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SUMMARY 

Grid is a computing architecture that consists of distributed clusters of computers 

interconnected by a network. Grid computing is used in a variety of data and 

compute-intensive scientific domains such as bioscience, nanotechnology, geoscience, 

high-energy physics. To facilitate the transportation of enormous (e.g. terabyte-sized) 

data-sets between Grid clusters, a new type of Grid computing architecture, called the 

LambdaGrid, has emerged. LambdaGrids are Grids that are interconnected by 

ultra-high-speed networks that can be directly controlled by applications. Typically the unit of 

control is a light path (often called a Lambda) in an optical network. In order for 

data-intensive applications to function efficiently, they need to be able to reserve enough 

bandwidth, through the allocation of these light paths. This thesis focuses on the problem of 

efficient scheduling of light paths between Grid clusters. Prior approaches use rigid 

scheduling schemes- i.e. resources are scheduled in terms of when the resources are needed 

and for how long. This thesis will show that contrary to obvious expectations, a flexible 

advance scheduling model can provide better overall resource utilization and user experience 

than a rigid scheduling scheme. 

In this thesis I propose a Flexible Advance Reservation Model (FARM) and describe how 

to apply this model to the cross-domain lightpath reservation problem by incorporating 

Routing and Wavelength Assignment algorithms. Next, I present the architecture, 
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implementation and services of a coordinated Interdomain and Intradomain optical control 

plane called AR-PIN/PDC, which is capable of flexible advance reservations, and provides web 

services. The simulation results show that by relaxing the reservation time constraint, the 

acceptance rate and resource utilization can be improved dramatically. Through simulations, 

I also analyze the impact of advance reservations on immediate reservations and conclude 

that both AR and IR requests need admission control algorithms in order to let both types of 

reservations coexist and use resource properly. The AR-PIN/PDC software has been deployed 

in an international photonic testbed consisting of four domains. Over the testbed, I measure 

the components of end-to-end signaling latency during inter-domain reservation and claim 

processes. The results show that the major latency component during claim processes is the 

optical switching time and domain level parallelism can effectively reduce the claim latency. 

And the time slot granularity is the major factor affecting the reservation latency.  
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CHAPTER 1 

INTRODUCTION 

 

The purpose of this thesis research is to provide advanced networking services with 

massive bandwidth, Quality of Service and advance reservation, to high end applications. 

Specifically, this thesis seeks approaches of application-driven intra-domain and inter-domain 

layer 1 lightpath provision, with the capability of advance reservation. In this thesis, I created 

a Flexible Advance Reservation Model (FARM), applied this model to Routing and Wavelength 

Assignment (RWA) problem, and designed routing and signaling algorithms to implement a 

coordinated inter-domain and intra-domain optical control plane with advance reservation 

capability. Through simulations, I found that admission control of both Advance Reservation 

(AR) and Immediate Reservation (IR) are necessary in order to maintain a well-balanced 

AR/IR mixed situation. After the implementation and deployment, I did experiments over an 

international testbed to measure and analyze the end-to-end lightpath reservation and claim 

process, and proved the parallelism can effectively reduce the delay. 
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1.1 The Internet is Not Enough for Advanced Applications 

The Internet has been an extremely successful technology innovation. Currently, there 

are approximately one billion users of the common Internet. The “killer application” that 

fostered the Internet into a global phenomenon was the World Wide Web. Developed in the late 

1980s at the European Center for Nuclear Research (CERN) from research by Tim 

Berners-Lee, the Web was initially created to share data on nuclear physics. By using 

hyperlinks and graphical “browsing” technology, the Web greatly simplifies the process of 

searching for, accessing, and sharing information on the Internet, making it much more 

accessible to a non-technical audience. 

However, advanced applications, represented by Grid applications, are raising network 

requirements of which the Internet can meet neither at present and even in the foreseeable 

future. A computational Grid is a hardware and software infrastructure that provides 

dependable, consistent, pervasive, and inexpensive access to high-end computational 

capabilities [Foster01]. 

“It mainly concerns with coordinated resource sharing and problem solving in dynamic, 

multi-institutional virtual organizations. The sharing concerned is not primarily file 

exchange but rather direct access to computers, software, data, and other resources, as is 

required by a range of collaborative problem-solving and resource-brokering strategies 

emerging in industry, science, and engineering. This sharing is, necessarily, highly controlled, 
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with resource providers and consumers defining clearly and carefully just what is shared, who 

is allowed to share, and the conditions under which sharing occurs. A set of individuals and/or 

institutions defined by such sharing rules form a virtual organization.” 

The Grid is a new type of infrastructure that builds upon, abstract and unify the 

innovations that originally arose from addressing the requirements of large-scale, 

resource-intensive science and engineering applications. One of the most important 

characteristics of the Grid is that it is distributed infrastructure. Therefore, from the earliest 

days of their design and development, Grids have always utilized networking services, 

especially those based on the Internet technologies. The shared Internet provides best-effort 

packet-forwarding service, which is not enough for scientific collaboration and Grid 

applications in several aspects: bandwidth is too low, quality of service is not guaranteed, and 

bandwidth cannot be reserved in advance. I will give advanced application examples to 

explain these aspects. (I will illustrate these aspects with an advanced application example.) 

 

1.1.1 Low Bandwidth  

The Large Hadron Collider (LHC) is a particle accelerator and collider located at CERN, 

near Geneva, Switzerland. Currently under construction, the LHC is scheduled to start 

operation in November 2007, when it will become the world’s largest particle accelerator. The 

current estimates are that the major LHC experiments will store data onto permanent 
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storage at a raw recording rate of 0.1-1.5 GigaBytes/sec (GB/s). A single copy of the archive is 

estimated to grow at a rate of 5-8 PetaBytes (PB)/year. [Messina04] This data will be accessed 

and processed repeatedly by the worldwide collaborations searching for new physics processes. 

 

Figure 1-1. The Large Hadron Collider Data Grid Hierarchy 

[Source: Harvey Newman, California Institute of Technology] 
 
This Figure demonstrates that in the large hadron collider Data Grid hierarchy, the bandwidth 
requirements on the networks connecting the “Tier0”, “Tier1” and “Tier2” should be in the order of 
10Gbps, and the networks connecting the “Tier3” and “Tier4” should be in the order of 1Gbps. 
 

Following initial processing and storage at the “Tier0” facility at the CERN laboratory site, 

the processed data is distributed through high-speed networks to ~10 to 20 national “Tier1” 

centers in the United States, leading European countries, Japan, and elsewhere. The data is 

there (then or The data there is…) further processed and analyzed and then stored at 

approximately 60 “Tier2” regional centers, each serving a small to medium-sized country, or 
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one region of a larger country. Data subsets are accessed and further analyzed by physics 

groups using one of hundreds of “Tier3” workgroup servers and thousands of “Tier4” desktops. 

[Newman03] As depicted in Figure 1-1, the bandwidth requirements on the networks 

connecting the “Tier0”, “Tier1” and “Tier2” should be in the order of 10Gbps, and the networks 

connecting the “Tier3” and “Tier4” should be in the order of 1Gbps. However, the most popular 

connection type to the Internet is digital subscriber line (DSL), which has only 1-10 Mbps. 

Even in the next 10 years, the Internet connection speed has little chance to reach 1Gbps. 

Cees de Laat classified the network users to A, B and C classes (can you say to class A, B and 

C), as shown in Figure 1-2. [DeLaat03] The first group, class A, includes typical home users 

with services provided by DSL or cable modems, who may have access at rates around 1Mbps, 

who use web browsing, emailing, etc. They need full Internet routing. Class B consists of 

enterprises, universities or Grid-based virtual organizations that operate at gigabit per 

second LAN speed. The majority of the traffic typically stays within the virtual organization. 

The class C represents a few hundred truly high-end applications currently being developed, 

which need transport capacities of multiple gigabits per second for a duration of minutes to 

hours, originating from a few places, destined for a few other places. Class C traffic often does 

not require Internet routing. However, it requires dynamic path provision because most of 

these applications require the gathering and utilization and releasing of resource at multiple 

sites. 
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Figure 1-2. Number of Class A, B and C Users Compared with Their Bandwidth Appetite  

[Source: Cees de Laat, University of Amsterdam] 
This Figure compares the bandwidth and number of users of classes A, B and C users. Most network 
users belong to class A. They use little bandwidth but need full Internet routing. Very small percentage 
of users belong to class C, but they use huge amount of bandwidth and usually communicate in 
few-to-few fashion. 
 

1.1.2 Lack of Quality of Service 

As shown in Figure 1-3, Scalable Adaptive Graphics Environment (SAGE) is a specialized 

middleware for enabling data, high-definition video and extremely high-resolution graphics to 

be streamed in real-time from remotely distributed rendering and storage clusters to scalable 

displays over ultra high-speed networks. [Renambot04] Interactive ultra-high-resolution 
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LambdaGrid visualization applications routinely access remote datasets spanning over 

multiple terabyte and visualize the rendered pixels on high-resolution displays. The network 

bandwidth requirements for browsing these datasets or pushing the rendered pixels to remote 

displays are in the range of several tens to hundreds of gigabits per second. In addition to the 

huge bandwidth usage, these applications usually create hundreds of bidirectional streams 

between distant endpoints, each (what is “each”) with differing flow requirements operating 

over differing transport protocols. Table 1-1 quantifies the broad variety of flows that 

simultaneously emanate from SAGE. [Wang06] 

When the Internet was first deployed many years ago, it lacked the ability to provide 

Quality of Service (QoS) guarantee because its infrastructure was too limited. It ran at 

default QoS level, or “best effort”. Integrated services tried to solve the problem by resource 

reservation. But it failed due to scalability issues. DiffServ took another way of prioritization 

and aggregation to limit the number of traffic classes in the backbone, but DiffServ (or 

backbone. However, DiffServ….) also failed because end-to-end QoS was difficult to guarantee 

by aggregating flows.  
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Figure 1-3. LambdaVision Driven by SAGE 

This Figure shows the SAGE application running on the 55-panel LambdaVision. The LambdaVision is 
an ultra-high-resolution visualization and networking instrument designed to support collaboration 
among co-located and remote experts requiring interactive ultra-high-resolution imagery. SAGE enbles 
data, high-definition video and extremely high-resolution graphics coming from different applications 
and locations to display simultaneously on LambdaVision. 

Table 1-1 Network flows created by Ultra-High resolution Grid visualization applications 

Type of Flow Number of Flows Bandwidth per 
Flow 

Latency 
Sensitive

Jitter 
Sensitive

Reliability 
Requirement

Burstiness Message 
Size 

Protocol 

Audio Stream 1 per user Low 1Mbps Yes Yes Med Constant Small UDP-based 
HD Video 
Stream 

1 per user Med to High 
25Mbps-1.5Gbps 

Yes Yes Med Constant Small to 
Med 

UDP-based 

Application 
Stream 

1-100 per 
application 

High 1-2.5Gbps Yes Variable High Application 
Dependent 

Large UDP-based 

Bulk Data 1 per render node High No No High Application 
Dependent 

Large UDP/TCP-b
ased 

Annotations/ 
Static Content 

1-10 per user Low 1Mbps No No High One Burst Small TCP-based 

Control Channel 1 per rendering node 
+ 1 per display 

Low 64Kbps No Yes High Short Burst Small TCP-based 

Synchronization 
Channel 

1 per rendering node 
+ 1 per display 

Low 1Mbps Yes Yes High Constant Small TCP-based 

SAGE UI 1 per user Low 64Kbps No No High Short Burst Small TCP-based 
VNC Streams 1 per user Low 1Mbps Yes Yes High Small 

Burst 
Small TCP-based 
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1.1.3 Absence of Advance Reservation 

Advance reservation is required to guarantee the availability of network resources. The 

nature of resource reservations in Grid computing is quite different from those of telephone 

calls. For the latter, their durations are usually not known in advance and hence cannot be 

planned in advance. In contrast, resource allocations in Grid environments usually require a 

large number of different types of resources to be acquired simultaneously. Therefore, they 

have to be reserved in advance, in a manner similar to the reservation of hotels, airlines, and 

rental cars for vacation travel. 

As I said (mentioned) in the last (or previous) section, the current Internet can only 

provide fairness-based best-effort services. Everyone gets a fair share from the available 

resources when he/she starts running the networking applications. There is no resource 

reservation service available in the Internet, let alone advance reservation services.  

 

1.2 All-Optical Networks 

Over the past ten years, the network bandwidth has been improved 240X from 155 Mbps 

to 40 Gbps. This growth rate has been outpacing that of disk speed/capacity and processing 

power during the same period. This has produced a major technology mismatch, perhaps best 

illustrated by the fact that most PCs today are sold with Gigabit Ethernet (GigE) interfaces, 



 10

even though typically available file transfer speeds across the shared Internet are only 10-20 

Mbps. Even with Dense Wavelength-division multiplexing (DWDM) technology enabling 

immerse amounts of bandwidth on a single pair of fiber strands, today’s networks are still 

clogged up and slow to a crawl. Alternatively, lambdas dedicated to individual researchers 

create the equivalent of high-occupancy-vehicle expressway lanes, delivering more reliable 

and predictable network performance. This has been considered the most promising 

mechanism to meet all these demands from Grid applications. 10 Gbps is common to be 

carried on each wavelength and 40 Gbps starts emerging. When 32 wavelengths are 

multiplexed, one fiber can carry more than 1 terabits per second! When the control plane 

provides the lightpath advance reservation capability, the applications can be guaranteed to 

achieve certain quality of service in specific time slots. When Grids are powered by dedicated 

lambdas and the networking is not the system bottleneck any more, we call them Lambda 

Grids. 

