), and three individual ratings from different responders, along with the ethnicity,
nationality, and diet of each responder.

Fig. 5. Almond flavor profile mean ratings (twelve responders), and three individual ratings from different responders, along with the ethnicity, nationality,
and diet of each responder.

the crunchy texture. Some responders, but not all, detected
also bitterness. One responder identified also sweetness. The
quantitative flavor profile is shown in Table III. Figure 6
shows the mean flavor profile for Strawberry across twelve
respondents, and example flavor profile ratings from three of
these individuals. While all responders identify the food as
sweet and sour with an olfactory note (aroma), one responder
also identified an umami (savory) component, and several re-
sponders identified a note of bitterness. The quantitative flavor
profile is shown in Table IV. Despite individual variations
in demographics and diet, the flavor profiles appear to be
remarkably consistent across testers. The individual variations
among subjects are also fascinating.

In an additional small scale feasibility pilot test, a different
set of three testers used the app at home for a short period

TABLE II
QUANTIFIED FLAVOR PROFILE FOR DARK CHOCOLATE (12 RESPONDERS)

Dimension Mean ± Stdev
Sweet 1.42 ± 1.00
Sour 0.50 ± 1.17
Salty 0.33 ± 0.65
Bitter 3.50 ± 1.09
Umami 0.08 ± 0.29
Fatty 1.58 ± 1.16
Astringent 1.00 ± 1.65
Aromatic 1.67 ± 0.98
Texture 2.17 ± 1.40
Piquant 0.00 ± 0.00

of time (2-3 days). The responders (R1, R2, R3) rated food
items they already had in their homes. Due to the limited
duration, each responder provided good coverage of the food



TABLE III
QUANTIFIED FLAVOR PROFILE FOR ALMONDS (12 RESPONDERS)

Dimension Mean ± Stdev
Sweet 0.75 ± 1.22
Sour 0.00 ± 0.00
Salty 0.83 ± 1.11
Bitter 0.83 ± 1.59
Umami 0.17 ± 0.39
Fatty 2.17 ± 1.47
Astringent 0.42 ± 0.90
Aromatic 0.50 ± 0.67
Texture 4.25 ± 1.48
Piquant 0.00 ± 0.00

TABLE IV
QUANTIFIED FLAVOR PROFILE FOR STRAWBERRY (12 RESPONDERS)

Dimension Mean ± Stdev
Sweet 3.00 ± 0.82
Sour 2.38 ± 1.19
Salty 0.23 ± 0.44
Bitter 0.38 ± 1.12
Umami 0.08 ± 0.28
Fatty 0.00 ± 0.00
Astringent 0.69 ± 0.75
Aromatic 2.23 ± 1.42
Texture 1.85 ± 1.28
Piquant 0.00 ± 0.00

categories in terms of taste dimensions (9-20 foods profiled,
spanning in the case of each responder all of the 9 categories),
but they did not rate a large number of foods per category. As
a result, the three responders had a relatively small number of
foods in common: Yogurt, Strawberry, Dark Chocolate, and
Tonic Water. Figure 7 shows the flavor profile ratings from
these respondents for Strawberry. All responders identified the
food as sweet. R1 did not detect an olfactory note (aroma),
and identified an umami (savory) component. Despite these
variations, which may or not be due to variability in the food
(e.g., R3 noted their variation was an Oishii strawberry, a
varietal advertising ”exceptional sweetness, a delicate aroma,
a firmer texture, and a superior flavor”) the overall profile
is similar across the three responders. Figure 8 shows the
flavor profile ratings from these respondents for Tonic Water.
All three responders identified a bitter component. R1 did
not identify an astringent note at all, and again indicated an
umami/savory note.

These results support the feasibility of this approach. Even if
patients would rate a relatively small number of foods at home,
the information would be enough, when compared against the
normal population and tracked over time, to pin point the
specific dimensions of flavor being affected, their trajectory
over time, and their response to targeted interventions. Beyond
feasibility, these preliminary results illustrate the importance
of collecting large scale data from all types of people, in
particular as age >50 dulls the sense of taste, and most HNC
patients are older than 65.

The design of our solution generalizes well to other sets
of custom foods, demographics, or flavor characteristics. The
radar chart encoding is effective for up to a few dozen features.

Our overall solution scales well with a large number of
application clients.

V. CONCLUSION AND FUTURE WORK

In this work we presented the design and development
of a crowd-sourced, data-driven approach to quantifying the
flavor of specific foods. Our solution proposes an interactive
smart phone app backed up by a client-server architecture,
which could be leveraged for telehealth [19], [24] across
populations [18], [33]. This solution was developed through
participatory design with HNC clinicians, and is informed
by the biomedical literature and the culinary literature. The
resulting app will allow us to generate a rich dataset of
flavor perceptions, annotated with dietary and demographic
factors. The resulting dataset may help clarify other important
questions related to diet, flavor, and culinary enjoyment.

Beyond establishing a flavor baseline across a wide variety
of individuals, this approach has the potential to empower head
and neck cancer patients to describe taste loss symptoms in a
more precise, standardized language. In future work, we plan
to track changes over time in an individual’s ratings of food
flavor, to quantify and compare the data provided by head
and neck cancer patients against the baseline measurements
while accounting for missing data [1], [35], [36], [43], and to
develop computational nutritional and dietary interventions to
improve the quality of life of patients during and after radiation
treatment.
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