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Deep Umbra: A Generative Approach for
Sunlight Access Computation in Urban Spaces

Kazi Shahrukh Omar, Gustavo Moreira, Daniel Hodczak,
Maryam Hosseini, Nicola Colaninno, Marcos Lage, and Fabio Miranda

Abstract—Sunlight and shadow play critical roles in how urban spaces are utilized, thrive, and grow. While access to sunlight is
essential to the success of urban environments, shadows can provide shaded places to stay during the hot seasons, mitigate heat
island effect, and increase pedestrian comfort levels. Properly quantifying sunlight access and shadows in large urban environments
is key in tackling some of the important challenges facing cities today. In this paper, we propose Deep Umbra, a novel computational
framework that enables the quantification of sunlight access and shadows at a global scale. Our framework is based on a conditional
generative adversarial network that considers the physical form of cities to compute high-resolution spatial information of accumulated
sunlight access for the different seasons of the year. We use data from seven different cities to train our model, and show, through an
extensive set of experiments, its low overall RMSE (below 0.1) as well as its extensibility to cities that were not part of the training set.
Additionally, we contribute a set of case studies and a comprehensive dataset with sunlight access information for more than 100 cities
across six continents of the world. Deep Umbra is available at urbantk.org/shadows.

Index Terms—Urban computing, Urban analytics, Sunlight access, Shadow, Generative adversarial networks.
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1 INTRODUCTION

The urban population surpassed the rural one in 2007,
and by 2030 it is expected to represent 60% of the global
population and 68% by 2050 [1]. This leads to rapid ur-
ban development around the world, requiring sustainable
solutions, social equity, and urban regeneration [2]. Ur-
ban growth implies two types of development: horizon-
tal (through the use of land for new infrastructure, e.g.,
buildings, parks) and vertical (through densification and
construction of taller buildings). Denser cities, however, can
impact urban environmental conditions and quality of life,
influencing solar access and shadows in outdoor spaces
and recreational areas [3]. The appropriate management of
shadows then plays a vital role in maintaining the citizens’
quality of life. As previously highlighted [4], it is crucial
to have efficient methods that allow stakeholders to (1)
comprehensively analyze the shadow and sunlight access in
a region, and (2) democratize the planning process, allowing
communities and the general audience to be aware of the
potential disruptions of their right to light.

In previous years, this problem has been tackled from
different angles and by different domains [5], [6], [7], [8].
However, such studies were oftentimes not scalable beyond
a handful of cities (or even just neighborhoods), only quan-
tifying shadows over a limited set of timeframes. At the
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core of our research is the understanding that increasing
awareness about this pressing issue and supporting sus-
tainable urban development efforts require new methods
and datasets that enable the comprehensive and fast analysis
of shadows in cities around the world over long periods
of time. By comprehensive, we argue that it is not enough
for analyses to be constrained to a handful of timestamps,
but there is a need to accumulate shadows and generate
data inventories with the percentage of sunlight access at
a given point over a long period of time – e.g., a given point
is under shadow for 70% of time from sunrise to sunset.
By fast, we argue that the aforementioned accumulation
computations should be performed as fast as possible, as
to allow for large-scale interactive and exploratory analyses.
Previous approaches tackled these challenges by ray tracing
to accumulate shadows over time [4], but still with perfor-
mance results that limit the scale and scope of analyses.
Popular GIS tools, for example, take hours to compute the
shadow / sunlight access data for a single large city, such
as New York City (NYC). Such performance limits the scale
and scope of analyses by urban experts.

This research is supported by the growing availability
of urban data describing the built environment (in our case,
building heights) as well as recent developments in machine
and deep learning that enable image-to-image translation
tasks. With sufficient training data, we frame our problem
around tile images with height information and propose a
height tile→accumulated shadow tile translation task. We also
take into account a city’s latitude and time of the year, as
these two factors greatly impact the shape of shadows. With
this in mind, we propose Deep Umbra, a novel compu-
tational framework that uses a conditional generative ad-
versarial network (GAN) for the quantification of sunlight
access and shadows over long periods of time and at a
global scale. Our framework considers the physical form

http://urbantk.org/shadows
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of cities to compute high-resolution spatial information of
accumulated sunlight access for the different seasons of the
year. As shadows also depend on the latitude of a city, a
key aspect of our research is to ensure transferability to
varying locations around the world. We enforce this by
training our model in urban areas from different continents
and with disparate physical forms. Our experiments show
how this approach leads to good results in cities outside
the training set. Moreover, in order to enable research in
domains interested in the impact of shadows and sunlight
access in public spaces, we make our outcomes publicly
available at urbantk.org/shadows.
Contributions. In this paper, we take a step towards en-
abling the fast accumulation of shadows over time using
a conditional generative adversarial network. We first de-
scribe how shadow accumulation can be quantified over
geographical regions. We then introduce a conditional GAN
framework to efficiently accumulate shadows over time.
This approach is then used to compute accumulated shadow
information for over 100 cities in the world. We also report
two case studies performed by urban experts (co-authors
of the paper) using the data. These studies highlight the
opportunities created by such data, not only for fine-grained
analyses across neighborhoods of a city, but also large-scale
exploratory analyses across different cities. Our contribu-
tions can then be summarized as follows:

• We propose Deep Umbra, a computational framework
for the quantification of sunlight access and shadows
over long periods of time with a speed up of 6× against
the state of the art [4].

• We introduce the Global Shadow Dataset, a comprehen-
sive dataset with the accumulated shadow information
for over 100 cities in 6 continents.

• We show experimental evaluation demonstrating the
accuracy of our framework, including its transferability
to cities outside of the training set.

• In collaboration with urban experts, we demonstrate
the usefulness of Deep Umbra and the Global Shadow
Dataset through a set of case studies evaluating sun-
light access over street networks and parks.

This paper is organized as follows: In Section 2 we
review important related work; Section 3 briefly reviews
information regarding the accumulation of shadows; Sec-
tion 4 and Section 5 present Deep Umbra and the accumu-
lation shadow data, respectively; In Section 6 we present
a detailed evaluation of Deep Umbra; Section 7 presents
the Global Shadow Dataset; Section 8 highlights two case
studies. Finally, Section 9 concludes our paper and presents
future research directions.

2 RELATED WORK

In this section, we review previous works highlighting
the significance of shadows to different domains, shadow
computation techniques and GAN-assisted urban analytics.
Study of sunlight access and shadows. Due to population
growth, urban constructions have increasingly started to
propagate vertically, creating the problem of uneven solar
access in cities. The concept named “Solar Envelope” was
first introduced by Knowles [9]. His idea was to combine
urban building design with the impact of shadow and

solar accessibility. Studies have extended upon this idea
of solar envelope by proposing vertical limits and distance
regulations for sites under construction to ensure sunlight
access for dwellings in cities [10], [11], [12]. In addition,
design layouts for buildings have been proposed in several
works aiming at utilizing solar potential [13], [14], [15].

Sunlight access and impact of shadow are key factors
for a comfortable microclimate at street level for pedestri-
ans. Studies have extensively discussed the contribution of
the street network design and solar orientation to outdoor
shadow impact and thermal comfort levels [16], [17]. In ma-
jor cities, the surge of high-rise buildings is also sinking the
public spaces into deepening shadow, calling into question
the protection of sunlight in open spaces. Different studies
have been conducted to properly measure sunlight access in
parks and other public recreational areas [18], [19], [20].