The OptIPuter [Smarr03] is a National Science Foundation funded project to interconnect 

distributed storage, computing and visualization resources using photonic networks at tens of 

gigabits per second. The main goal of the project is to exploit the trend that network capacity is 

increasing at a rate far exceeding processor speed, while at the same time plummeting in cost. 

This allows one to experiment with a new paradigm in distributed computing - where the 

photonic networks serve as the computer's system bus and compute clusters, taken as a whole, 



 11

serve as the peripherals in a potentially planetary-scale computer. I consider photonic 

networks as all-optical networks comprised of optical fibers and 3D MEMS 

(Micro-Electro-Mechanical Systems) optical switching devices. There is no translation of 

photons to electrons in photonic networks, hence I can avoid electronic bottlenecks. MEMS 

optical switches are controlled by special control software that allows applications to request 

and acquire end-to-end lightpaths. This special software is called Photonic Domain Controller 

(PDC), which is one of the topics covered in this thesis. 

Increasingly, research organizations are buying dark fiber or wavelengths, and they want 

to share their resources with each other in a manner similar to how they might share 

computing resources in Grid environments. A collection of Grid computing resources 

interconnected by an application-configurable network of lightpaths is called a LambdaGrid 

[DeFanti03]. This provides data-intensive applications with the necessary deterministic 

network bandwidth to transport data between grid instruments, high-performance storage 

systems, compute clusters and visualization systems, which is often needed for real-time 

interactive scientific exploration. An international virtual organization, GLIF, the Global 

Lambda Integrated Facility, was established to promote this paradigm [GLIF]. 

Photonic Interdomain Controller (PIN) is software that allows applications to provision for 

or (provide) and control multi-domain lightpaths [Yu04]. PIN specializes in the interdomain 

routing and signaling schemes over heterogeneous optical network domains. In a 
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multi-domain environment, security management and policy administration are also critical. 

Our collaborator, at the University of Amsterdam, has done some pioneering research on 

Authorization, Authentication and Accounting (AAA) and we are leveraging it within PIN 

software [Oudenaarde05]. 

 

1.3 Flexible Advance Reservation 

As I mentioned in Section 1.1, advance reservation of lightpath resource is a critical 

functionality that the LambdaGrid needs to provide. For customers, the major performance 

parameter of resource reservations is acceptance rate or blocking rate, which is defined as the 

ratio of accepted (blocked) reservation requests of all submitted requests. For network 

operators, the major performance parameter is resource utilization, which is related directly to 

their revenue. In comparison to immediate reservations, advance reservations usually degrade 

the resource utilization and the acceptance rate due to the resource fragmentation 

[Burchard03]. In order to improve the network performance, fragmentation must be avoided. 

Allowing flexibility in defining the advance reservations can result in better resource 

utilization while offering greater convenience to users. In this paper I will examine, through 

simulations, the degree by which flexibility affects performance. 
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Incorporating flexible advance reservation into PIN/PDC is not trivial. As PIN/PDC is 

based on all-optical networks, one main problem that PIN/PDC has to solve is Routing and 

Wavelength Assignment (RWA).  The RWA problem is a NP-hard problem. Usually it can be 

simplified by decoupling the problem into two sub problems: the routing problem and the 

wavelength assignment problem. The routing problem can be solved by Fixed Routing, Fixed 

Alternate Routing, or Adaptive Routing algorithms. Adaptive Routing is considered to be able 

to achieve the best performance by feeding the wavelength assignment status back to the 

routing algorithm [Zang00]. The flexibility of advance reservations introduces a new temporal 

dimension into the resource allocation problem. The wavelength resources along the path have 

to maintain both wavelength and temporal consistency. 

For interdomain distributed control, the addition of a temporal dimension makes the 

resource state of each domain too large to disseminate to other domains. Therefore, only the 

relatively static topology summary information of each domain is disseminated to other 

collaborating domains. The Grid community consists of many Virtual Organization (VO) based 

collaborations, which means that the resource of each domain is usually not open for all the 

world, instead, each domain wants to define their own collaborators and individual access 

policy. I believe that the peer-to-peer publish/subscribe model is more effective in this regard 

and more scalable for interdomain topology exchange. 
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The multi-domain lightpath reservation problem is actually one type of meta-scheduling 

problem. Meta-scheduling can be defined as the act of locating and allocating resources for a 

job from a collection of distributed resources [Snell00]. The key to meta-scheduling is that the 

user need not be aware of where the resources are, who owns the resources, or who 

administers the resources in order to use them. Therefore, the meta-scheduler has to be in 

charge of probing, selecting and reserving the best set of resources by communicating with a 

bunch of local schedulers. This same methodology can be applied to the cross-domain lightpath 

reservation problem. The new version of PIN/PDC with flexible Advance Reservation (AR) 

capability is called Advance Reservation Photonic Interdomain Negotiator and Photonic 

Domain Controller (AR-PIN/PDC).  

 

1.4 Contributions 

Through the design and implementation of AR-PIN/PDC, I recognized and addressed 

numerous research problems in the control plane and data plane of optical networking. 

Specifically, this dissertation makes the following contributions. 

 I created a Flexible Advance Reservation Model (FARM), applied this model to 

Routing and Wavelength Assignment (RWA), and designed algorithms to achieve 

interdomain and intradomain lightpath advance reservation. A peer-to-peer based 
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publish/subscription topology model is used to avoid huge amount of state flooding. 

The On-Demand Parallel Probe algorithm renders the periodic dissemination of 

time-based resource availability information unnecessary and hence makes the 

system more scalable. 

 Through simulations, I found that by introducing some flexibility on the time 

parameters of advance reservations, the network performance can be improved 

dramatically. Also it is confirmed that both Advance Reservation (AR) and Immediate 

Reservation (IR) admission control are necessary in order to maintain a well-balanced 

AR/IR mixed environment. 

 I implemented the fore-mentioned algorithms in the software AR-PIN/PDC. As a set 

of services, AR-PIN/PDC can be easily deployed in JBoss application server. Because 

it provides standard web service interfaces, writing clients is very easy in most 

platforms and environments. 

 I deployed AR-PIN/PDC in four domains in US and Europe, making scheduling 

cross-continent lightpaths possible. In this testbed, I measured and analyzed the 

components in the end-to-end lightpath reservation and claim, and proved the 

parallelism of probing and claiming effectively reduces the delay, and the time slot 

granularity is the major factor affecting the computation time. 
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 Reliable Blast UDP (RBUDP) protocol was designed and implemented. This protocol 

is a very aggressive protocol designed for dedicated or QoS-enabled high bandwidth 

networks such as optical networks. For large bulk transfers, RBUDP can provide 

delivery at precise, user-specified sending rates. I provided an analytical model that 

provides a good prediction of RBUDP performance. 

 

1.5 Organization 

The remainder of the dissertation is organized as follows. In chapter 2, I describe related work. In 

chapter 3, a unified Flexible Advance Reservation Model (FARM) is described and I will show how to 

implement the model for the meta-scheduling problem. In chapter 4, I will elaborate on the architecture of 

AR-PDC and AR-PIN, especially the interdomain routing and signaling processes, algorithms and their 

functions. In chapter 5, comprehensive simulation results are shown on how flexibility improves network 

performance and the impact of advance reservations on immediate reservations. In chapter 6, I will describe 

the web services that AR-PIN/PDC will provide, data structures and compare two distributed web service 

modes. In chapter 7, several series of experiments were run to analyze the end-to-end signaling latency for 

inter-domain reservations and claims. In chapter 8, I will describe a high performance data transport protocol 

– RBUDP – which is suitable for transporting data over photonic networks. Then the dissertation is 

concluded by chapter 9.
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CHAPTER 2 

RELATED WORK 

 

In this chapter, I will review previous work and literature in several aspects related to this 

dissertation: routing and wavelength assignment, interdomain routing and signaling, advance 

reservation, and deployed optical control planes. 

 

2.1 Routing and Wavelength Assignment (RWA) 

Most RWA approaches in wavelength-routed optical WDM networks have been reviewed 

and compared in (in what）  [Zang00]. Because the combined routing and wavelength 

assignment are hard problems, all RWA approaches divided the entire problem into two 

subproblems: routing subproblem and wavelength assignment subproblem. Routing 

subproblem can be solved by Fixed Routing, Fixed-Alternate Routing, and Adaptive Routing. 

Fixed routing is the simplest but usually leads to high blocking probabilities. Fixed-alternate 

routing and adaptive routing provide significant benefits over fixed-shortest-path routing in 

terms of resource utilization and blocking rate. Of the eleven wavelength assignment 

heuristics summarized in Zang’s paper, only four of them are for single fiber situations. 
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1. Random Wavelength Assignment (R) 

This scheme first searches the space of wavelengths to determine the set of all 

wavelengths that are available on the required route. Among the available wavelengths, one 

is chosen randomly. 

2. First Fit (FF) 

The first available wavelength is selected. This scheme performs well in terms of blocking 

probability and fairness, and is preferred in practice because of its small computational 

overhead and low complexity. 

3. Least-Used (LU)/SPREAD 

LU selects the wavelength that is the least used in the network, thereby attempting to 

balance the load among all the wavelengths. The performance of LU is worse than Random. 

4. Most-Used (MU)/PACK 

MU is the opposite of LU in which it attempts to select the most-used wavelength in the 

network. It outperforms LU significantly. 

In these methods, First-Fit is used mostly because of the algorithmic simplicity and good 

performance. 

In [Chu04], upon the arrival of a lightpath request, if there is any link in the selected 

route which currently has no free wavelength, I can not set up the lightpath on this route. 

Otherwise, I should first try to find a common free wavelength on all the links along the 
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selected path. If there is no common free wavelength, I then check whether wavelength 

converters can help. A lightpath is divided into several segments by the intermediate OXCs 

which currently have free converters. Each segment still suffers the wavelength continuity 

constraint. A lightpath can be setup successfully if and only if every segment has common free 

wavelength(s). For each link, the first-fit wavelength assignment scheme is used. 

[Yang05] designed a hybrid weighted shortest path first (HW-SPF) heuristic to find the 

route. Then the Fragmentation or Trace-back regenerator allocation strategy is used on the 

resultant route. The first-fit wavelength assignment is used by the regenerator allocation 

strategy. The HW-SPF heuristic is adapted to accept advance reservation requests in this 

thesis. 

 

2.2 Interdomain Routing and Signaling 

OBGP [Francisco01] extended the BGP routing protocol to support interdomain lightpath 

setup and management.  Connectivity information in BGP is propagated through UPDATE 

messages. Each OBGP speaker contains complete autonomous system (AS) path information 

to reach a particular network. Signaling is also implemented through OBGP protocol.  

However, OBGP assumes that each OXC has the capability to convert wavelengths. OBGP 

also didn’t consider the effect of physical layer impairments. These factors don’t prevent us 

from using OBGP as a reachability disseminating protocol. 
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[Jukan04] used flooding-based protocol to transfer the user path request to the 

destination through all possible paths. The state vector composed by service-specific path 

quality attributes, such as physical layer impairments, reliability, policy, and traffic 

conditions, is updated at each hop. The flooding is stopped when the service cannot be met. If 

more than one messages arrive at the destination, the best path is selected based on some 

criteria. The signaling overhead is huge and increases exponentially with the number of hops. 

In [Yang04], a domain gateway uses a local routing scheme to compute alternate local 

routes between itself and each interior node in the same domain as well as between itself and 

each neighboring domain gateway. Then a next-hop computation function is used to join the 

alternate local routes of this domain to the alternate routes of adjacent domains to form the 

next-hop interfaces leading to desired destinations. Finally, a hop-by-hop lightpath selection 

function uses the obtained local and next-hop routing information to establish interdomain 

end-to-end lightpaths. 

 

2.3 Advance Reservation 

Advance reservation has been widely studied in networks other than all-optical networks. 

Guerin and Orda [Guerin00] investigated the computational complexity of routing algorithms 

when supporting different models of advance reservations. Greenberg et al. [Greenberg99] 

proposed a call admission control algorithm that occasionally allows a call in progress to be 
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interrupted in order to efficiently share resources among book-ahead (BA) calls and non-BA 

calls. The Globus Architecture for Reservation and Allocation (GARA) is a toolkit used to 

implement advance reservations of grid resources in Globus software [Foster99, Curti05]. The 

performance issues of applying advance reservations to meta-scheduling problem have been 

examined by Snell et al. [Snell00]. 

[Zheng02] analyzed RWA algorithms for three types of advance reservations of lightpaths: 

Specified Starting Time and Specified Duration (STSD); Specified starting Time Unspecified 

Duration (STUD); Unspecified starting Time Specified Duration (UTSD).  

 

2.4 Deployed Optical Control Planes 

The UCLP (User Controlled Light Path) [Boutaba04, Wu05] software allows end users to 

self provision and dynamically reconfigure optical (layer one) networks within a single 

domain or across multiple independent management domains. Sometimes this is also referred 

to as user controlled traffic engineering. Users can also create daughter optical VPNs (Virtual 

Private Networks) and hand off control and management of these VPNs to other users.  The 

UCLP software is designed to allow end users to create their own discipline or application 

specific IP network, particularly in support for high end grid applications. More importantly 

these networks can be dynamically reconfigured at any time without getting permission or 

signaling the optical network manager. The UCLP web services software is based on the Open 



 22

Grid Service Architecture (OGSA) using Globus Toolkit 3 and Java/Jini services. UCLP is now 

deployed across CA*net 4 networks. 

The ODIN (Optical Dynamic Intelligent Network) service [Mambretti03, Mambretti06] is 

software being designed and developed iCAIR as an intermediary between high-performance 

distributed global applications and lower level network service layers. ODIN provides a single 

point of control for a defined set of network requests within a single administrative domain.  

This point of control is incorporated within a process that resides on a control server. The 

process has a complete “understanding” of the topology and current resource allocations 

within the administrative domain. ODIN was deployed on the OMNInet testbed. 

Bandwidth on Demand (BoD) [Gommans03, Gommans06] service provides a QoS path 

based on Generic Authorization, Authentication, Accounting (AAA) towards a multi domain 

solution. As each administrative domain implements the authorization of its resources to an 

AAA server, more than one AAA server needs to communicate by means by AAA requests in 

order to authorize a QoS path. For each type of AAA request there exists a corresponding 

Driving Policy that instructs the AAA server how to deal with the request. Concrete resources 

are controlled by Application Specific Module (ASM), whereas generic actions are delegated to 

the generic part of an AAA server. 

There are some other systems geared on provision circuit-switched end-to-end paths. 

[Veeraraghavan03, Veeraraghavan06] All of the aforementioned work assumes the physical 
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network is based on SONET or Ethernet segments and therefore do not incorporate RWA 

algorithms.  

Generalized Multi-Protocol Label Switching (GMPLS) is a well-accepted control plane in 

optical networking industry. It extends MPLS to provide the control plane (signaling and 

routing) for devices that switch in any of these domains: packet, time, wavelength and fiber. 

The suite of GMPLS protocols consists of three separate protocols: OSPF-TE, 

RSVP-TE/CR-LDP, and LMP. 

The routing protocol in GMPLS is usually Open Shortest Path First-Traffic Engineeting 

(OSPF-TE). [Kompella05] OSPF determines the shortest path from a source node to a 

destination node. The traffic engineering extensions provide a way of describing the traffic 

engineering topology (including bandwidth and administrative constraints) and distributing 

this information within a given OSPF area. In OSPF-TE, the route is usually computed at the 

source using Constrained Shortest Path First (CSPF). 

Once the path is computed with OSPF-TE, the next thing is to establish the forwarding 

state along the path, as well as possibly to reserve resources along the path. There are two 

possible mechanisms to accomplish this: RSVP-TE(Resource ReSerVation Protocol with 

Traffic Engineering) and CR-LDP (Constraint-based Routing Label Distribution Protocol). 

[Ashwood03, Berger03] Both protocols use Explicit Route Object (ERO) to forward the path 

information from the source to other nodes along the explicit route. 
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Because data channels and control channels are separated in GMPLS, a mechanism is 

required to manage the data links, both in terms of link provision and fault management. 

This is accomplish by Link Management Protocol (LMP). [Lang05] 

GMPLS is not designed for peer-to-peer networking architecture and more like a device 

management and control protocol for telco-provided networks. It is very difficult to 

incorporate multi-domain, advance reservation and Authentication, Authorization and 

Accounting (AAA) functions into it. Besides, GMPLS is a complicated suite of protocol. 

Implementing GMPLS is not trivial. Calient sells their photonic switches with GMPLS three 

times more expensive than those without GMPLS.  

Robust Fast Optical Reservation Protocol (RFORP) [Yu04] discovers wavelength 

availability hop by hop along the pre-selected route. To minimize wavelength discovery failure, 

RFORP optimizes the use of wavelength conversion during discovery. When an OXC along the 

selected lightpath route does not have the common available wavelengths as the upstream 

OXCs, the wavelength discovery request will be rollback to the neighboring upstream OXCs 

to check if wavelength conversion could be deployed to resolve the wavelength-blocking 

problem. It attempts to recover from wavelength fails when the rollback request propagates 

back to the source OXC that is also non-converting. RFORP minimizes end-to-end reservation 

delay by employing parallel concurrent reservation. RFORP assumes that border switches are 

OEO switches and there is no wavelength continuity constraint between domains, and 
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therefore only considered RWA algorithms within domains. This assumption is not necessary 

valid, I extend the wavelength continuity constraint beyond domain borders in this paper.  

The Dragon Project (Dynamic Resource Allocation via GMPLS Optical Networks) is trying 

to build an inter-domain lightpath resource management system and leverage the GMPLS 

protocol as the intra-domain control plane [Yang06, Lehman06]. Generally they use GMPLS as 

the intra-domain control plane. For those devices who can not talk GMPLS, a Virtual Label 

Swapping Router (VLSR) is employed to bridge GMPLS protocols and SNMP/TL1/CLI 

transactions. Between domains, they use Network Aware Resource Broker (NARB) to provide 

inter-domain service capability propagation, compute ERO using source routing, performs 

request authorization and book ahead reservations. In the process of state exchange, the 

topology or topology summary, Label Switching Path (LSP) reservation information, and AAA 

policy information of each domain will be disseminated to all other domains. This puts a huge 

amount of load on the control plane network which usually has relatively low bandwidth.  

2.5 Comparison 

In this dissertation, I describe a coordinated intra-domain and inter-domain control plane, 

taking into account both cross-domain RWA and flexible advance reservation. I propose a 

publish/subscribe route advertising model and On-Demand Parallel Probe (ODPP) algorithm 

to achieve the scalability of inter-domain information dissemination. The intra-domain control 

plane can work on not only GMPLS-enabled switches, but also bare MEMS switches that can 
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only talk TL1 language. In Table 2-1, I listed major related research and compared them to my 

research.  

Through simulations, I found that flexibility in advance reservations can improve 

performance dramatically. I also explored the impact of introducing advance reservations 

schemes into an immediate reservation system. Through experiments, I found that the parallel 

probing and parallel claiming effectively reduce the end-to-end signaling time. 

 
RWA Circuit-Switched 

Control Plane 

Advance 

Reservation 

Flexible 

AR 

Multiple 

Domain 

Deploy in 

Real Testbeds 

[Yang04, 05] X X   X  

[Zheng02] X  X X   

GARA   X   X 

UCLP  X   X X 

ODIN X X    X 

BoD  X   X X 

RFORP X X    X 

GMPLS  X    X 

DRAGON  X X  X X 

AR-PIN/PDC X X X X X X 

Table 2-1 Feature comparison of related research to this thesis.
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CHAPTER 3 

FLEXIBLE ADVANCE RESERVATION MODEL 

 

3.1 Flexible Advance Reservation Model (FARM) 

I assume that Immediate Reservation (IR) requests use resources immediately upon 

arrival if they are admitted, without announcing their holding times. In contrast, Advance 

Reservation (AR) requests specify clearly a start time and an end time (or a holding time). The 

AR request holding time is usually an estimate or a safe upper bound. The resource used by 

this request will be made available to other requests when the customer finishes his/her job or 

the holding time expires, whichever happens first. 

The specification of an Advance Reservation (AR) request consists of two types of 

parameters: time-related parameters and resource-related parameters. For fixed advance 

reservations, time-related parameters include reservation start time “tstart” and reservation 

end time “tstop”. 

I believe that if I give some flexibility on the time parameters, the call acceptance rate will 

be improved. This is because flexibility tends to aggregate the reservations together thereby 

reducing the effect of fragmentation, and in turn enhancing resource utilization. This 
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hypothesis will be proven in the simulations in chapter 5. Zheng and Mouftah [Zheng02] 

classified advance reservations into three types: specified starting time and specified duration 

(STSD); specified starting time and unspecified duration (STUD); and unspecified starting 

time and specified duration (UTSD). Different wavelength assignment algorithms are used for 

each request type. There is, however, another possible condition where both starting time and 

duration are unspecified and only a time window is specified with an earliest time and latest 

time (UTUD). I wish (hope) to use this to express the notion of flexibility because all the other 

three reservation types can be expressed as UTUD with some constraints such as the earliest 

time or the longest time. It is possible the RWA algorithm will find that there are many 

candidate solutions. I want to put a limit on the maximum number of returned candidate 

solutions. Also we need to specify the criteria by which the resource agent can select the best 

candidate. The criteria could be the earliest or the longest. 

The resource-related parameters are dependent on the type of the resource. In this paper, 

now that I am focusing on layer 1 lightpaths, the parameters should include a source node 

and a destination node. In all-optical circuit switching networks, the bandwidth granularity is 

a wavelength. A request which needs multiple wavelengths can be decomposed into multiple 

requests wherein each request provisions a single wavelength. Therefore, in my scheme, I 

consider only single wavelength reservations. 
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Figure 3-1. The Specification of Flexible Advance Reservations 

This Figure shows that relation and meaning of the time-related parameters in flexible advance 
reservation specification. tstart is the earliest time, tstop is the latest time, tmd is minimum duration. 

Therefore, a flexible advance reservation is defined as follows: 

),,,,,( ctttdsR mdstopstart=            (3-1) 

where s is the source node, d is the destination node, tstart is the earliest time, tstop is the 

latest time, tmd is minimum duration, and c is the selection criteria. The time related 

parameters are shown in Figure 3-1. 

Flexibility can also improve the user efficiency and satisfaction. For example, for fixed 

reservations, a user can only get the answer yes or no for a proposed reservation. When 

flexibility is introduced, the local resource manager will search a wider range of time slots 

when resources are available. This eliminates the need for the user to begin the process over 

again with another new proposed reservation. I will show how the flexibility improves the call 

acceptance rate by simulations in chapter 5. 

 

trequest 
time tstart tstop 

tmd
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3.2 FARM in Meta-scheduler 

Meta-scheduling is the process that a super scheduler schedules resources across multiple 

sites by negotiating with corresponding local resource managers. [Weissman98] Usually the 

advance reservation in meta-scheduling is implemented by co-reservation. Figure 3-2 

illustrates the steps to apply flexible advance reservations to meta-scheduling. These are: 

 

Figure 3-2. Apply FARM to Meta-Scheduler 

Meta-scheduling is the process that a super scheduler schedules resources across multiple sites by 
negotiating with corresponding local resource managers. Usually the advance reservation in 
meta-scheduling is implemented by co-reservation. This Figure illustrates the steps to apply flexible 
advance reservations to meta-scheduling. 
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1). The user submits a flexible advance reservation request to the meta-scheduler. The 

meta-scheduler analyzes the request, computes a set of resources which can satisfy the user’s 

request. 

2). The meta-scheduler decomposes the original request into sub-requests and send them 

to their local resource managers. The resource managers fetch the resource availability 

information during the flexible time range from their scheduling database and sends it back to 

the meta-scheduler. 

3). The meta-scheduler collects all the resource availability information. It (“It” refers to 

Information?) then determines the range of time that is common for all the resources to meet 

the original request. If there are more than one of them, the best one will be selected based on 

the user specified criteria. At this point, the flexible time parameters of the original request 

are fixed. Then the meta-scheduler sends the fixed advance reservation requests to all involved 

local schedulers to reserve the needed resources. If any reservation attempt fails, the 

meta-scheduler releases all existing reservations for this job. 

4). If all involved local schedulers returns success to the meta-scheduler, then the 

meta-scheduler returns success to the user and sends back the reservation handle. 

Cross-domain lightpath reservation is similar to meta-scheduling of multiple resources. 

However, the nature of wavelength resource makes the problem more complicated. The 

multiple domain all-optical lightpath reservation has one more constraint: wavelength 
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continuity. Therefore, both meta-scheduler and local schedulers have to maintain time 

continuity as well as wavelength continuity. I will discuss how I solved the problem and the 

algorithms in detail in chapter 4. 

The flexibility can improve the call acceptance rate of local resource managers. The 

improvement is even more important when a meta-scheduler wants to co-reserve multiple 

resources from independent resource managers for the same period of time. For example, if the 

blocking rate of each resource is 0.05, then the blocking rate of meta-scheduling of 10 

independent resources is 1-(0.9510) = 0.401. This high blocking rate is intolerable in most cases. 

If the blocking rate of each resource can be improved to 0.01 through flexible advance 

reservations, then the blocking rate of meta-scheduling can be improved to 1 - (0.9910) = 0.096, 

This blocking rate is acceptable. This makes it possible to schedule large scale scientific 

collaborations involving a lot of distributed resources. In other words, if the maximum blocking 

rate we can tolerate is 10%, then in the case of meta-scheduling of 10 independent resources, 

then the blocking rate of each individual local resource is required to be lower than 1%, 

assuming all resources having the same blocking rate. The relation of blocking rate of 

meta-scheduler and individual scheduler is depicted in Figure 3-3. Therefore, improvement 

brought by the flexible advance reservations has significant impact on meta-scheduling, also in 

cross-domain lightpath scheduling. 