By making available both our model as well as a com-
prehensive global dataset with shadow information, our
contributions can greatly increase the spatial coverage of
previous works and offer the first steps towards a more
comprehensive understanding of this pressing problem.
Shadow computation techniques. At the core of our paper
is determining whether a point is under shadow or not for
one or more timestamps. This problem has been comprehen-
sively explored in computer graphics [21]. In general, real-
time shadow computation can be performed through shadow
mapping, an image-based approach in which the 3D scene is
projected onto a 2D plane situated between the scene and
the light source. In contrast, ray tracing is a robust and
popular approach in which computation is carried out by
tracing rays from the light source to the objects [22]. More
recently, deep learning approaches have been proposed for
the computation of shadows [23], [24]. These techniques,
however, are constrained to single timestep shadows, i.e.,
calculating scene shadows at a particular time. While single-
step computation might be useful for real-time shadow
assessment at particular timesteps, analyses using the ac-
cumulation of shadows over multiple timesteps pave the
way for environmental impact studies [25] and city-scale
urban planning [26]. Deep Umbra’s focus is therefore on
performant accumulation of shadows over time, which re-
quires innovative approaches to handle not only the spatial
aspect (i.e., where casters of shadows are located), but also
the temporal aspect (i.e., how shadows are moving over
time) of the task.

In recent years, several open and proprietary solu-
tions have emerged proposing analyses of the interplay
between built environment and shadows, including online
services [27], [28] and GIS tools [4], [29], [30]. JveuxDu-
Soleil [28] is a web-based tool for single timestep shadows.
ShadeMap is a closed source web-based tool that allows for
the accumulation of shadows, though the on-the-fly com-
putations are constrained to areas currently being rendered
on screen, limiting comparisons across neighborhoods or
cities. Both QGIS and ArcGIS are fully-fledged GIS tools, but
suffer from poor performance when accumulating shadows.
Google has recently introduced a paid API [31] that provides
roof’s solar potential for a number of cities. Our previous
tool, Shadow Profiler [4], while providing significant gains
when compared with previous efforts, still suffer from high
latency. Deep Umbra, on the other hand, offers performance

http://urbantk.org/shadows
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Fig. 1. Left: Example of a single timestep shadow. Right: accumulated shadows. By accumulating shadows between a time range, we can
comprehensively analyze the impact of buildings on the sunlight access of public spaces. In the illustration, P1 is 100% of the time under shadow,
P2 and P3 50%, and P4 25%. The rightmost image shows the resulting accumulation when considering a time range between 10 AM and 4 PM.

gains and generalizability that allows for the accumulation
of shadows over multiple cities, going beyond the scale
tackled by previous approaches.

Deep Umbra also adds to the growing number of open-
source and low-cost solutions for urban planning. These
solutions include gamification approaches [32], [33] and
visual analytics toolkits [34], [35]. Recently, Yap et al. [36]
presented an extensive survey of open-source tools that
support different stages of the urban planning process.
GAN-assisted urban analytics. The increase in urban data,
combined with recent advancements in generative adversar-
ial networks [37], [38], has led to a number of works in the
context of urban analytics [39]. Wang et al. [40] proposed
a generative adversarial model for urban planning configu-
ration, framing the problem as a task of learning land-use
configurations given surrounding spatial contexts. Mokhtar
et al. [41] developed a conditional GAN model that is capa-
ble of generating pedestrian wind flow approximations for a
variety of metropolitan topologies. Zhang et al. [42], Zhang
et al. [43], and Yuan et al. [44] use GANs for traffic tasks.
Recently, Wu et al. [45] reviewed applications of GANs in
various urban tasks. Our work is motivated by the growth of
works using GANs to tackle urban-specific problems. Deep
Umbra is the first work that uses a generative adversarial
approach to model shadow accumulation leveraging build-
ing height information and transferring knowledge across
cities with varying urban morphologies.

3 BACKGROUND

The study of shadow and sunlight access has been a core
consideration in several domains, from architecture, urban
planning, and civil engineering, to occupational therapy
and environmental sciences. A standard approach in these
domains is to perform single-step shadow analysis. In other
words, only compute the shadow cast on public spaces for
a very limited number of timesteps – oftentimes only for a
single timestep. As we have highlighted in our previous
work [4], there is a need by urban experts for a more
comprehensive approach, moving beyond single-step to
multi-step (i.e., accumulated) shadow analysis. For example,
when comparing the sunlight access in two regions, rather
than comparing across individual timestamps (e.g., shad-
ows at every hour), an urban expert can simply compare
the accumulated shadow in these two regions. Data from
the accumulation of shadows can inform different urban
analyses, such as (1) urban heat island effect [25], (2) city

planning (e.g., where to locate new parks) [26], and (3)
public policy (e.g., restrictions on building heights) [47].

The aforementioned concept is illustrated in Figure 1.
Shadows considering a single timestep (left) offer a limited
and superficial glimpse at the condition of sunlight access
and shadow in public spaces. However, by accumulating
shadows at multiple timesteps (right) we have a much more
comprehensive understanding of the state of shadows and
sunlight access in public spaces. The example shows the
accumulation of shadows for 360 minutes, between 10 AM
and 4 PM. Each pixel value is given by the sum of the
shadows in each minute inside a time range:

As,e
i,j =

e∑
h=s

Shadowi,j(h)

where (i, j) is a point in the 2D plane, s and e are the
start and end accumulation times, and Shadow is a function
that returns whether the point is under shadow or not at a
particular timestep h.

In our example, the final accumulated value of shadows
are then mapped to a colorscale, with darker shades of
red indicating a larger amount of shadow coverage in the
considered period. Even though our proposal can be applied
in the computation of arbitrary time ranges, in this paper
we focus on three specific days: (1) summer solstice on June
21, (2) March equinox on March 20, (3) winter solstice on
December 21. Two important considerations: it is enough to
only consider a single equinox for both fall and spring and a
summer solstice in the Northern Hemisphere is equivalent
to a winter solstice in the Southern Hemisphere. For each
one of these days, we will consider accumulations one hour
after sunset and one hour before sundown, totaling 720
minutes for (1), 540 for (2) and 360 for (3).

This comprehensive approach was also featured in a
New York Times article [48], stressing the need for the gen-
eration of this type of data not only for domain-specific
purposes, but also for the engagement of a broader audience
in this pressing issue. In that light, three key aspects of
our research are the ability to (1) leverage crowdsourced
data that is globally available, (2) adhere to open and repro-
ducible standards, and (3) ensure the transferability of our
outcomes to cities in different countries and with varying
built environment characteristics.

4 METHODOLOGY

In this section, we describe the main components of our
Deep Umbra framework. At its core, Deep Umbra consists of
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Fig. 2. Overview the different components in the Deep Umbra framework. Step 1, left: The preprocessing component is responsible for extracting
building height information from OpenStreetMap [46] (a) and generate 512× 512 tiles with this information (b). Step 2, right: The preprocessed data
is then used to train a conditional generative adversarial network to map height → accumulated shadow, also taking into account season of the
year and latitude of the tile (c). Cities used in the training set are shown as on the map, and cities used for testing are shown as ; gt refers to
ground truth data and ge GAN generated data.

two components: (1) a pre-processing component that lever-
ages crowdsourced information (e.g., OpenStreetMap [46])
to generate tiles with building height information; (2) a
conditional GAN model to infer the accumulated shadow
values over different geographical regions and seasons.

4.1 Framework

The overall framework of Deep Umbra is shown in Figure 2.
In Step 1, we extract building height information from
datasets that describe the urban morphology in a city. In this
paper, we leveraged OpenStreetMap (OSM) data, but our
approach is agnostic to the source, also being compatible
with point cloud data and already-existing digital eleva-
tion models. The geometry description is used to generate
256×256 image tiles, with each pixel containing the average
building height at that particular location. To account for
the fact that buildings from a tile can also cast shadows
on neighboring tiles, we adopt a padding strategy. That is,
for each 256 × 256 tile with height information (i.e., b), our
framework pads it with neighboring height tiles, generating
a 512× 512 height tile that covers the central tile plus parts
of its nine adjacent tiles. Figure 3 details this strategy.

In Step 2, we train a model that is able to infer ac-
cumulated shadow information given the tiles from the
previous step. In this step, we leverage the 512 × 512
padded tiles. In essence, our objective is to learn a function
G : B × L × T → A, where B is the space containing
building information (i.e., height), L represents the spatial
information characteristic of a tile (i.e., latitude of a tile), and
T is the set of seasons. A will then be the space of completed
accumulated shadows. Deep Umbra requires paired input
and ground truth images for training. As such, underlying
our efforts is the understanding that data generation, in
our case, is straightforward yet computationally expensive.
Given a pre-processed tile (from Step 1), we can leverage
off-the-shelf ray-tracing architectures to generate training
data. In our case, we make use of Shadow Accrual Maps [4],
our previously introduced shadow accumulation algorithm.
Next, we describe both the model and architecture used to
implement Deep Umbra.