 33

Blocking rate of meta-scheduler consisting of 10 local schedulers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2
Blocking rate of local scheduler

B
lo

ck
in

g 
ra

te
 o

f m
et

a-
sc

he
du

le
r

 

Figure 3-3. The Relation of Blocking Rate of Meta-Scheduler and Individual Local Schedulers 

 
This Figure shows the relation of blocking rate of meta-scheduler having 10 resources and individual 

scheduler, assuming all resources having the same blocking rate. For example, if the maximum blocking 
rate we can tolerate is 10%, then in the case of meta-scheduling of 10 independent resources, then the 
blocking rate of each individual local resource is required to be lower than 1%. Therefore, improvement 
brought by the flexible advance reservations has significant impact on meta-scheduling.. 
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CHAPTER 4 

COORDINATED INTRADOMAIN AND INTERDOMAIN 

CONTROL PLANE  

 

AR-PIN and AR-PDC are interdomain and intradomain lightpath control software that 

work together to enable advance reservations for end-to-end interdomain lightpaths.  

The system architecture is shown in Figure 4-1. I use an example to show the sequence of 

interactions between users, AR-PIN and AR-PDC. The following steps will be executed when 

client A in domain “1” sends a reservation request to the AR-PIN/AR-PDC system: 

Periodically, or based on topology changes, the collaborating domains exchange topology 

summary with each other. 

1. Client A sends a lightpath reservation request to its local interdomain agent 

AR-PIN1. 

2. AR-PIN1 computes the domain-level paths. 

3. The source domain queries resource availability from each AR-PDC on the 

domain-level path. 
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4. Each queried AR-PDC checks its own AAA policy, resource database, then returns 

the timeslot-wavelength availability matrix.  

5. All the returned timeslot-wavelength availability matrices are intersected at 

AR-PIN1. Based on the result, the best switch-level path is selected. Then the reservations of 

all involved domains are performed in parallel. 

6. Within the reservation time window, the lightpath provision is triggered by 

committing the reservation. To do that, the device drivers send TL1 commands to switches to 

set up the end-to-end lightpath. 

Next I will explain each major component of AR-PIN and AR-PDC in detail.  
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Figure 4-1. AR-PIN/AR-PDC System Architecture 

This Figure shows that the major components of AR-PIN and AR-PDC and the interactions among them and 
photonic switches. Three domains are shown in the Figure. 
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4.1 AR-PIN: Interdomain Control Plane 

A domain is an independently managed network cloud exposing a set of ingress and egress 

points and links with service specifications. Each link is controlled and managed by a single 

domain. The separation points between neighboring domains are switches. These switches are 

called as border switches. Ports on border switches can terminate links of multiple different 

domains. Every border switch needs a globally unique address or name for addressing 

purposes.  

When a domain advertises its topology information to other collaborating domains, it is not 

necessary to include the details such as internal switches and internal links. Instead, it will 

just send out a topology summary of its own domain consisting of only border switches and 

abstracted links. For example, the advertisement from domain A will be: 

Switch 1-2: wavelength w1, w2, w3, w4. 

Switch 1-3: wavelength w1, w2, w3, w4, w5, w6, w7, w8. 
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Figure 4-2. Structure of Multiple Photonic Domains 

This Figure shows the switches and links of three routing domains. There are two catagaries of 
switches: border switches and internal switches. Topology summary of a domain consists of only border 
switches and abstract links. Only topology summaries are exchanged. 

These two abstracted links are shown as dotted lines in Figure 4-2. The abstract link is 

actually an abstraction of a bunch of consecutive physical links in the same domain. The 

topology summary can be generated manually or automatically from the intradomain topology 

database. The topology summary generation is a maximum-flow problem and it can be solved 

by the Ford-Fulkerson method [Cormen01].  

AR-PIN runs a peer-to-peer publish/subscribe based routing protocol to exchange topology 

summaries among different domains. The peer-to-peer exchange mode is more suitable than 
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blind flooding because it is possible that a domain may want to selectively advertise different 

sets of resources to different domains. The information exchange is based on the nature of the 

subscription. Every domain that wants to share its own wavelength resources maintains a list 

of collaborating domains (subscriber). The information exchange is triggered by any change of 

the interdomain topology of the domain. In other words, whenever the topology changes in a 

domain, the topology summary will be regenerated, the AR-PIN in this domain will update the 

new topology summary to all subscribed domains (push model) or just send a change 

notification and let the domains to request the update by themselves (pull model). The pull 

mode should always be supported to boot-strap newly started domains or out-of-sync domains. 

After receiving the topology summaries from all collaborating domains, each domain can 

compose its own global topology. Because each domain gets different topology summaries from 

different collaborating domains, every domain has its own unique global topology database. In 

this global view, each node is a border switch, and each link is an abstract link managed by a 

domain.  

When a lightpath reservation request arrives, the local domain will compute a domain-level 

path based on its own view of global topology. This path includes only border switches. Source 

routing will be used to compute the path. There are several possible path computation 

algorithms such as Shortest Path First, Fixed Alternate, Least-Load-Path, etc. The detailed 

discussion of these algorithms is beyond the scope of this paper. 



 40

4.2 AR-PDC: Intradomain Control Plane 

AR-PDC provisions intradomain lightpaths. Reservation requests may come from local 

domain users or its peering interdomain control plane AR-PIN. During the AR-PIN resource 

probing process, it (what is it) relies on AR-PDC to extend the domain-level path into a 

switch-level path and check the wavelength availability status. 

Authorization, Authentication and Accounting (AAA)  

When a reservation request comes from foreign domains, they need to go through the AAA 

mechanism to ensure the foreign user is authenticated. Then according to the identity of the 

user and the local access policy, the network resources will be filtered, and a virtual topology 

will be generated, which will be used in the following Routing and Wavelength Assignment 

(RWA) operation. 

Intradomain Routing and Wavelength Assignment (IRWA) 

AR-PDC does the RWA job at the switch level. I also divide the RWA problem into two sub 

problems: routing and wavelength assignment. For the routing problem, AR-PDC can use 

Fixed, Fixed Alternate or Adaptive algorithms – same as interdomain path computation. For 

the wavelength assignment problem, I execute a join operation on all hops from the ingress 

switch to the egress switch and return the resulting timeslot-wavelength availability matrix to 

PIN. When I use the Fixed Alternate algorithm, I can return the matrices of all paths to PIN 
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and let PIN choose the best one according to the intersection result with the matrix of the 

explored part of the path. 

Device Driver 

If a request gets reserved successfully, the user needs to claim the request when he/she 

wants to activate the reservation. Then each domain along the path will send TL1 commands 

to management ports of MEMS switches to set up cross connects. At the present time I have 

built device drivers for Calient DiamondWave PXC [Calient] and Glimmerglass Reflexion 3D 

[Glimmerglass] MEMS switches. Also a dummy switch is implemented for the purpose of 

emulation and debugging of high layer software. PDC software has unified interface to 

different types of MEM switches as shown in the class diagram Figure 4-3. 
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Figure 4-3. Class Diagram of Photonic Switches 

This Figure shows that class diagram of photonic switches. PDCSwitch is the abstract parent class, it 
specifies the unified interface to different types of MEM switches. Currently three sub-classes are 
implemented for Calient switches, Glimmerglass switches and dummy switches respectively. 

4.3 Apply FARM to AR-PIN/PDC 

I described how to implement flexible advance reservation in meta-scheduling in chapter 3. 

The same principle can be applied to AR-PIN/PDC. In the context of cross-domain lightpath 

reservations, the meta-scheduler is implemented in AR-PIN, the local scheduler and the 

resource manager reside in AR-PDC. 
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I apply the FARM model to AR-PIN/PDC and reiterate the four steps shown in Figure 3-2. I 

call this algorithm On-Demand Parallel Probe (ODPP) because AR-PIN probes wavelength 

resources in each domain in parallel. 

1). The user submits a flexible advance reservation request to AR-PIN, then AR-PIN 

computes domain level path based on its own global topology view, which has been described in 

section 4.1.  

2.1). AR-PIN decomposes the original lightpath request into sub-requests and sends them to 

their local AR-PDCs. Each AR-PDC then computes its own local switch level path. Next the 

AR-PDC resource manager will operate a two-dimensional JOIN operation over the computed 

path, which is shown as Figure 4-4. The parameter tstart and tstop from the original request 

specification (see equation 3-1) specifies the time range. The purpose of the JOIN is to remove 

unusable resources which cannot satisfy the wavelength and time continuities. Therefore the 

two dimensions are time slot and wavelength. 
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Figure 4-4. JOIN Operation in AR-PDC Resource Manager 

An important operation during intra-domain and inter-domain resource probing is two-dimensional 
matrix join. Wavelength and time slot are the two dimensions. The purpose of the operation is to find 
slots maintaining the wavelength continuity and time continuity. It can be implemented by two 
dimensional bit-wise AND. 

 

2.2). After the JOIN operation, the available time slots and wavelengths are found. The 

next operation is FILTER. The tmd in equation (3-1), minimum duration, is used to filter out 

those small time fragments whose duration is smaller than tmd. For example, if the tmd in 

Figure 4-4 is two time slots, then the red block in the right 2D plane will be filtered because 

its duration is only one slot. The final resulting 2D matrix is then sent back to the source 

domain’s AR-PIN. 

3.1). The AR-PIN collects timeslot-wavelength 2D matrices from all involved domains. It 

will operate JOIN and FILTER one more time in order to maintain the wavelength and time 

continuities of the end-to-end cross-domain lightpath. If there exists more than one candidate, 

Time Slot 

Wavelength

JOIN =
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the best one will be selected based on user specified criteria, parameter c in the equation (3-1).  

3.2). The AR-PIN needs to populate the selected timeslot-wavelength combination back to 

all involved domains. The resources may become unavailable due to other reservations. Two 

phase commit is adopted to make sure the reservations of all domains are all successful or all 

properly rolled back. 

4). The AR-PIN will send back the reservation handle to the user if the two phase commit 

succeeds. 

 

4.4 Algorithms 

pdc-probe 

During intra-domain probing process, the AR-PDC will be asked to find out the wavelength 

availability in the local domain. The ingress and egress switch are specified, a time range is 

given as well. The probe function initializes the wavelength-timeslot 2D availability matrix 

first. Then it uses some path computation algorithm such as Dijkstra’s algorithm to compute 

the switch-level path at line 2. From line 4-7, for each hop on the switch-level path, all marked 

slots within the specified time range are found by querying database, and a 

wavelength-timeslot matrix is formed according to those marked slots. After that the matrix 

is joined together at line 6. Finally the result matrix is returned at line 8. 

Let me analyze the complexity of the probe algorithm. The major time consumed by the 
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algorithm is database access. Therefore, I only consider the complexity of database access. 

The database access are at line 3 and 5. The store-db just perform once, and the find-mark-db 

just need one database operation to retrieve all marked slot on each link in the time range. 

Therefore, the complexity is O(h), h is the length of the switch-level path. 

 

pdc-probe(resID, ingress, egress, range) 

1. init(matrix); 

2. compute-switch-path(ingress, egress); 

3. store-db(resID, path); 

4. for each hop h on the path 

5.     marks = find-mark-db(h,range); 

6.     matrixl = compute-matrix(marks); 

7.     matrix = join(matrix, matrixl); 

8. return matrix; 

 

pdc-reserve 

After the source PIN server selected the wavelength and fixed the time window, it starts the 

forward reservation process domain by domain. In each domain, pdc-reserve finds the 

correspond lightpath based on the reservation ID first. Then from line 2-4, the mark operation 
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needs to be performed for each time slot and each switch-level hop. In line 5-8, if the local 

domain is the source or destination domain, the switch port connecting to the client computer 

also need to be marked because I want to make sure the switch port is exclusively used by this 

reservation and this lightpath. The database access complexity is decided by line2-4. The 

mark operation will run h*t times, therefore the complexity is O(h*t); 

 

pdc-reserve(resID, window, wavelength) 

1. lightpath = getLightpath(resID); 

2. for each hop h in the lightpath  

3.     for each time slot t in window  

4.         mark-db(h, wavelength, t, resID); 

5. if the local domain is the source 

6.     mark-db(srcClientPort, t, resID); 

7. if the local domain is the destination 

8.     mark-db(destClientPort, t, resID); 

 

pin-odpp (On-Demand Parallel Probe) 

 

The input to the interdomain lightpath reservation includes the source and destination 
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end-points, the time range in which the reservation is allowed, the minimal duration and the 

criterion for choosing the best solution. First the wavelength-timeslot matrix is initialized, the 

unique reservation ID is generated. Then in line 3 the domain-level path is computed based 

on the global topology view that the source domain has. From line 4-7, probing is performed in 

each domain on the selected domain-level path in parallel. All the wavelength-timeslot 

matrices are joined together to find the common wavelength and timeslot. Then from line 8-9, 

in the result matrix, the wavelength is selected based on the criterion, be the longest duration 

or the earliest duration, at the same time, the time window is fixed. Line 10-11 is real 

reservation process, domain by domain, the selected wavelength resource is marked in the 

slot database.  

 Because pin-reserve is a distributed process, I need to analyze both computation 

complexity and communication complexity. The computation complexity for the parallel 

probing is decided by the maximum of all domains, which is O(max(h)). The reservation 

process is domain by domain in sequential. So the complexity is O(d*h*t) considering the 

reservation in each domain is O(h*t), in which d is the number of domains on the domain-level 

path. For parallel probing, the total number of messages is 2(d-1) because the source domain 

will send a probeRequest message to each domain and receive a probeResponse message from 

each domain. For sequential reserving, the total number of messages is also 2(d-1). Therefore, 

the global communication complexity is O(h). However, the local communication complexity is 
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different for probing and reserving process. For probing, the local communication complexity 

of the source domain is O(h) because all messages are sent or received by the source domain. 

For reserving, all involved domain has communication complexity of O(1). 

The parallelism of probing process effectively reduces the end-to-end interdomain 

signaling time. I will prove this by experiments in chapter 7. 

 

pin-odpp(s,d,range,md,c) 

1. init(matrix); 

2. generate(resID); 

3. compute-domain-path(s,d); 

4. for each domain d on the path p in parallel 

5.     find ingress and egress for domaind; 

6.     matrixd=probe(resID,ingress,egress,range); 

7.     matrix = join(matrix, matrixd); 

8. wavelength = select(matrix, c); 

9. window = fix-window(matrix, c); 

10. for (d=srcDomain; d<=destDomain;d->nextDomain)  

11.     d.pdc-reserve(resId, window, wavelength); 

12. return result; 
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pin-parallelClaim  

 

Once the reservation instances and lightpath instances have been fixed and written into 

database during the reservation process, it is pretty straightforward to claim the reservation 

when the client application wants to use the lightpath resource. The parallelism of probing 

process effectively reduces the end-to-end interdomain signaling time. I will prove this by 

experiments in chapter 7. 

 

pin-parallelClaim(resID) 

13. for each domain d on the path p in parallel 

14.     find all lightpath lList having resID; 

15.     for each lightpath l in lList 

16.         makeCrossConnects(l); 

17. return result; 

 

4.5 AR-PIN/PDC Services 

AR-PIN/PDC provides advance and immediate reservation service for applications or higher 

layer resource management systems. Their service interfaces should be defined clearly. As 
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described earlier AR-PIN accepts interdomain lightpath reservations while AR-PDC accepts 

intradomain lightpath reservations. Both in fact have similar interfaces. The interfaces are 

described as follows: 

 Reserve: This function allows the application to submit a reservation with a specification 

of endpoints and time constraints to the reservation system. If the reservation succeeds, the 

system will reply with a unique reservation handle. This handle will be used for other 

operations such as modification and cancellation. The endpoints can be computing cluster 

nodes or photonic switch ports. 

 Cancel: Before the reservation is bound, it can be cancelled. 

 Modify: Before the reservation is bound, it can also be modified. For example, one can 

extend or shorten the reservation duration. If the modification request failed because part of 

the resources cannot be reserved, the original reservation should keep intact. 

 Bind: When the application is ready to use a reservation, the resource manager may need 

to do some special processing for the application, or provide some run-time information to the 

application. For instance, in lightpath reservation systems, the control plane needs to set up 

the end-to-end lightpath for the application by make proper cross-connects in photonic 

switches. Also, the control plane may need to provide the IP addresses of end-points to 

application. This process is known as binding a reservation. 
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 Unbind: When a session of resource usage ends, the reservation should be unbound. After 

unbinding, the resource is still in reserved status and cannot be used by others. Therefore, if 

the application will not use the resource any more and the original reservation end time is in 

the future, it should cancel the reservation so that the resource can be returned to the pool of 

available resources. 

 Terminate: This operation should be used when the reservation is in bound status. In fact 

Terminate is implemented as a combination of executing unbind and followed by cancel. 

 Query Reservation Status: The client can discover the status of a reservation by polling it. 

The status includes whether the start of the reservation has begun and whether the 

reservation has been committed. 

 Query Reservation Attributes: The client can discover the attributes associated with an 

existing reservation. These attributes include time-related or resource-related. 

 Subscribe Notification: The client can subscribe to certain topics so that the resource 

manager can send messages when the status of the reservation changes or the reservation 

manager wishes to provide extra information to the application. 
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CHAPTER 5 

SIMULATION 

 

The simulation work I conducted in the thesis mainly consists of two parts. In the first 

part I validate that how the flexibility in advance reservations can improve acceptance rate 

and resource utilization. In the real world, immediate reservations co-exist with advance 

reservations. Therefore, in the second part the impact of advance reservations on immediate 

reservations is analyzed and it is concluded that both AR and IR requests need admission 

control algorithms in order to let both types of reservations live together and use the resources 

properly. 

I ran simulations on the NSFNET topology with 14 nodes as shown in Figure 5-1. I 

assumed that each link is a single bi-directional fiber with 8 wavelengths. The entire topology 

was fully-optical without any wavelength converter. In the workload, the starting time of both 

advance and immediate reservations is a Poisson distribution and the reservation duration has 

a negative exponential distribution with mean duration of 30 minutes. All these distributions 

are mutually independent. For advance reservations, the book ahead time, tstart – treserve, is 

randomly selected between zero and the maximum allowed value. All requests try to reserve a 

lightpath with exactly one wavelength. I ran the simulations on five different randomly 
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generated workloads and took the average of the results. In all simulations, the path 

computation method employed is an adaptive routing algorithm using FIXED wavelength 

search since it can reach a reasonable balance of performance and complexity [Mokhtar98]. It 

searches through wavelengths in a fixed order until the available path is found. A standard 

shortest path algorithm is used to find a path on the effective topology. 

 

Figure 5-1. 14 Node NSFNET Topology. 

This Figure shows the NSFNET 14 node model. The number on the links represent the relative 
distance. 

For flexible advance reservations, the degree of flexibility is defined as: 

mdstartstop tttflex /)( −=            (5-1) 
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5.1 Flexibility Improves Both Acceptance Rate and Resource Utilization 

The goal of the first set of experiments is to evaluate how flexibility affects the blocking 

rate and resource utilization of advanced reservations. I changed the degree of flexibility of the 

starting time of reservations from 0, 1, …, to 10. Figure 5-2 shows how the blocking rate varies 

with network load. The network load is denoted by the number of requests. The different 

curves represent the different degrees of flexibility. I can see that simply introducing 1 or 2 

units of flexibility improves the performance considerably, but more flexibility does not help as 

much. For example, when the blocking rate is 5%, the system load is improved from 1100 

requests to 1450 by introducing 1 unit of flexibility, and to 1720 by introducing 2 units of 

flexibility. Figure 5-3 shows how the relation of resource utilization vs. network load is affected 

by different flexibility. The maximum resource utilization can be improved from 47% to 57% by 

just introducing 1 unit of flexibility. 
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Figure 5-2. Blocking Rate under Different Flexibilities 

This Figure shows how the blocking rate varies with network load. The network load is denoted by the 
number of requests. The different curves represent the different degrees of flexibility. We can see that 
simply introducing 1 or 2 units of flexibility improves the performance considerably, but more flexibility 
does not help as much. 
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Figure 5-3. Resource Utilization under Different Flexibilities 

This Figure shows how the relation of resource utilization vs. network load is affected by different 
flexibility. The maximum resource utilization can be improved from 47% to 57% by just introducing 1 unit 
of flexibility. 

 

5.2 Comparison of Different Routing Algorithms 

In another set of simulations, I wanted to evaluate how different routing algorithms 

(heuristics) perform under flexible advance reservations. The flexibility of starting time of 

reservations is 1 unit in simulations. I compared the three routing algorithms: Fixed Routing 

(FR), Alternate Fixed Routing (AFR), and Least Load Path Routing (LLP). LLP is one form of 

adaptive routing. In most prior RWA research in which flexibility is not considered, adaptive 
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routing showed superior performance to FR and AFR routing. However, from the simulation 

results in Figure 5-4, we can see the Alternate Fixed Routing (AFR) algorithm has the best 

performance and the Fixed Routing (FR) has the worst. The flexible advance reservation 

introduces a new temporal dimension into the resource allocation. The resource availability 

information is a three dimensional matrix of hop, wavelength and time slot. The reserved units 

scatter within this three dimensional matrix. The uncertainty of time parameters makes it 

difficult to filter out useful resource status and feed it back to the routing algorithm. This is 

why the LLP routing algorithm cannot perform well by just calculating average utilization of 

each wavelength within the reservation time window. 
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Figure 5-4. Blocking Rate of Different Routing Algorithms. 

When Flexibility of Advance Reservations is 1T, the blocking rate of three routing algorithms: Fixed 
Routing (FR), Alternate Fixed Routing (AFR), and Least Load Path Routing (LLP) are compared. We 
can see the AFR algorithm has the best performance and FR has the worst. 
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5.3 Impact of Advance Reservations on Immediate Reservations 

Certain extemporaneous activities can not or need not be planned ahead. As such our 

system should be able to take immediate reservations as well. There are three ways to share 

the wavelength resources between AR and IR requests: full sharing, partial sharing and strict 

partitioning.  
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Figure 5-5. Comparison of Wavelength Sharing between ARs and IRs 

I consider two situations: all AR and IR requests share all eight wavelengths (Share), or AR requests use 
four wavelengths and IR requests use the other four wavelengths (Partition). From this Figure, we can 
see that the Share case has much lower blocking rate than the Partition case. When the number of 
request is 3000, the blocking rate is 58% for strict-partitioning and only 21% for full-sharing case. The 
blocking rate of Share-AR is almost zero because it has time advantage over Share-IR. 

 



 60

In this simulation, there are eight wavelengths in the WDM network. I consider two 

situations: all AR and IR requests share all eight wavelengths (Share), or AR requests use four 

wavelengths and IR requests use the other four wavelengths (Partition). All AR and IR 

requests have independent identically-distributed Poisson distribution and occupy 50% of the 

entire load respectively. From Figure 5-5, we can see that the Share case has much lower 

blocking rate than the Partition case. When the number of request is 3000, the blocking rate is 

58% for strict-partitioning and only 21% for full-sharing case. The blocking rate of Share-AR is 

almost zero because it has time advantage over Share-IR. 

 

5.4 The Dropping Problem and IR Admission Control 

Even though sharing brings about greater blocking rate performance, it also introduces a 

new problem: IR dropping. An admitted IR request may be dropped when the IR request 

conflicts with a reserved AR request. High and unpredictable dropping degrades the service 

satisfaction dramatically. I have two means to improve the user experience. Firstly, I could 

introduce one more parameter for IR requests: Minimum Duration (MD). The IR admission 

control algorithm will scan the future time slots to make sure the needed resources of this IR 

request are vacant within the Minimum Duration. Another measure is to notify the user when 

he/she is possible to be dropped in advance. When the IR request is admitted, I can continue 

search the future time slot table to find the next conflict point. After the conflicting point, when 
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the AR customer claims the AR request, the conflicting IR request will be dropped out after a 

short period. During the short period, the IR user can have time to gracefully stop his/her 

application. I can imagine that if I specifying a larger MD, the probability of blocking will be 

increased. This is confirmed in the simulation results shown in Figure 5-6. 

In this simulation, the IR profile is fixed. With an increase in AR load, the blocking rate of 

IRs increases because more resources are pre-occupied by ARs. At the same time, the blocking 

probability is higher if the user specifies higher Minimum Duration for IRs. The average 

duration of IRs is 1800 seconds. 
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Figure 5-6. Blocking Rate of IRs for Different Minimum Durations 

In this simulation, the IR profile is fixed. With an increase in AR load, the blocking rate of IRs increases 
because more resources are pre-occupied by ARs. At the same time, the blocking probability is higher if 
the user specifies higher Minimum Duration for IRs. The average duration of IRs is 1800 seconds. 

 

5.5 AR Admission Control 

Since AR requests book reservations relatively far ahead, this gives AR requests priority 

over IR requests. If there is no admission control for AR requests, it is possible that AR 

requests occupy majority of the resources, which causes a high blocking rate of IR requests or 

even starvation. In order to provide a certain level of service guarantees to IR requests, it is 

necessary to put an upper limit on admitted AR requests. From an economic perspective, the 
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charge of IR requests is usually more than AR requests. For example, the ticket fare is usually 

less expensive if you book earlier in airline reservation systems. At the same time, there are 

always some impromptu circumstances which cannot be anticipated. We need to keep this type 

of resource requests from starving. 

The method I employed is to reserve partial wavelengths for IR requests only. For example, 

AR requests can only use the first five of the total eight wavelengths. From Figure 5-7, we can 

see that the AR admission control brings down the blocking rate of IR requests from 82% to 

34% when the number of requests is 3000, while it increases the blocking rate of AR requests 

at the same time because of reduced available wavelength resources. Therefore I achieved a 

much better balance between AR and IR requests. The percentage of resources specially left to 

IR requests can be adjusted in run-time by the network administrator. 

 

5.6 Summary 

Through the simulation work, I found that the system performance can be improved 

dramatically by introducing some flexibility on the time parameters of advance reservations. 