4.2 Conditional GAN model

In order to predict the shadow tiles, we leverage the condi-
tional GAN architecture [49] to synthesize tiles with accu-
mulated shadow. A generator in a conditional GAN learns a

mapping from input data x and random noise z to an output
image a, i.e., G : x, z → y [38]. A discriminator D will be
trained to distinguish between synthesized and real tiles.
More specifically, in our case, the generator G will consider:
(1) height tiles b ∈ B padded with neighboring tiles (as
previously mentioned and highlighted in Figure 3); each
512×512 padded tile b represents the building morphology
of the location covered by the tile. (2) spatial information
l ∈ L of the tiles, with the associated latitudes of the tile.
(3) temporal information t ∈ T , with one of the three
considered accumulation periods (summer solstice, March
equinox, winter solstice). With (1), Deep Umbra takes into
account building morphology, while with (2) and (3) it takes
into account the apparent movement of the sun across the
sky (i.e, the sun path) at different latitudes and seasons.
G will then generate shadow tiles â seeking to mimic the
ground truth from that region (a ∈ A). In short, we have:

x = (b, l, t)

â = G(x)

The discriminator D is trained to classify real and syn-
thetic tiles when compared to the ground truth, whereas
the generator G tries to fool the discriminator by generating
images as close to the ground truth as possible. To increase
diversity in the generation task, G uses dropouts for implicit
noise [50]. This contest between D and G will be formulated
through an objective that contains a reconstruction loss Lr

and an adversarial loss Ladv , detailed next.
Reconstruction loss. A reconstruction loss will try to re-
duce the pixel-wise error between ground truth and the
generated tile. Traditional approaches usually rely on L1

or L2 distances as the reconstruction loss [38], [51]. In our
work, we experimented with both and found out that L1

performs better than L2. However, both failed to capture the
sharpness and detail of long shadows and instead produced
blurry results, especially for the longer winter shadows at
higher latitudes. To minimize these issues, we augmented
the usual L1 loss with a structural similarity loss function
(SSIM loss) to better capture details in spatially adjacent
pixels [52]. In addition, we also examined an edge detection-
based Sobel loss function to preserve the sharpness in longer
shadows [53]. Following previous works that combine mul-
tiple loss functions [24], [53], [54], [55], we performed a set
of experiments and found out that a combination of L1,
SSIM, and Sobel losses attains the best results at generating
accumulated shadow information. We discuss these in more
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Fig. 3. Example where shadows are cast across tiles. In (b), the
two small squares highlight areas where shadows from neighboring
buildings are cast onto the center tile. This is further highlighted for
different seasons in (a) and (c), with vertical black lines indicating the
boundaries between tiles. To account for accumulated shadows from
neighboring tiles, during training, a 256 × 256 height tile is padded with
parts of adjacent tiles, resulting in a 512× 512 tile (larger purple square
in (b)). Model results are cropped back to the original size of 256× 256
(smaller green square in (b)).

detail as part of the ablation study in Section 6. In short, Lr

is given by:
Lr(G) = L1(G) + LSSIM (G) + LSobel(G)

L1(G) = ∥a− â∥1
LSSIM (G) = 1− SSIM(a, â)

LSobel(G) = (Sobel(a)− Sobel(â))2

Adversarial loss. The competition between discriminator D
and generator G can be formulated by the adversarial loss
function as follows:

Ladv(G,D) = Ex,a[logD(x, a)] + Ex[log(1−D(x, â))]

During training, the generator G tries to minimize Ladv ,
whereas the goal of discriminator D is to maximize it. This
means that the generated shadow tile â should be as close
to the ground truth a as possible. The discriminator D takes
as input either the generated shadow tiles â or the ground
truth tiles a to determine whether â is real or not.
Full objective. The overall objective function of our condi-
tional GAN is composed of the adversarial loss Ladv and
reconstruction loss Lr and can be expressed as following:

G∗ = arg min
G

max
D

Ladv(G,D) + λLr(G)

where λ controls the relative importance of reconstruction
loss compared to the adversarial loss. We use λ = 100.

4.3 Architecture & implementation

To satisfy our requirements and similar to previous con-
ditional GAN approaches, we leverage PatchGAN [38] as
the discriminator D. For the generator, we tested two ar-
chitectures: U-Net [56] and ResNet [57], ultimately choosing
ResNet as our generator G. It is important to stress that
conditional GANs are difficult to train and sensitive to hy-
perparameters. Given that Deep Umbra is the first attempt
to tackle the problem of generating accumulated shadow
maps with spatial and temporal information, we chose to
leverage well-known architectures (PatchGAN + ResNet),
which in turn allowed us to rely on already established
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Fig. 4. Distribution of average tile heights for the train and test sets.

hyperparameters and training procedures. In addition, Sec-
tion 6 presents a detailed ablation study. In it, we discuss
the selection of the architecture and the loss function used
in our final model.

Deep Umbra’s data (b, l, t, a, â) follows the tile map
format to facilitate implementation in the web environment
(e.g., web maps). As previously mentioned, the input and
ground truth data are padded tiles with size 512 × 512
to account for shadows from neighboring tiles. The entire
training process (Figure 2 (right)) uses these 512× 512 tiles.
To adhere to the tile map size of 256 × 256, we make use
of a cropping operator C that removes the outer tiles from
the model result (â), leaving only the central 256 × 256 tile
(C(â)), as depicted in Figure 3.

We use ReLU activation in the generator and Leaky
ReLU in the discriminator layers, also incorporating stride
in the discriminator for downsampling and fractional stride
in the generator for upsampling. Moreover, we apply batch
normalization in both the generator and discriminator.
Adam optimizer is used with a learning rate of 0.0002 and a
momentum of 0.5.

5 DATA DESCRIPTION

We now describe the pipeline to extract height information
from OSM data, and the process to compute the ground
truth data used to train Deep Umbra.
Building height data. For each city of interest, we first
determine the bounding box that covers the entire spatial
extension of the urban area and use this information to
query OSM for building geometry information. After that,
we generate tiles (with size 256 × 256 pixels) covering the
entire region and storing the mean building height in each
pixel – we normalize this data considering a maximum
building height of 500 meters. In this paper, we focus on
tile maps using zoom level 16. This zoom level gives us
a good tile resolution of ∼2.3 meters per pixel. Although
we rely on OSM for height information, we realize that
crowdsourced initiatives have inherent limitations in terms
of spatial coverage. However, we note that our approach can
leverage any data source that can generate reliable height
information – such as point clouds and high-resolution
digital elevation models.
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TABLE 1
Results of ablation experiments with different generator

architectures. For SSIM, higher values are better.

Generator RMSE MAE MSE SSIM
U-Net 0.0706 0.0308 0.0073 0.8619

ResNet 0.0693 0.0303 0.0071 0.8629

TABLE 2
Results of ablation experiments with different loss functions and ResNet

generator. For SSIM, higher values are better.

Loss function RMSE MAE MSE SSIM
L1 0.0693 0.0303 0.0071 0.8629
L2 0.0703 0.0328 0.0072 0.8446

SSIM + L1 0.0667 0.0292 0.0067 0.8718
SSIM + Sobel 0.0653 0.0296 0.0065 0.8657

SSIM + Sobel + L1 0.0643 0.0289 0.0063 0.8724

Ground truth shadow data. To create the ground truth data
to train our model, we use our previous work [4], a GPU-
based ray-tracing technique that is optimized for accumu-
lating shadow values. Due to its interpolation approach, it
has considerable performance gains even when compared
with industry standards, such as Nvidia’s OptiX.