IR minimum duration is necessary to have good Quality of Service and user experience. AR 

admission control is necessary in order to maintain a well-balanced AR/IR mixed environment. 
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Figure 5-7. Effect of AR Admission Control 

AR requests can only use the first five of the total eight wavelengths when admission control is employed. 
From this Figure, we can see that the AR admission control brings down the blocking rate of IR requests 
from 82% to 34% when the number of requests is 3000, while it increases the blocking rate of AR requests 
at the same time because of reduced available wavelength resources. 
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CHAPTER 6 

IMPLEMENTATION OF AR/PIN-PDC 

 

The AR-PIN/PDC (Advance Reservation enabled Photonic Inter-domain Negotiator and 

Photonic Domain Controller) software provides the lightpath reservation and provision 

services through a series of remote procedure calls. In order to accept diverse client types, I 

implement these remote procedure calls as web services. As long as the client can generate 

proper XML-based messages and send to the AR-PIN/PDC web services, the client code can be 

written by Java, C/C++, Python, etc. I chose JBoss as the web service hosting software 

because of its easy-to-use and stability. In this chapter, I will list all the interfaces that 

AR-PIN/PDC provides. Then I will expose the internal of AR-PIN/PDC implementation by 

describing the important data structures and how the algorithms described in Chapter ? are 

implemented in the distributed environment. After that I will describe the database tables 

and implementation. Finally I will briefly introduce JBoss software and the deployment of 

AR-PIN/PDC. 

 

6.1 Service Description of AR-PIN/PDC 

AR-PIN/PDC software exposes the following web services:  
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1. advanceReserveHH 

 

Parameters:  

String srcCluster, String srcNode, String srcNic,  

String destCluster, String destNode, String destNic,  

long start, long period, long minDuration, int criterion. 

Return :  

PDCReserveReturn  

 

This function is used to reserve a lightpath between two end-points. The client needs to 

specify two types of information. The first type is end-point information. These parameters 

include the cluster name, node name and the name of the network interface card (NIC) of both 

source and destination. Because I assume that all lightpaths are bidirectional in this thesis, 

the source and destination are just names of two end-points. There is no difference to specify 

an end as the source or the destination. The other type of parameters is time-related. They 

include the time range defined by the start time and the period, the minimum duration and 

the selection criterion. It is possible that the RWA algorithm finds that more than one solution 

satisfy the user-specified request, the selection criterion is used to make the decision which 



 67

solution should be chosen. For now the criterion includes only two options: the earliest or the 

longest duration. This can be extended in the future. For example, some other options can be 

the lightest-loaded path, the shortest path or the lowest cost path. This function returns a 

PDCReserveReturn data structure. This data structure includes the following elements: 

 

String reservationId: The reservation ID returned from the AR-PIN/PDC server. The 

client needs this ID to claim or cancel the reservation later on. If the reservation is failed, the 

returned ID will be null. 

String srcAddr: The IP address of the source end-point. Applications will need IP 

addresses of end-points to communicate to each other. 

String destAddr: The IP address of the destination end-point. 

long start: The start time of the reservation. 

long end: The finish time of the reservation. 

String message: In case the reservation is failed, this message will show what problem it 

is. 

 

2. advanceReserveSH 

Parameters: 

String srcSwitch, int srcPort,  
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String destCluster, String destNode, String destNic,  

long start, long period, long minD, int criterion.  

Return: 

PDCReserveReturn  

 

This function only works in local domain. It is used to reserve a lightpath between a 

photonic switch port and a computing end-point. The switch end is always defined as the 

source end because the lightpath is not directional. The optical switch parameters include the 

switch name and the port number. The time-related parameters and the returned data 

structure are same as the advanceReserveHH function. 

 

3. advanceReserveSS 

 

Parameters:  

String srcSwitch, int srcPort,  

String destSwtich, int destPort,  

long start, long period, long minD, int criterion. 

Return: 

PDCReserveReturn  
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This function only works in local domain. It is used to reserve a lightpath between two 

photonic switch ports. There is no difference between source and destination because the 

lightpath is not directional. The optical switch parameters include the switch name and the 

port number. The time-related parameters and the returned data structure are same as the 

advanceReserveHH function. 

 

4. claim  

 

Parameter: String reservationId. 

Return: int. 

 

It is called to claim a reservation. The only parameter is the reservation ID. This function 

should be called within the valid reservation time window. When this function is called, the 

AR-PIN/PDC server tries to make proper cross connects of photonic switches to set up the 

reserved lightpath. It returns 1 if the claim is successful and 0 if it’s failed. 

 

5. unbind  
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Parameter: String reservationId. 

Return: int. 

 

It is called to unbind a reservation during a reservation session. The only parameter is 

the reservation ID. This function should be called within the valid reservation time window 

and the reservation is in bound status. The server will first tear down the lightpath by 

breaking the related cross connects, then change the reservation status to “reserved” in the 

database. It returns 1 if the termination is successful and 0 if it’s failed 

 

6. terminate  

 

Parameter: String reservationId. 

Return: int. 

 

It is called to terminate a reservation. The only parameter is the reservation ID. If this 

function is called before the reservation is claimed, the AR-PIN/PDC server just nulls the 

reservation in the database without touching the photonic switches. If this function is called 

when the reservation is in active status, the server will first tear down the lightpath by 

breaking the related cross connects, then change the reservation status in the database. It 
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returns 1 if the termination is successful and 0 if it’s failed 

 

7. modify  

 

Parameters: String reservationId, long start, long finish. 

Return: PDCReserveReturn. 

 

This function is used to modify existing reservations in the system. Claimed reservations 

can not be modified. Therefore, the reservations have to be in “reserved” status. The user 

needs to specify the original reservation ID, the new start time and finish time. The 

AR-PIN/PDC will return a PDCReserveReturn data structure. 

 

8. renew  

 

Parameters: String reservationId, long period. 

Return: PDCReserveReturn. 

 

This function tries to renew active reservations. The reservations have to be in “claimed” 

status. The user needs to specify the original reservation ID and the extra time he/she needs 
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after the original finish time. The AR-PIN/PDC will return a PDCReserveReturn data 

structure. 

 

6.2 Data Structures 

In this section, I will describe the important data classes defined in AR-PIN/PDC. All 

these data classes have a corresponding table in database. Persistence is very important for 

this kind of service providing software. When application is shut down for some unexpected 

reasons such as power off or hardware failure, all the data and status can be easily restore 

from database.  

There is a paradigm mismatch between object-oriented classes and relational tables in 

databases. People have spent significant time of effort to bridge the object/relational 

paradigm mismatch. It is estimated that 30% of Java application code written is to handle 

this problem. [Bauer04] Therefore, automated object/relational mapping is being researched 

in the past years and Hibernate was emerged as the most promising solution. In AR-PIN/PDC, 

I used Hibernate to map the following classes to the corresponding tables in MySQL database: 

 

Cluster 

The client-side end points are abstracted as clusters because beowulf clusters consisting 

of commodity PCs are getting popular and becoming the mainstream platform of storage, 
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computing and visualization. 

int id: Unique ID of the cluster. 

String name: Name of the cluster. 

int domain: Domain ID to which the cluster belongs. 

 

ClusterNode 

A computer cluster usually consists of multiple computer nodes. Each computer node can 

have one or more than one optical interface cards connecting to the photonic switches. This 

class abstracts a pair of a cluster node and network interface card (NIC). 

int id: Unique numeric ID of the cluster node. 

int cluster: Cluster ID to which the node belongs. 

String node: Name of the cluster node.  

String nic: Name of the network interface card (NIC). 

int switch: Switch ID to which the cluster node/NIC connects to. 

int port: Switch port number to which the cluster node/NIC connects to. 

String ipaddr: IP address of the cluster node/NIC. 
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Figure 6-1. Class Diagram of Basic Data Structures in AR-PIN/PDC 

 



 75

Domain 

A domain is an independently managed network cloud exposing a set of ingress and 

egress points and links with service specifications. In this thesis, each domain runs one 

instance of AR-PIN/PDC server.  

int id: Numeric ID of the domain. This ID is unique and consistent in all domains globally. 

int local: Specify if this domain is a local domain. 

String server: Name of the local AR-PIN/PDC server. 

String organization: Name of the organization that runs this domain. 

 

DomainRoute 

For interdomain lightpath requests, the first step is to find the domain-level route. 

DomainRoute class keeps this information. As far as how to generate this information, there 

are several ways. It can be specified statically by administrators, or it can be computed 

dynamically by some path computation algorithms such as Shortest-Path First, based on the 

topology information received from other collaborative domains. 

int id: ID of the domain-level route. 

int srcDomain: Source domain ID. 

int destDomain: Destination domain ID. 

int hop: Number of domain-level hops. It equals to the number of all involved domains minus 
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one. 

String route: A string to express the domain-level route. The string consists of domain IDs and 

border switch IDs listed alternatively and separated with commas, starting from the source 

domain ID and ends with the destination domain ID. For example, in “1,A,2,B,3”. 1,2,3 are 

domain IDs and A,B are border switches although they are actually numbers. 

 

Lightpath 

This class keeps the detail information of lightpaths. For intradomain lightpaths, the 

end-to-end information of switches, ports and links is stored. For interdomain lightpaths, only 

local information is stored, i.e., from ingress switch to egress switch. 

int id: ID of the lightpath. 

int wavelength: Wavelength ID of the lightpath. 

String reservation: The reservation ID to which the lightpath belongs. One reservation can 

have multiple lightpaths. 

String switchList: A string to express the switch-level route. The string consists of switch IDs 

ordered from the source/ingress switch to the destination/egress switch and separated with 

commas. 

String linkList: A string to express the switch-level route together with switchList. The string 

consists of link IDs with the same order as switchList, separated by commas. The number of 
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items in linkList should be that of switchList minus one. 

String crsList: A string to express the ports on the switch-level route. The string consists of 

incoming port and outgoing port of each switch on the route, with the same order as 

switchList, separated by commas. The number of items in crsList should be as twice as that of 

the switchList. 

 

Reservation 

Every advance reservation will have an instance of this class. The handler, sometimes I 

call it reservation ID, is a unique String representing this reservation. For interdomain 

reservation, a sub-reservation will be created for each foreign domain. In this system, I 

specify absolute time using a milliseconds value represents the number of milliseconds that 

have passed since January 1, 1970 00:00:00.000 GMT. 

int id: Unique internal numeric ID. 

String handler: A string to represent this reservation uniquely. 

long early: The earliest time of the allowed time window for flexible advance reservations. 

long late: The latest time of the allowed time window for flexible advance reservtions. 

long md: The milliseconds value of minimal duration that the user requested. 

long start: After the AR-PIN/PDC reserves the resource successfully, the flexible time window 

will be fixed. This parameter is the start time of the fixed window. 
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long end: The end time of the fixed window after reservation. 

String parent: If this reservation is a child reservation of another interdomain reservation, 

this parameter stores the handler of the parent reservation, otherwise it is null. 

int parentDomain: If this reservation is a child reservation of another interdomain 

reservation, this parameter stores the ID of the domain where the parent reservation is 

located. 

int interdomain: If this reservation is interdomain and it is the parent, this parameter is 1, 

otherwise it is 0. Please note, for child reservations of interdomain, this is also 0. 

String domainRoute: The domain-level route retrieved from the database. 

String status: The status of the reservation. It could be  

“reserved”: The reservation has been made successfully, but not claimed yet. 

“claimed”: The reservation has been claimed successfully and the lightpaths are set up. 

“terminated”: A “claimed” reservation is terminated before it expires. 

“cancelled”: A “reserved” reservation is cancelled before it is claimed. 

“expired”: A “claimed” reservation will be terminated by the system when the end time 

arrives, after that the status becomes “expired”. 

 

Subresv 

For interdomain reservation, a sub-reservation will be created for each foreign domain. 
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Each sub-reservation corresponds to a reservation in a remote domain.  

int id: Numeric ID. 

String handler: The handler of the parent reservation. 

int domain: The ID of the remote domain. 

String remoteHandler: The hander of the corresponding reservation in the remote domain. 

String status: The status of the remote reservation. 

 

Switch 

 

This class abstracts physical photonic switches.  

int id: Numeric ID. 

String name: Unique name in String format. 

int type: Currently AR-PIN/PDC supports three types of switches: 1 – Calient, 2 – 

Glimmerglass, 3 – dummy. 

int ports: Number of ports. 

String address: IP address of the management interface. 

int tl1port: The TL1 communication TCP port of the management interface. 

String username: User name of TL1 management interface. 

String password: Password of TL1 management interface. 
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int border: This parameter specifies if this switch is a border switch.  

 

SwitchPort 

This class abstracts a port on a photonic switch. 

int id: Numeric ID. 

int switchId: The ID of the photonic switch to which the port belongs. 

int inport: Together with outport, they specify the cross connect status. The inport specifies 

which output port this input port connects to. 0 if not connected. 

int outport: The outport specifies which inport port this outport port connects to. If the 

connection is bidirectional, inport and outport should be in pair. 

 

Link 

This class represents the DWDM optical link connecting two photonic switches. It has no 

direction. 

int id: Numeric ID. 

int switchA: ID of one of connecting photonic switches. 

int switchB: ID of another of connecting photonic switches. 

double distance: The physical distance between the two connected switches. 
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Segment 

A DWDM optical link consists of multiple wavelengths and connects two photonic 

switches. The Segment class represents one wavelength within a link. 

int id: Numeric ID. 

int link: The ID of Link to which the segment belongs. 

int wavelength: The wavelength ID. 

int portA: The port number of the wavelength on the switcha in the corresponding Link. 

int portB: The port number of the wavelength on the switchb in the corresponding Link. 

 

Slot 

This is the slot table of wavelengths. The slot table is three-dimensional, consisting of 

link, wavelength and timeslot. The database only keeps the reserved units in the 

three-dimensional space. Please note AR-PIN/PDC keeps two important constants. The first 

constant is the time slot granularity SLOT_GRANULARITY. AR-PIN/PDC divides the 

continuous time range into discrete time slots of fixed size. Thus, reservations can be made for 

a number of consecutive slots. The slot granularity is defined by the duration covered by a 

single slot. If the slot granularity is too small, the number of slots needed by a reservation will 

be very large, which results in too many database operations. The other constant is the 

largest number of time slots the system supports MAX_SLOT. If this number is too large, the 
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AR-PIN/PDC server has to consume excessive memory and the database may be very large. 

The product of SLOT_GRANULARITY and MAX_SLOT is the latest time when the finish 

time of reservations can be set. For example, if SLOT_GRANULARITY is one minute, and 

MAX_SLOT is 60*24*30 = 43200, it means that I can reserve wavelengths to as late as 30 

days from now. 

int id: Numeric ID. 

int link: The ID of the link. 

int wavelength: The ID of the wavelength. 

long timeslot: The absolute slot number, i.e., the absolute time divided by 

SLOT_GRANULARITY. 

String reservation: The handler of the reservation to which the time slot belongs. 

 

PortSlot 

The main function of AR-PIN/PDC is manage end-to-end lightpaths. When I say 

end-to-end lightpaths, that means from NIC to NIC. In other words, the lightpath not only 

includes the wavelengths on the way and the switch ports where these wavelengths connect, 

but also the switch ports where client NICs connect to. Therefore, these ports are also 

resources clients need to reserve. PortSlot class manages the time slot of these switch ports. 

This slot table is two-dimensional, consisting of switch port and time slot. 
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int id: Numeric ID. 

int switch: The numeric ID of the photonic switch to which the port belongs. 

int port: The photonic switch port number. 

long timeslot: The absolute slot number, i.e., the absolute time divided by 

SLOT_GRANULARITY. 

String reservation: The handler of the reservation to which the time slot belongs. 

 

6.3 Two Web Service Modes: Synchronous and Asynchronous 

6.3.1 Web Services 

Why is the Internet so successful? An important reason is that it uses Internet Protocol 

as the only protocol in Layer 3. Under IP, different data link protocols such as ATM, Ethernet 

or PPP can be used to transport data; above IP, different applications such as web browsing, 

email, file transfer or Voice or IP can be built upon. All these protocols speak the same 

language – IP – so that they can understand each other and support each other and 

conglomerate into a huge Internet society. I can say it is the IP that makes all data within the 

Internet be able to talk to each other. The distributed applications have the same situation. 

The diverse distributed systems need a common “language” to communicate to each other. 

XML-based web services are believed to be a good candidate. 
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Service Oriented Architecture (SOA) is a component-based architecture, it divides a 

distributed application into a number of separate services that, individually, perform a 

specific function, but when put together make up the components of a larger application. The 

rational of SOA is not new. Component-based distributed systems have been around for years. 

Three famous architectures are DCOM (Distributed Component Object Model), CORBA 

(Common Object Request Broker Architecture) and Java/RMI (Remote Method Invocation). 

DCOM is Microsoft specific, Java/RMI is Java specific, CORBA is both platform and language 

independent, but its complexity and lack of security and versioning make it hard to be 

accepted by the industry [Henning06]. XML-based Web service is a promising technology to 

push SOA to a success. 

The potential users of AR-PIN/PDC are the scientists from different fields such as 

astronomy, biology, geographer, physics etc. The application and technologies they used are 

very diverse. For example, their applications may use different operating systems, different 

programming languages. What if their applications all want to reserve lightpaths, including a 

wide range of legacy application? Obviously we should use a standardized way to provide the 

lightpath service – XML-based web services.  

In web service world, XML is the universal data format. This saves us a lot time and 

effort to “marshalling” data for RPC calls among distributed systems because almost all 

modern systems provides decent XML processing engine. However, use of XML-RPC was 
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limited as SOAP (Simple Object Access Protocol) evolved rapidly and offered richer semantics 

than XML-RPC.  

There are two paradigms in terms of the remote method invocations among distributed 

systems: RPC style and Message-Centric style. RPC is a good model for function-centric 

invocations. It works well when I have clearly defined functions and associated parameters. 

RPCs are typically associated with synchronous functional invocations and do not support 

messaging semantics such assured delivery. In Message-Centric style, data is exchanged in a 

prescribed message format that both the sender and the receiver can understand. This 

programming model is often used for loosely coupled integration with messages and events 

flowing back and forth. One of the strengths of the Message-Centric model is support for 

asynchrous invocations. 

 

6.3.2 Synchronous vs. Asynchronous Web Services 

There are two principle architectures for Web Service interfaces: synchronous Web 

Services and asynchronous Web Services. There two architectures are distinguished by their 

request-response handling. With synchronous services, clients invoke a request on a service 

and then suspend their processing while they wait for a response. With asynchronous services, 

clients initiate a request to a service and then resume their processing without waiting for a 

response. The service handles the client request and returns a response at some later point, at 
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which time the client retrieves the response and proceeds with its processing. 

Because the client suspends its own processing after making its service request, 

synchronous services are best when the service can process the request in a small amount of 

time or when applications require a more immediate response to a request. Web services that 

reply on synchronous communication are usually RPC-oriented. 

With asynchronous services, the client invokes the service but does not – or cannot – wait 

for the response. Often, with these services, the client does not want to wait for the response 

because it may take a significant amount of time for the service to process the request. The 

client can continue with some other processing rather than wait for the response. Later, when 

it does receive the response, it resumes whatever processing initiated the service request. 

When I implemented AR-PIN/PDC software, I used both synchronous and asynchronous 

communications. For some requests such as inter-domain reservation request, it takes long 

time to run the probing process in parallel and then the reservation process domain by 

domain. Therefore, asynchronous mode is more proper for clients because they do not wait for 

the long time. For some requests such as reservation claim request, the client application may 

want to wait for the response from the server to make sure the lightpaths have been set up, 

then they can send data over the lightpaths. For some operations such as domain-by-domain 

reservation, the synchronous mode will be extremely inefficient because the source domain 

has to wait for the response from each domain before it can send reservation to the next 
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domain. In the next two sections, I will take the Inter-domain reservation as an example to 

compare different communication scenarios of synchronous and asynchronous mode. 

 

6.3.3 Synchronous Mode Interdomain Reservation 

In this scenario, all AR-PIN/PDC web services are provided in synchronous mode. In 

another word, all web service calls are RPC based. When the client calls the local 

AR-PIN/PDC server, it will be blocked to wait for the return from the local AR-PIN/PDC 

server, i.e., to wait for the entire probing and reservation process to finish. During probing 

process, the local AR-PIN/PDC server can not execute parallel probing in RPC mode unless it 

creates new threads for every remote PIN peers. As shown in Figure 6-2, the local AR-PIN 

server probes the remote AR-PIN1 server first, waits for the probing response, then probes 

the remote AR-PIN2 server, etc. This is quite inefficient. During the reservation process, it 

can not be implemented in domain-by-domain forward reservation style using RPC style web 

services. It is the same as the probing process, the local AR-PIN server has to reserve each 

remote domain in serial fashion. 
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Figure 6-2. AR-PIN in Synchronous Web Service Mode 

When the AR-PIN works in Synchronous mode, The local AR-PIN server can not execute parallel 
probing in RPC mode. It has to probe the remote AR-PIN1 first, wait for the response, then probes the 
remote AR-PIN2, etc. For the same reason, the reservation can not be implemented in forward 
domain-by-domain style. The local AR-PIN server has to reserve each remote domain after it receives 
the response from the previous domain. 
 

6.3.4 Asynchronous Mode Interdomain Reservation 

In Figure 6-3, I implemented all the communications between AR-PIN servers using 

asynchronous web services. We can see that parallel probing can be achieved by sending 
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probing messages to all remote domains. An advantage is that the local AR-PIN server doesn’t 

have to be blocked and wait for the responses from remote servers, it can continue other 

operations, for example, accepting next request from clients. The domain-level forward 

reservation can also be easily implemented using message-based web services. One 

requirement on this kind of message-centric web service invocation is that the application 

server needs to ensure the robust delivery of messages.  

For the interaction between the client and the local PIN-server, if the web service client 

wants to receive asynchronous the response from the server, it needs to provide a callback 

endpoint capable of receiving and processing response messages. It is possible for some 

complicated client applications to include a light-weight message server or application server. 

However, most time the client wants to avoid the message server and the complicated callback 

mechanism, then a technique know as polling can be used as an alternative. This technique 

requires the client to periodically call the server to check for the status.  
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Figure 6-3. AR-PIN in Asynchronous Web Service Mode 

When AR-PINs are implemented in asynchronous mode, the web services are fired by sending and 
receiving messages between peers. In this mode, the parallel probing and domain-level forward 
reservation can be implemented.   
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6.4 AR-PIN/PDC Web Interface 

Other than web services that the AR-PIN/PDC software provides, a web interface is also 

written for interactively reserve lightpaths and view the reservation status. Figure 6-4 is the 

main interface to reserve a lightpath. The user selects the source and destination cluster, node 

and NIC, specifies the time range within which the reservation should be made, and the 

minimum duration, then a reservation message will be sent to AR-PIN/PDC. After the 

reservation is made successfully, the reservation ID and the endpoint IP addresses will be 

returned and printed on screen. Figure 6-5 shows the interface that you can see the status of 

all the reservations. Also it is the interface that you can claim and terminate a reservation.  
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Figure 6-4. Lightpath Reservation WebInterface of AR-PIN/PDC. 

 
The users need to select the cluster and node of the two endpoints, choose the reservation time range, 

minimum duration, and hit the “Reserve” button. After the reservation is fulfilled by AR-PIN server 
successfully, the reservation ID, IP addresses of endpoints will be returned and printed on the screen. 
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Figure 6-5. Lightpath Status Viewing Interface of AR-PIN/PDC. 

 
In View screen, all active reservations in the local AR-PIN will be listed. When users click a reservation, 
a popup window showing the endpoint information will be brought up. On the window, users can click 
buttons to claim or terminate reservations if they are in “reserve” status, cancel or unbind reservations 
if they are in “claimed” status. 
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CHAPTER 7 

DEPLOYMENT AND EXPERIMENTS 

 

The AR-PIN/PDC software has been deployed to four sites in different continents to 

control four domains: University of Illinois at Chicago, Northwestern University, University 

of California at San Diego, and University of Amsterdam. All four AR-PIN/PDC servers have 

been set up to control real photonic switches to provide real lightpaths. In this chaptor, I will 

describe the photonic testbed in detail. Then I will show some experiment results I have done 

on this testbed. The objectives of the experiments are mainly two: one is to analyze the 

different components of the end-to-end signaling latency and compare different algorithms; 

the other goal is to find what are the major computational factors affecting the end-to-end 

signaling latency. 

 

7.1 Testbed Deployment 

The muli-domain photonic testbed consists of four domains. Each domain has one 

photonic switch. The detail of the four domains is listed in the table 7-1 and the topology of 

the testbed is depicted in Figure 7-1. There are two types of 3D MEMS switches. One is 
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Calient DiamandWave® PXC photonic switch, [Calient] the other type is manufactured by 

Glimmerglass Networks. Other than the StarLight domain having a Calient switch, all three 

domains contains a Glimmerglass switch. [Glimmerglass] 

The AR-PIN/PDC servers are deployed on Jboss 4.0.4 application servers. JBoss is an  

Domain ID AR-PIN/PDC server Organization Photonic Switch 

1 iching.evl.uic.edu 
Electronic Visualization Laboratory 
University of Illinois at Chicago (EVL) 

Glimmerglass 

2 gjall.sl.startap.net 
StarLight, downtown Chicago 
Northwestern University (SL) 

Calient 

3 calit2-host8.optiputer.net 
University of California at 
San Diego (UCSD) 

Glimmerglass 

4 remrandt0.uva.netherlight.nl University of Amsterdam (UvA) Glimmerglass 

Table 7-1 Detail of four domains in the photonic testbed. 

 

Domain Cluster Name Node Name NIC Name 

EVL yorda.evl.uic.edu node11-node16 nic1 

EVL scylla.evl.uic.edu node11-node16 nic1 

SL charybdis.sl.startap.net node1 nic1, nic2 

SL atlas.sl.startap.net node1 nic1, nic2 

UCSD cluster.ucsd.edu node1-node4 nic1 

UvA rembrandt.uva.netherlight.nl Node3-node6 nic1 

Table 7-2 Detail of computing clusters in the photonic testbed. 
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Figure 7-1. AR-PIN/PDC Multi-domain Photonic Testbed Topology. 