6 EXPERIMENTS & RESULTS

To evaluate our framework, we performed experiments
considering a large set of cities, taking into account different
continents and building morphologies. Our evaluation can
be divided into four parts. First, we performed an ablation
study to properly evaluate and choose the best configura-
tions for Deep Umbra. Second, we quantitatively evaluated
the best configuration from the ablation study on a number
of cities across different continents, including cities outside
the initial training set. Third, we qualitatively evaluated
Deep Umbra, highlighting both general cases as well as
large error cases. Finally, we compared Deep Umbra against
existing tools and techniques, including commercial and
open-source ones. We report root mean square error (RMSE),
mean absolute error (MAE), mean squared error (MSE), and
structural similarity (SSIM), considering ground truth tiles
as a reference to the generated shadow tiles.

To ensure generalizability, our quantitative experiments
follow two approaches: first, tiles from the same set of
cities are used for the training and test sets (i.e., within
cities evaluation), and second, tiles from two disjoint sets of
cities are used for the test and training sets (i.e., across cities
evaluation). The cities were carefully picked to ensure that
they had buildings with different heights and morphologies.
Figure 4 shows the distribution of mean building height per
tile for the train and test cities used in the experiments.
To account for the scant number of tiles with large mean
building height (>= 14 meters), we sample the training data
with 50% tiles with mean building height below or equal to
the 50th percentile and the rest above the 50th percentile.

We implemented our model using TensorFlow. The ex-
periments were executed on a desktop computer with an
Intel i7-13700KF CPU, 32 GB of RAM, and an NVIDIA
GeForce 3080 with 10 GB of RAM.

RMSE: 0.184, SSIM: 0.731RMSE: 0.277, SSIM: 0.629

ResnetU-NetGround truth

Fig. 5. Results of ablation study using U-Net and ResNet generator ar-
chitecture and L1 loss function. RMSE and SSIM scores with respect to
ground truth are highlighted below each image (for SSIM, higher values
are better). Note that ResNet architecture produces significantly better
results, especially for longer shadows that are distant from the building.
Top: Highlights with areas with longer shadows. Bottom: Zoomed areas.

6.1 Ablation study

As a baseline, we considered a simple model with a U-Net
generator and L1 loss function that solely utilizes building
height (b) as input and does not consider latitude (l) and
season (t). The RMSE, MAE, MSE, and SSIM scores for
the baseline model are 0.1171, 0.0556, 0.0208, and 0.7729,
respectively. The next configurations incorporate all three
parameters (b, l, t) as the input for the model. Our ablation
study uses the within cities evaluation setting (see Section 6.2).

Although U-Net is the most commonly used architecture
for image-to-image translation [38], Hu et al. [58] have
shown that residual-based generators outperform U-Net
in certain tasks. Thus, to verify Deep Umbra’s effective-
ness, we tested two generator architectures: U-Net [56] and
ResNet [57]. In both cases, we added L1 distance along with
the adversarial loss to generate outputs closer to the ground
truth. The results, summarized in Table 1, reveal that both
configurations outperformed the baseline model and that
the ResNet architecture had better results than U-Net. We
further visually inspected the results and found that, while
both architectures perform fairly well for shadows closer
to the buildings, ResNet performs significantly better in
inferring longer shadows, especially for tiles from the winter
season (see Figure 5).

Next, we tested alternative loss functions with the
ResNet architecture to further evaluate the model. L1 and
L2 distances are standard loss functions used in image-to-
image translation tasks [38], [51]. In addition, we tested
combinations of SSIM and Sobel losses to (1) preserve the
structural integrity and (2) improve the sharpness of shad-
ows, especially in long shadows. L1 and L2 distances only
focus on error sensitivity, whereas SSIM loss, as an alternate
measure, evaluates the structural, luminance, and contrast
difference between ground truth and generated shadow
images [52]. Furthermore, Sobel loss tends to reduce the
inherent blurs in shadows [53]. The results, summarized in
Table 2, reveal that a combination of SSIM, Sobel, and L1

loss produces the best outputs. We also visually inspected
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Ground truth L1 L2 SSIM + L1 SSIM + Sobel SSIM + Sobel + L1

RMSE: 0.042, SSIM: 0.825RMSE: 0.067, SSIM: 0.764RMSE: 0.093, SSIM: 0.704RMSE: 0.069, SSIM: 0.709RMSE: 0.06, SSIM: 0.739

Fig. 6. Results of ablation study testing different loss functions with the ResNet architecture. RMSE and SSIM scores with respect to the ground
truth are highlighted below each image (for SSIM, higher values are better). SSIM and Sobel losses combined with L1 distance generate more
precise accumulated shadows, whereas combinations of other loss functions are blurrier. We note that complex shapes (such as the Y -like pattern
due to the sun’s winter path) are more accurately represented with the aforementioned combination. Top: Highlights with areas with longer shadows.
Bottom: Zoomed areas.

the results and found out that by combining SSIM and Sobel
with L1 loss, the generated images most closely depicted
the ground truth compared to L1 loss being used alone (see
Figure 6). For the next experiments, we used the ResNet
model coupled with SSIM, Sobel, and L1 losses.

6.2 Quantitative evaluation
To quantitatively assess Deep Umbra’s error, we performed
two evaluations. In the first evaluation, we selected tiles
from seven cities to create training and test sets. Then, in
the second evaluation, we used the trained model in seven
other cities (outside the training set).
Within cities evaluation. In this evaluation, we selected
seven cities from four different continents and with vary-
ing building morphologies: Los Angeles, Chicago, Austin,
Mexico City, São Paulo, Paris, and Sydney ( circles in
Figure 2 (left)). In total, we generated ground truth (i.e., ray-
traced) data for 20,260 height tiles of these cities. Then, we
randomly selected 750 tiles from each city in each season (i.e.,
750 × 3 tiles per city). We then used k-fold cross validation
with k = 5 for training and testing. Table 3 shows the
average RMSE, MAE, MSE, and SSIM across all 5 runs.
RMSE is fairly low at 0.0631, which in practical terms means
that, when accumulating 360 minutes for the winter season,
the error would be equal to approximately 23 minutes.
Across cities evaluation. In this second evaluation, we
selected seven different cities to assess the generalizability
of the model trained in the within cities evaluation. The seven
selected cities were Washington DC, NYC, Boston, Seattle,
Johannesburg, Buenos Aires, and Tokyo. In this evaluation,
we also selected 750 tiles from each city in each season (i.e.,
2,250 tiles per city). Table 4 presents the RMSE, MAE, MSE,
and SSIM in each one of the seven target cities – again the
model was not trained with data from these cities. High-
density cities such as Washington DC, NYC, and Tokyo
present the highest RMSE (∼0.08), and Tokyo, in particular,
presents the lowest SSIM value. Given the importance of
street-level analyses for urban accessibility [59], [60], [61],
we further tested Deep Umbra only considering tile pixels

TABLE 3
Within cities analysis. For SSIM, higher values are better.

RMSE MAE MSE SSIM
K-fold (k = 5) 0.0631 0.0276 0.0063 0.9000

TABLE 4
Across cities analysis. For SSIM, higher values are better.

Target city RMSE MAE MSE SSIM
Washington DC 0.0786 0.0318 0.0091 0.8819
NYC 0.0818 0.0374 0.0084 0.8792
Boston 0.0743 0.0309 0.0081 0.8985
Seattle 0.0597 0.0339 0.0043 0.8578
Johannesburg 0.0281 0.0102 0.0014 0.8749
Buenos Aires 0.0441 0.0146 0.0033 0.9160
Tokyo 0.0837 0.0432 0.0093 0.7981
Average 0.0643 0.0289 0.0063 0.8724

TABLE 5
Across cities performance analysis, considering street networks.

Target city RMSE MAE MSE SSIM
Washington DC 0.0262 0.0053 0.0013 0.9579
NYC 0.0289 0.0067 0.0012 0.9593
Boston 0.0263 0.0054 0.0013 0.9618
Seattle 0.0249 0.0067 0.0009 0.9452
Johannesburg 0.0095 0.0017 0.0003 0.9697
Buenos Aires 0.0162 0.0027 0.0005 0.9739
Tokyo 0.0447 0.0135 0.0029 0.9172
Average 0.0252 0.0060 0.0012 0.9550

that fall within streets (and not parks or other facilities). The
results (Table 5) show that, when only considering streets,
our results show even lower errors (mean RMSE of ∼0.02).

6.3 Qualitative evaluation

We also highlight a set of qualitative results from our trained
model using tiles from different cities. Figure 7 shows rele-
vant images for NYC, Johannesburg, and Seattle, including
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Fig. 7. Results with tiles from NYC, Johannesburg, and Seattle. The examples come from different seasons of the year, but use the same colorscale
where darker shades of red correspond to greater shadow coverage during the accumulation period. The left column shows general cases where
the RMSE is within the interquartile range. The right column shows large error cases where the RMSE is larger than 1.5× the interquartile range.

building height input, ground truth and Deep Umbra re-
sults. In these cases, it is possible to notice that the generated
shadow values more closely match the ground truth when
pixels are located closer to buildings (Johannesburg, left;
Seattle, left). Yet, when moving away from them, many of
the nuances and sharpness of the shades are lost (NYC,
right; Johannesburg, right). Figure 7 also highlights large er-
ror cases where the RMSE is larger than 1.5× the interquar-
tile range. We note, however, that these cases represent less
than 5% of the total cases in our test set, underscoring how
well our framework is able to model shadow accumulation.

6.4 Comparison with existing tools & techniques

We also compared Deep Umbra with existing tools and tech-
niques across five dimensions: accuracy, performance, sup-
port for what-if analyses, support for shadow accumulation,
and whether the solution was open or not. In collaboration
with urban experts (co-authors of the paper), we selected
five already-existing tools and techniques for comparison:
(1) Shadow Accrual Maps [4], a GPU-based technique for
the interactive accumulation of shadows at city scale and
achieves a speedup of 10× when compared to Nvidia’s
OptiX. (2) JveuxDuSoil [28], a web-based service for the
assessment of single timestep shadows. (3) ShadeMap [27], a
web-based service that supports the accumulation of shad-
ows. (4) QGIS [30] and ArcGIS Pro [29], two popular GIS
tools in urban planning and architecture that also support
shadow accumulation. (5) Google Solar [31], an API that
allows for the querying of hourly shade information. Table 6
summarizes the comparison.

Regarding time performance, Deep Umbra and Jveux-
DuSolei are the only ones that achieve real-time rates, i.e.,
the computations are performed in less than ∼0.05 second.
Lower times are particularly important for two reasons:
First, to drive visual analytics systems, as increased latency

reduces users’ rate of observations, generalizations and gen-
eration of hypotheses [62]. Second, to enable the fast com-
putation of accumulated shadows for larger geographical
regions. For example, to compute the shadow ground truth
data for the 7,000 tiles in NYC, Shadow Accrual Maps took
more than 12 minutes for a single season. Such a situation is
even more impractical when considering GIS tools, such as
QGIS. Using the Urban Multi-scale Environmental Predictor
(UMEP) extension, it took 3 hours to accumulate shadows
for a single season. Deep Umbra, on the other hand, was
able to compute the accumulated shadows for the entire city
within 105 seconds, a speed up of 6× compared to Shadow
Accrual Maps, and 102× compared to QGIS.

Support for what-if analyses was also considered in our
comparison, i.e., the ability to replace buildings and re-
compute analyses to assess shadow impact of proposed de-
velopments. JveuxDuSoil and Google Solar do not support
such analyses. JveuxDuSoil also does not support shadow
accumulation. Of all techniques and solutions, Deep Umbra
is the only one to support real-time accumulation of shad-
ows for what-if analyses. Considering accuracy, previous
tools support the exact computation of shadows (consider-
ing user-specified temporal and spatial resolutions). While
not being exact, Deep Umbra provides an alternative with
fairly low error and significant time performance gains.
Deep Umbra, together with QGIS, is the only solution that
is open source and freely available for code inspection and
modification.

7 GLOBAL SHADOW DATASET

As part of our work, we have also made available a large
collection of accumulated shadow tiles for over 100 cities (in
6 continents), computed using Deep Umbra. The complete
dataset contains 999,807 map tiles, totaling over 16 GB. The
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TABLE 6
Comparison between different shadow assessment tools and techniques. We classify as interactive the solutions that compute results in less than
∼0.15 second, and real-time the ones with results below ∼0.05 second.Open source refers to software that is freely available for code inspection.

Techniques & tools Performance What-if support Accumulation Accuracy Open source
Shadow Accrual Maps [4] Interactive Yes Yes Exact No

JveuxDuSoleil [28] Real-time No No Exact No
ShadeMap [27] Interactive Yes Yes Exact No

QGIS [30] Non-interactive Yes Yes Exact Yes
ArcGIS Pro [29] Non-interactive Yes Yes Exact No

Google Solar [31] Offline (pre-computed) No Yes Exact No
Deep Umbra (this work) Real-time Yes Yes ∼0.06 RMSE Yes

selected cities cover six continents and have different build-
ing morphologies and urban street networks. We hope that
the data will provide new opportunities for urban experts to
perform not only fine-grained analyses (i.e., what is the best
location for a certain facility?) but also large-scale comparisons
and exploratory analyses across neighborhoods or cities
(e.g., what is the park with least shadow amount? or what is the
city with least shadow amount?). Our objectives are twofold:
(1) facilitate research on the topic of sunlight and shadow
quantification by providing a dataset that can be compared
to and augmented; and (2) enable research across different
domains, particularly urban planning, and public health.
We have also made available a web-based interface that
can be used to effortlessly browse and visualize the Global
Shadow Dataset. The dataset currently contains accumu-
lated shadow information, but the accumulated sunlight can
be obtained by simply computing the complement of the
accumulated shadow value. The dataset and web viewer
can be accessed at urbantk.org/shadows.

8 CASE STUDIES

In this section, we demonstrate the application of our pro-
posed framework through a set of case studies performed
in collaboration with urban experts, both co-authors of this
paper. First, to highlight the scale and opportunities brought
forward by Global Shadow Dataset, Figure 8 visualizes
the mean shadow accumulation for parks in 110 cities.
As expected, cities near the equator present similar values
across seasons. Cities in high latitudes, however, have vastly
different values between summer and winter. Specifically,
Paris exhibited relatively high shadow values during winter.
The first case study then analyzes the impact of building
density on winter sunlight access in several parks in the
Vaugirard neighborhood in Paris.

We further illustrate the utility of our work by measuring
shadow accumulation on street networks, commonly uti-
lized in urban accessibility studies [59], [60], [61]. Figure 9
visualizes the distributions of overshadowed streets (i.e.,
streets with mean shadow accumulation value above 75%)
over three seasons for four cities. We can see that for these
cities, the shadow distribution in the winter is more skewed
towards higher values than summer/spring, partially due
to the sun’s lower elevation during the season. Our second
case study is then based on an in-depth analysis of the
shadow accumulation on streets aggregated by the nearby
land use type (e.g., residential, commercial, industrial) in
two of the largest cities in the US: Chicago and NYC.

TABLE 7
Percentage of parks that have high sunlight access (mean shadow

accumulation value below 25%), moderate sunlight access (between
25% and 50%), partially shadowed (between 50% and 75%), and

overshadowed (above 75%).

Mean shadow accumulation value
Season < 25% [25%,50%] [50%,75%] > 75%
Summer 66.6% 30.7% 2.4% 0.3%
Spring 61.7% 25.5% 9.2% 3.4%
Winter 32.1% 23.9% 19.0% 25.0%

8.1 Sunlight access in Parisian parks

Health researchers have revealed that access to sunlight in
winter is as essential as shade in summer. A significant
percentage of the population suffers vitamin D deficiency at
the end of winter and consequently becomes vulnerable to
diseases, including diabetes, heart disease, and osteoporo-
sis [63]. With the rapid growth in urbanization, sunlight
access during winter within high-density municipal areas
has been deemed critical more than ever [26], [64], [65],
[66]. However, people living or working in high-density
environments, more often than not, have limited access to
private green open spaces. And as development intensifies,
the overshadowing of existing parks increases, creating ten-
sion between urban growth and the preservation of sunlight
access [26].

In this case study, we investigated sunlight access in
parks of Paris during winter. Table 7 shows the distribution
of shadows in parks during the three seasons. Throughout
winter, 25% of the parks in Paris are overshadowed, i.e.,
they have a mean shadow accumulation value above 75%.
Also, there is a discrepancy in sunlight access comparing the
distributions over the three seasons. The overshadowing of
open urban spaces in Paris can largely be attributed to its
densely built environment and narrow alleyways [67], [68].

We further looked into six public parks in the district
of Vaugirard and divided them into four categories based
on their mean shadow accumulation percentile score. The
categories are: high sunlight access (below 25%), moderate
sunlight access (between 25% and 50%), partially shad-
owed (between 50% and 75%), and overshadowed (above
75%). Figure 10 visualizes shadow accumulation during
winter for these parks using our data. Among them, two
parks are partially shadowed, namely, Square du Clos
Feuquières (59%), and Square Duranton (70%). Only Jardin
Élisabeth Boselli has high sunlight access (22%), whereas

http://urbantk.org/shadows
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Fig. 8. Comparison of mean shadow accumulation scores across parks in 110 cities during the summer (left), spring (middle), and winter (right).
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Fig. 9. Distribution of shadow accumulation in overshadowed streets.
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Fig. 10. Visualizing accumulated shadow cast over parks in Paris. Left
image highlights six parks divided into four categories of sunlight access
during winter: (1) high sunlight access, (2) moderate sunlight access, (3)
partial overshadowing and (4) significant overshadowing. Right images
highlight shadow accumulation for one park (Square Saint Lambert).

Square Saint-Lambert has moderate sunlight access (50%).
Conversely, Jardin Marguerite Boucicaut (78%) and Square
Yvette Chauviré (89%) lie in the overshadowed category.

To inspect the impact of nearby buildings on the over-
shadowing of Square Yvette Chauviré, we performed a
what-if scenario analysis by removing buildings too close
to the park. Figure 11 shows both the removed build-
ings (left) and the resulting shadows (right), highlighting
Deep Umbra’s ability to assist in urban planning activities.
Deep Umbra can help policy makers and government agen-
cies in several ways. They can better identify locations for
new parks within the municipality, and introduce sunlight
protection policies considering new development scenarios.

360

0

Yvette Chauviré 
Square Park

Fig. 11. Comparison of the impact of nearby buildings on the overshad-
owing of Yvette Chauviré Square Park (left) with an alternate scenario of
without the buildings (right). The buildings considered are highlighted in
purple. Removing these buildings too close to the park improves sunlight
access by a significant amount.

8.2 Analyzing land use-level street shadows

The right to access sunlight and the impact of tall build-
ings on restricting this access in dense urban areas have
long been the subject of popular debates [18], [48]. Two
main contributing factors to shadows on streets are street
width and the dimension (i.e., height and bulk) of the
surrounding buildings [16], [69]. To investigate how the
sunlight access pattern changes with land use in Chicago
and NYC, in this case study we first looked at the average
amount of accumulated shadow during the winter. Since
we are interested in the impact of building morphology
on shadow accumulation, we created street-level shadow
data by aggregating shadow values at a street-segment level,
using data from OSM [46]. Each street segment considers a
buffer of 5 meters, and we computed the mean accumulated
shadow per segment by averaging pixel values within the
buffered region. For each segment, we then assigned a land
use type by spatially joining buffered streets with official
land use datasets for Chicago [70] and NYC [71]. The results
show no significant difference between the average shadow
score in different land uses. NYC has, on average, a slightly
higher mean accumulated shadow, the maximum being 94%
in residential areas compared to 89% for the same land use
in Chicago. The distributions were also close, which does
not reveal any specific pattern.
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Fig. 12. The percentage of streets in overshadowed areas per land use for Chicago and NYC during the winter (left). The distribution of building
heights (middle) and the percentage of streets that are partially or overshadowed in Manhattan and Queens (right).

Next, we computed the percentage of streets falling in
the overshadowed range (above 75%) for each land use
type in both cities. Here, we see a more drastic difference.
Although in NYC, mixed-use areas generally have a higher
average of shadow score compared with residential ones,
as Figure 12(left) shows, residential streets comprise 78% of
the total number of streets that are overshadowed during
the winter. However, in Chicago, distribution is more bal-
anced: overshadowed streets are primarily concentrated in
commercial areas (39% of the total number of streets), while
residential areas comprise 25.5% of total overshadowed
streets. Streets around parks and open spaces in Chicago
receive less sunlight than those in NYC (7% vs. 2%).

Concerns around equitable sunlight access age back to
1916, when NYC’s first zoning resolution was adopted. To
provide equitable access to sunlight, the regulations enforce
restrictions on the height and bulk of the buildings. In
NYC, the Queens borough’s zoning regulations restrict it
to mainly up to eight-story residential buildings, while
in Manhattan tall skyscrapers dominate dense residential
and mixed-use areas. But do height restrictions in Queens
provide residents with more sunlight access?

In Queens, the mean accumulated shadow value in
residential streets is 82%, with a maximum of 96%, while
in Manhattan, we observed a lower average of 79% and
a lower maximum of 91%. We looked at the percentages
of streets falling within our ranges (Figure 12 (right)).
The publicly available PLUTO dataset provides information
about the height and bulk of buildings across NYC [71].
Using that data, we computed the distribution of building
height per land use for each borough to have a more vivid
picture and a fair comparison. Figure 12 (middle) shows
that buildings in Manhattan have a much wider height
range across all relevant land uses (we excluded parks and
industrial areas from this analysis since they have very
different zoning regulations) and generally are much taller
than their counterparts in Queens. However, the radial plot
(right) reveals an interesting pattern: although Manhattan
buildings are much taller than Queens, 83% of the shad-
owed streets of Queens are placed in residential areas, while
this number drops to 43% in Manhattan during the winter.
This pattern, in huge part, is due to the bulky residential
buildings and row houses built densely in Queens, which
as the analysis shows, cast more shadows than the taller
but skinnier buildings – a pattern backed up by previous
studies [4].

Using our computed shadow data and the publicly avail-
able land use and building datasets, we could uncover an
interesting and unexpected pattern in the Queens borough
of NYC, which raises questions regarding the equitable
access to sunlight and bulk and height regulations already in
place. This analysis can be further replicated and extended
to inform policy makers and residents in other cities about
the built environment’s impact on their daily lives.

9 CONCLUSION AND FUTURE WORK

In this paper, we presented Deep Umbra, a novel framework
that enables the quantification of shadow and sunlight ac-
cess in urban environments on a global scale. We leveraged
a conditional generative adversarial network to enable the
real-time computation of OSM-like map tiles with shadow
accumulation. For a city such as NYC, it only takes 105
seconds to generate shadow tiles for the entire city, making it
a viable and valuable solution for large-scale urban shadow
and sunlight analysis.

We also reported a series of experiments demonstrat-
ing the effectiveness of our approach, particularly taking
into account cities from different continents. Due to the
data training variety, the model can be used for different
seasons in any city of the globe (given available building
height data). The model was evaluated using root mean
square error, mean squared error, and mean absolute error,
also considering the transferability to cities outside the
training domain. Moreover, we have made available the
Global Shadow Dataset, a comprehensive dataset covering
more than 100 cities over six continents. By doing this, we
hope to facilitate research in multiple domains interested in
shadow and sunlight access computation and alleviate data
acquisition friction to benefit city planning activities as well
as facilitate the development of concrete applications and
studies that have shadows in cities as its object of analysis.

From an urban domain perspective, integrating ad-
vanced shadow-casting tools, such as Deep Umbra, is fun-
damental in climate-resilient urban planning. The dynamic
interplay of shadows, contingent upon the sun’s seasonal
path, significantly influences the energy dynamics and ther-
mal comfort within urban environments. During the winter
months, these tools empower policymakers to optimize ac-
cess to sunlight, thereby mitigating energy consumption and
enhancing urban comfort. Conversely, precise shadow cal-
culations foster thermal comfort during summer by strategi-
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cally shading pedestrian pathways and outdoor spaces. This
holistic approach to shadow management is a cornerstone
for resilient urban planning and design.

However, there are still some unaddressed challenges
and limitations that we plan to tackle in future work.
First, even though the amount of building height data
available through OSM is extensive, several cities in the
developing world lack good coverage. Therefore, we plan
to explore alternatives such as utilizing widely available
data (such as remote sensing) to enhance currently available
height data. Second, Deep Umbra does not consider urban
greenery, which impacts urban climate. Deciduous trees,
for instance, offer a dual advantage, permitting sunlight
penetration in winter while shielding against direct solar
radiation in summer. In future work, we plan to extend our
framework to also take into account trees. Third, while the
findings of this study offer valuable insights, they should be
interpreted with prudence when applied to policy formation
or decision-making at the city level. Given the complexities
and dynamic nature of urban environments, results may not
fully encapsulate every variable and scenario. Therefore, we
advise that our results and model be used as a guiding
framework rather than definitive solutions, encouraging
further investigation and adaptation to specific urban con-
texts. Lastly, we plan to incorporate Deep Umbra into GIS
tools, such as QGIS. This will open new opportunities for
studies in urban accessibility, targeting the identification of
black ice, and urban heat island effect.
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Planning Practice & Research, vol. 34, no. 2, pp. 131–148, 2019.

[20] R. Zhu, L. You, P. Santi, M. S. Wong, and C. Ratti, “Solar acces-
sibility in developing cities: A case study in kowloon east, hong
kong,” Sustainable Cities and Society, vol. 51, p. 101738, 2019.

[21] E. Eisemann, M. Schwarz, U. Assarsson, and M. Wimmer, Real-time
shadows. CRC Press, 2011.

[22] J.-H. Nah and D. Manocha, “Sato: Surface area traversal order for
shadow ray tracing,” in Computer Graphics Forum, vol. 33, no. 6.
Wiley Online Library, 2014, pp. 167–177.

[23] S. Zhang, R. Liang, and M. Wang, “Shadowgan: Shadow synthesis
for virtual objects with conditional adversarial networks,” Compu-
tational Visual Media, vol. 5, no. 1, pp. 105–115, 2019.

[24] D. Liu, C. Long, H. Zhang, H. Yu, X. Dong, and C. Xiao, “Arshad-
owgan: Shadow generative adversarial network for augmented
reality in single light scenes,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
8139–8148.

[25] J. K. Tan, R. N. Belcher, H. T. Tan, S. Menz, and T. Schroepfer, “The
urban heat island mitigation potential of vegetation depends on
local surface type and shade,” Urban Forestry & Urban Greening,
vol. 62, p. 127128, 2021.

[26] Hodyl and Co. (2018) Central Melbourne sunlight report.
[Online]. Available: https://www.hodyl.co/projects/sunlight-to-
public-open-space

[27] Shademap: the definitive source of shade data for the planet.
[Online]. Available: https://shademap.app/

[28] JveuxDuSoleil: a web-app to simulate the shadow of cities and
detect sunny terraces. [Online]. Available: https://jveuxdusoleil.fr

[29] ArcGIS Pro. [Online]. Available: https://www.esri.com/en-
us/arcgis/products/arcgis-pro/overview

[30] QGIS: a free and open source geographic information system.
[Online]. Available: https://qgis.org/en/site/

[31] Google Solar API. [Online]. Available: https://developers.google.
com/maps/documentation/solar

[32] M. Angelidou and A. Psaltoglou, “Social innovation, games and
urban planning: An analysis of current approaches,” International
Journal of Electronic Governance, vol. 11, no. 1, pp. 5–22, 2019.

[33] I. Kavouras, E. Sardis, E. Protopapadakis, I. Rallis, A. Doulamis,
and N. Doulamis, “A low-cost gamified urban planning method-
ology enhanced with co-creation and participatory approaches,”
Sustainability, vol. 15, no. 3, p. 2297, 2023.

[34] G. Moreira, M. Hosseini, M. N. A. Nipu, M. Lage, N. Ferreira,
and F. Miranda, “The Urban Toolkit: A grammar-based framework
for urban visual analytics,” IEEE Transactions on Visualization and
Computer Graphics, 2024.

[35] W. Yap, R. Stouffs, and F. Biljecki, “Urbanity: Automated modeling
and analysis of multidimensional networks in cities,” npj Urban
Sustainability, vol. 3, no. 1, p. 45, 2023.

[36] W. Yap, P. Janssen, and F. Biljecki, “Free and open source urbanism:
Software for urban planning practice,” Computers, Environment and
Urban Systems, vol. 96, p. 101825, 2022.

[37] Y. Zhang, Y. Li, X. Zhou, X. Kong, and J. Luo, “Curb-gan: Condi-
tional urban traffic estimation through spatio-temporal generative
adversarial networks,” in Proceedings of the 26th ACM SIGKDD

https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf
https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf
https://buildingtheskyline.org/city-shadows
https://buildingtheskyline.org/city-shadows
https://www.hodyl.co/projects/sunlight-to-public-open-space
https://www.hodyl.co/projects/sunlight-to-public-open-space
https://shademap.app/
https://jveuxdusoleil.fr
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://qgis.org/en/site/
https://developers.google.com/maps/documentation/solar
https://developers.google.com/maps/documentation/solar


IEEE TRANSACTIONS ON BIG DATA, VOL. X, NO. X, FEBRUARY 2024 13

International Conference on Knowledge Discovery & Data Mining,
2020, p. 842–852.

[38] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition,
2017, pp. 1125–1134.

[39] Y. Zheng, W. Wu, Y. Chen, H. Qu, and L. M. Ni, “Visual analytics
in urban computing: An overview,” IEEE Transactions on Big Data,
vol. 2, no. 3, pp. 276–296, 2016.

[40] D. Wang, Y. Fu, P. Wang, B. Huang, and C.-T. Lu, “Reimagining
city configuration: Automated urban planning via adversarial
learning,” in Proceedings of the 28th International Conference on
Advances in Geographic Information Systems, 2020, p. 497–506.

[41] S. Mokhtar, A. Sojka, and C. C. Davila, “Conditional generative
adversarial networks for pedestrian wind flow approximation,”
in Proceedings of the 11th Annual Symposium on Simulation for
Architecture and Urban Design, 2020, pp. 1–8.

[42] Y. Zhang, Y. Li, X. Zhou, X. Kong, and J. Luo, “TrafficGAN: Off-
deployment traffic estimation with traffic generative adversarial
networks,” in 2019 IEEE International Conference on Data Mining
(ICDM), 2019, pp. 1474–1479.

[43] X. Zhang, Y. Li, X. Zhou, and J. Luo, “cGAIL: Conditional genera-
tive adversarial imitation learning—an application in taxi drivers’
strategy learning,” IEEE Transactions on Big Data, vol. 8, no. 5, pp.
1288–1300, 2020.

[44] Y. Yuan, Y. Zhang, B. Wang, Y. Peng, Y. Hu, and B. Yin, “STGAN:
Spatio-temporal generative adversarial network for traffic data
imputation,” IEEE Transactions on Big Data, vol. 9, no. 1, pp. 200–
211, 2022.

[45] A. N. Wu, R. Stouffs, and F. Biljecki, “Generative adversarial
networks in the built environment: A comprehensive review of
the application of gans across data types and scales,” Building and
Environment, p. 109477, 2022.

[46] OpenStreetMap. [Online]. Available: https://www.
openstreetmap.org

[47] Central Park Sunshine Task Force Committee. (2015) Central
Park sunshine taskforce report. [Online]. Available: https:
//www.cb5.org/cb5m/resolutions/2015-may/may-2015 10

[48] Q. Bui and J. White. (2016) Mapping the shadows of
New York City: Every building every block. [Online].
Available: https://www.nytimes.com/interactive/2016/12/21/
upshot/Mapping-the-Shadows-of-New-York-City.html

[49] M. Mirza and S. Osindero, “Conditional generative adversarial
nets,” arXiv preprint arXiv:1411.1784, 2014.

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, 2012.

[51] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2536–2544.

[52] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612,
2004.

[53] S. Paul, B. Jhamb, D. Mishra, and M. S. Kumar, “Edge loss
functions for deep-learning depth-map,” Machine Learning with
Applications, vol. 7, p. 100218, 2022.

[54] L. Wang, L. Wang, and S. Chen, “ESA-CycleGAN: Edge feature
and self-attention based cycle-consistent generative adversarial
network for style transfer,” IET Image Processing, vol. 16, no. 1,
pp. 176–190, 2022.

[55] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catan-
zaro, “High-resolution image synthesis and semantic manipula-
tion with conditional GANs,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 8798–8807.

[56] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical Image Computing and Computer-assisted Inter-
vention. Springer, 2015, pp. 234–241.

[57] S. Jian, H. Kaiming, R. Shaoqing, and Z. Xiangyu, “Deep residual
learning for image recognition,” in IEEE Conference on Computer
Vision & Pattern Recognition, 2016, pp. 770–778.

[58] J. Hu, W. Yu, and Z. Yu, “Image-to-image translation with
conditional-GAN,” CS230: Deep Learning, Spring, 2018.

[59] M. Hosseini, M. Saugstad, F. Miranda, A. Sevtsuk, C. Silva, and
J. Froehlich, “Towards global-scale crowd+AI techniques to map

and assess sidewalks for people with disabilities,” in Proceedings
of the CVPR 2022 AVA (Accessibility, Vision, and Autonomy Meet)
Workshop, 2022.

[60] J. E. Froehlich, Y. Eisenberg, M. Hosseini, F. Miranda et al., “The
future of urban accessibility for people with disabilities: Data
collection, analytics, policy, and tools,” in Proceedings of the 24th
International ACM SIGACCESS Conference on Computers and Acces-
sibility, 2022.

[61] M. Hosseini, A. Sevtsuk, F. Miranda, R. M. Cesar Jr, and C. T.
Silva, “Mapping the walk: A scalable computer vision approach
for generating sidewalk network datasets from aerial imagery,”
Computers, Environment and Urban Systems, vol. 101, p. 101950,
2023.

[62] Z. Liu and J. Heer, “The effects of interactive latency on ex-
ploratory visual analysis,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, no. 12, pp. 2122–2131, 2014.

[63] M. F. Holick, “Sunlight and vitamin D for bone health and
prevention of autoimmune diseases, cancers, and cardiovascular
disease,” The American journal of clinical nutrition, vol. 80, no. 6, pp.
1678S–1688S, 2004.

[64] The Parks Council, NYC. (1991) Preserving sunlight in New York
City’s parks: A zoning proposal. [Online]. Available: https://beth-
letain.squarespace.com/s/Preserving-Sunshine-Zoning.pdf

[65] M. Mondon. (2015) NYC councilman wants to preserve Central
Park sunshine. [Online]. Available: https://nextcity.org/urbanist-
news/central-park-sunshine-high-rise-shadows-new-committee

[66] N. Filatoff. (2021) Let there be sunlight ... in the public
parks of high-density communities! [Online]. Available:
https://www.pv-magazine-australia.com/2021/09/20/let-there-
be-sunlight-in-the-public-parks-of-high-density-communities

[67] E. Sciolino. (2003) Paris journal; call it the city
of darkness, and give it vitamin D. [Online].
Available: https://www.nytimes.com/2003/01/06/world/paris-
journal-call-it-the-city-of-darkness-and-give-it-vitamin-d.html

[68] A. Small. (2016) Why are European cities so dense? [Online].
Available: https://www.bloomberg.com/news/articles/2016-10-
27/why-european-cities-still-have-more-dense-development

[69] R. Zhu, M. S. Wong, L. You, P. Santi, J. Nichol, H. C. Ho, L. Lu,
and C. Ratti, “The effect of urban morphology on the solar capacity
of three-dimensional cities,” Renewable Energy, vol. 153, pp. 1111–
1126, 2020.

[70] The Chicago Metropolitan Agency for Planning (CMAP). Land
Use Data. [Online]. Available: https://www.cmap.illinois.gov/
data/land-use

[71] New York City Department of City Planning (NYC DCP). PLUTO
and MapPLUTO. [Online]. Available: https://www1.nyc.gov/
site/planning/data-maps/open-data/dwn-pluto-mappluto.page

Kazi Shahrukh Omar is a Computer Science PhD student
at UIC, interested in urban computing and visualization.
Gustavo Moreira is a Computer Science PhD student at
UIC, interested in visualization and visual analytics.
Daniel Hodczak is an undergraduate student at UIC, inter-
ested in designing frameworks for efficient urban research.
Maryam Hosseini is a Postdoctoral Associate at the City
Form Lab at MIT. She received the Ph.D. in Urban Systems
from Rutgers University. She works in the intersection be-
tween visualization, computer vision and urban science.
Nicola Colaninno is an Assistant Professor at the Polytech-
nic University of Milan. He holds a Ph.D. in Urban and
Architectural Mgmt. and Valuations from UPC. His research
focuses on urban planning and urban climate analysis.
Marcos Lage is an Associate Professor in the Dept. of
Computer Science at UFF. He received the Ph.D. in Applied
Mathematics from PUC-Rio. His research interests include
visual computing and topological data structures.
Fabio Miranda is an Assistant Professor in the Dept. of
Computer Science at UIC. He received the Ph.D. in Com-
puter Science from NYU. His research focuses on large-scale
data analysis, data structures, and urban data visualization.

https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.cb5.org/cb5m/resolutions/2015-may/may-2015_10
https://www.cb5.org/cb5m/resolutions/2015-may/may-2015_10
https://www.nytimes.com/interactive/2016/12/21/upshot/Mapping-the-Shadows-of-New-York-City.html
https://www.nytimes.com/interactive/2016/12/21/upshot/Mapping-the-Shadows-of-New-York-City.html
https://beth-letain.squarespace.com/s/Preserving-Sunshine-Zoning.pdf
https://beth-letain.squarespace.com/s/Preserving-Sunshine-Zoning.pdf
https://nextcity.org/urbanist-news/central-park-sunshine-high-rise-shadows-new-committee
https://nextcity.org/urbanist-news/central-park-sunshine-high-rise-shadows-new-committee
https://www.pv-magazine-australia.com/2021/09/20/let-there-be-sunlight-in-the-public-parks-of-high-density-communities
https://www.pv-magazine-australia.com/2021/09/20/let-there-be-sunlight-in-the-public-parks-of-high-density-communities
https://www.nytimes.com/2003/01/06/world/paris-journal-call-it-the-city-of-darkness-and-give-it-vitamin-d.html
https://www.nytimes.com/2003/01/06/world/paris-journal-call-it-the-city-of-darkness-and-give-it-vitamin-d.html
https://www.bloomberg.com/news/articles/2016-10-27/why-european-cities-still-have-more-dense-development
https://www.bloomberg.com/news/articles/2016-10-27/why-european-cities-still-have-more-dense-development
https://www.cmap.illinois.gov/data/land-use
https://www.cmap.illinois.gov/data/land-use
https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page
https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-mappluto.page

	Introduction
	Related Work
	Background 
	Methodology
	Framework
	Conditional GAN model
	Architecture & implementation

	Data Description
	Experiments & Results
	Ablation study
	Quantitative evaluation
	Qualitative evaluation
	Comparison with existing tools & techniques

	Global Shadow Dataset
	Case Studies
	Sunlight access in Parisian parks
	Analyzing land use-level street shadows

	Conclusion and Future Work
	References