 

The muli-domain photonic testbed consists of four domains: EVL/UIC, StarLight at Chicago 
downtown, UCSD and UvA. Each domain has one photonic switch. The detail of the four domains is 
listed in the table 7-1 and the topology of the testbed is depicted in this Figure. There are two types of 
3D MEMS switches. One is Calient DiamandWave® PXC photonic switch, the other type is 
manufactured by Glimmerglass Networks. Other than the StarLight domain having a Calient switch, 
all three domains contains a Glimmerglass switch. There are one or more computing clusters connected 
to each photonic switch. One AR-PIN/PDC server is running on each domain. 
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open source Java EE-based application server implemented in Java. I chose JBoss application 

server because it’s very stable, the services can be hot-deployed, and it provides robust Java 

messaging service. All servers run Linux operating systems with 2.6.0 or above kernel version, 

although they have different flavors such as SUSE, Debian or ROCK.  

 

7.2 Experimental Results 

As I mentioned in section 6.3, AR-PIN/PDC can be implemented in synchronous or 

asynchronous mode. The asynchronous mode can be much more efficient and lower end-to-end 

latency than the synchronous mode. The experiments performed in this section are based on 

the asynchronous implementation. In section 7.2.1 and 7.2.2, I will measure different 

components in the end-to-end latency of inter-domain reservation process and inter-domain 

claim process repectively. In section 7.2.3, I will investigate how the time slot granularity 

affects the computation time, in turn the end-to-end latency. 

 

7.2.1 Components of Inter-domain Reservation Latency 

The components of inter-domain reservation can be divided into two categories: 

propagation time and processing time. Propagation time is the period from when the sending 

server sends the control message to when the receiver receives the message. Actually it 
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includes the time on wire and the marshalling/unmarshalling time. In Figure 6-3, I showed 

the sequence diagram of inter-domain reservation process in asynchronous mode. I define the 

components of end-to-end inter-domain reservation latency ordered by time as follows:  

(1) Propagation time from the client to the local AR-PIN server tcs. 

(2) Time to check domain-level path and prepare probing messages: tproc1. 

(3) Propagation time of the probing message from the local AR-PIN server to the remote 

AR-PIN server i during probing process : tp-prop-f[i]. 

(4) Probing time at remote AR-PIN server i  : tprobing[i].  

(5) Propagation time of the probe-response message from the remote AR-PIN server i to 

the local server : tp-prop-b[i]. 

(6) Time to join all returned matrices and find the reservation solution, reserve the local 

domain: tproc2. 

(7) Propagation time of the reserve message from the AR-PIN server i-1 to next hop i  : 

tr-prop-f[i]. 

(8) Reservation time at remote AR-PIN server i  : tresv[i]. 

(9) Propagation time of the reserve-response message from the destination AR-PIN 

server to the source server : tr-prop-b. 

(10) Propagation time from the local AR-PIN server to the client : tsc. 
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Assume one domain-level route consisting of N domains (i=1 for the source domain and 

i=N for the destination domain) including source and destination domains, the end-to-end 

reservation delay can be expressed as follow: 
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I did four sets of experiments to measure the components of end-to-end latency. They 

differ in the domain-level path: 

(1) EVL-SL 

(2) EVL-UCSD 

(3) EVL-UvA 

(4) EVL-SL-UCSD-UvA 

All AR-PIN/PDC servers run NTP protocol to have time synchronized during 

measurements. I run 5 times on each case, and I took the average as results. The result is 

shown in Table 7-4 and depicted as a diagram in Figure 7-2. Table 7-3 shows the round trip 

time between each pair of AR-PIN/PDC servers. 

Link EVL-SL EVL-UCSD EVL-UvA SL-UCSD SL-UvA UCSD-UvA 

RRT(ms) 1.0 60.4 104.0 58.1 104.0 163.0 

Table 7-3 The round trip time between each pair of AR-PIN/PDC servers 
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ms EVL-SL EVL-UCSD EVL-UvA EVL-SL-UCSD-UvA 

tcs 1281 1288 1292 1437 

tproc1 135 74 73 215 

MAX(tp-prop-f[i]) 31 572 910 967 

MAX(tprobing[i]) 88 118 227 212 

MAX(tp-prop-b[i]) 26 588 920 1031 

tproc2 628 835 708 833 

tr-prop-f[2] 39 772 1338 62 

tresv[2] 226 205 220 212 

tr-prop-f[3] N/A N/A N/A 867 

tresv[3] N/A N/A N/A 361 

tr-prop-f[4] N/A N/A N/A 1602 

tresv[4] N/A N/A N/A 207 

tr-prop-b 25 630 1211 1353 

tsc 84 69 78 71 

Table 7-4 Inter-domain reservation measurements 
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Figure 7-2. Interdomain Reservation Signaling End-to-End Latency Analysis 

The Figure shows the components of inter-domain reservation signaling latency. The four sets of 
experiments run on EVL-SL, EVL-UCSD, EVL-UvA, and EVL-SL-UCSD-UvA lightpaths respectively. 
The upward diagonal strip parts are propagation delay between AR-PINs, the downward diagonal strip 
parts are propagation delay between client and AR-PIN server. The solid parts are processing delay. 
From the Figure, the major delay is propagation delay. The propagation delay is proportional to Round 
Trip Time between parties. The entire end-to-end delay divides into two parts: probing process and 
reservation process. The probing process is parallel, therefore the four domain case has similar delay to 
the two domain case. The reservation process is serial, therefore the four domain is much longer. 

 

If I add tp-prop-f[i] and tp-prop-b[i] together, noted as tp-prop[i] the sum should have a relation 

with the round trip time from the local server to the remote server trrt[i]. When I compare 

these two sets of values in Table 7-5, I find that the actual value is much large than ping RTT 

time. I guess that there are two factors. One is a close to constant marshalling and 
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unmarshalling time a. The other factor is that each message delivery needs multiple RTTs, 

assuming b RTTs. The relation should be  

][*][ itbait rttpropp +=−            (7-2) 

If I try to fit the curve to the real experimental values, I get a=18.5, b=40ms, which 

means each marshalling/unmarshalling takes about 20 ms and each message delivery in 

JBoss takes about 9 round trip times.  

Another phenomenon I noticed is that the tcs is very large for all four cases, the average is 

about 1.3 seconds, I don’t know how to explain this yet. The only thing I can guess right now is 

that JBoss application server takes significant time to load the enterprise Java beans.  

Path tp-prop [i](ms) trrt[i] (ms) 

EVL-SL 57 1 

EVL-UCSD 1160 60.4 

EVL-UvA 1998 104 

Table 7-5 Comparison of actual and theoretical RTTs. 

 

7.2.2 Components of Inter-domain Reservation Claim Latency 

I define the components of end-to-end inter-domain reservation claim latency ordered by 

time as follows:  

(1) Propagation time from the client to the local AR-PIN server tcs. 

(2) Propagation time of the claim message from the local AR-PIN server to the remote 
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AR-PIN server i during probing process : tc-prop-f[i]. 

(3) Claiming time at remote AR-PIN server i  : tclaiming[i].  

(4) Propagation time of the claim-response message from the remote AR-PIN server i to 

the local server : tc-prop-b[i]. 

(5) Propagation time from the local AR-PIN server to the client : tsc. 

Assume one domain-level route consisting of N domains (i=1 for the source domain and 

i=N for the destination domain) including source and destination domains, the end-to-end 

reservation delay can be expressed as follow: 

scbpropcgclaifpropccsclaim titititMaxtT ++++= −−−− ])[][][( min       (7-3) 

I did the same set of experiments for the interdomain claiming process. The result is 

shown in Table 7-6 and Figure 7-3. 

People usually are not in hurry during reservation process while they hope claiming 

process as short as possible, because the claiming process is often initiated by applications 

such as remote visualization. They hope the lightpaths can be set up quickly and data can 

start to flow on them early. I can see the parallel claim effectively shorten the end-to-end 

latency comparing to the serial reservation process. Usually the end-to-end claim latency is 

dominated by the slowest or the farthest optical switch. From Figure 7-3, we can see the 

StarLight domain always has much faster response comparing to other domains. That’s 

because Calient optical switches has much faster switching speed than Glimmerglass 
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switches. Specifically, the Calient switches have about 500 ms switching time and the 

Glimmerglass switches have about 1300 ms switching time. Both types of switches are 

controlled by communicating TL1 commands over the management port. I was informed by 

Glimmerglass engineers that they have C library which supports much faster switching than 

TL1 interface. After preliminary experiments, I got very positive result on their C library. The 

switching time can be reduced from 1300 ms over TL1 to 44 ms over C library. It is not trivial 

work to incorporate the C library into the JBoss architecture. But this will be one of our 

future work. 

ms EVL-SL EVL-UCSD EVL-UvA EVL-SL-UCSD-UvA 

tcs 182 182 182 263 

tc-prop-f[1] 5 4 4 5 

tclaiming[1] 1924 2029 2102 1943 

tc-prop-b[1] 43 19 42 38 

tc-prop-f[2] 45 N/A N/A 39 

tclaiming[2] 330 N/A N/A 363 

tc-prop-b[2] 33 N/A N/A 48 

tc-prop-f[3] N/A 528 N/A 519 

tclaiming[3] N/A 1303 N/A 1211 

tc-prop-b[3] N/A 539 N/A 544 

tc-prop-f[4] N/A N/A 1195 1234 

tclaiming[4] N/A N/A 1047 1050 

tc-prop-b[4] N/A N/A 912 954 

tsc 80 79 79 80 

Table 7-6 Inter-domain reservation claim measurements 



 105

 

Interdomain C laim S ignaling Latency Analysis

0

500

1000

1500

2000

2500

3000

3500

4000

ms

Figure 7-3. Interdomain Reservation Claim Signaling End-to-End Latency Analysis 

This Figure shows the components of inter-domain claim signaling latency. Apparently, the 
dominant component is the parallel claim, which is the sum of the time during which the 
photonic switches set up the cross connects and the propagation delay. The parallelism 
effectively reduces the end-to-end delay. The claim time of StarLight is much shorter because 
the calient switch responses much faster. 
 

7.2.3 Effect of Time Slot Granularity  

In section 4.4, I analyzed the computation complexity of different algorithms, and 

mentioned that database access will be the most time-consuming part in the algorithms. The 

database access complexity of pdc-probe() is O(h), in which h is the number of hops. The 

database access complexity of pdc-reserve() is O(h*t), in which h is the number of hops and t is 

S-C prop.

Parallel 
Claims 

C-S prop.

EVL-SL EVL-UCSD EVL-UvA EVL-SL-UCSD-UvA 
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the number of time slots in the reservation window. Usually the number of hops won’t be large 

in reality, but the number of time slots could be very large when the time slot granularity is 

small. I ran a set of experiments to compare the time consumed by pdc-reserve() under 

different time slot granularities. The result is shown in Figure 7-4. We can see that the 

client-server propagation and the server-client propagation is pretty stable but the server 

processing time is almost proportional to the time slot granularity. Specifically, when the slot 

granularity is 1, i.e., one time slot is one minute, the server processing time is 0.36 seconds; 

when the slot granularity is 60, i.e., one time slot is one second, the server processing time is 

13.8 seconds. This result matches our earlier algorithm analysis pretty well. Therefore, I set a 

maximum time slot granularity in AR-PIN/PDC to avoid the excess reservation time. 

 

7.3 Summary 

Through the experiments, I draw two main conclusions. Firstly, the parallelism in 

reservation and claim processes effectively reduce the end-to-end signaling latency. Secondly, 

the time slot granularity is the major factor affecting the computation time. 
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Figure 7-4. Effect of Time Slot Granularity on Reservation Processing Time 

This Figure shows different latency components with the increasing of the time slot 
granularity. The propagation parts are quite constant while the server processing time is 
almost proportional to the time slot granularity. This conforms to the algorithm complexity 
analysis before. 
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CHAPTER 8 

Reliable Blast UDP – an Advance Data Transmission Protocol over 

Photonic Networks 

 

With AR-PIN/PDC, high performance applications can have dedicated lightpaths with 

multiple gigabits of bandwidth available. Full use of this bandwidth is the goal of new 

generation of transport protocols. At the transport layer, there is already consensus among 

network researchers that the current TCP implementations are not suitable for long distance 

high performance bulk data transfer. Either TCP needs to be modified radically or new 

transport protocols should be introduced. Reliable Blast UDP (RBUDP) was developed to fill 

the gap. [He02] 

 

8.1 The problem of Bulk Data Transfers 

Even if networked applications could make Gigabit “lambda reservations,” it does not 

however guarantee that they will be able to make full use of that bandwidth. This problem is 

particularly evident when one attempts to perform large bulk data transfers over long 

distance, high speed networks (often referred to as “long fat networks” or LFNs) [Stevens94]. 
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LFNs such as those between the US and Europe or Asia have extremely high round-trip 

latencies (at best 120ms). This latency results in gross bandwidth under-utilization when 

TCP is used for data delivery. This is because TCP’s windowing mechanism imposes a limit on 

the amount of data it will send before it waits for an acknowledgement. The long delays that 

occur over international networks means that TCP will spend an inordinate amount of time 

waiting for acknowledgments, which in turn means that the client’s data transmission will 

never reach the peak available capacity of the network. Traditionally this is “remedied” by 

adjusting TCP’s window and buffer sizes to match the bandwidth * delay product (or capacity) 

of the network. For example, for a 1Gbps connection between Chicago and Amsterdam, with 

an average round trip time of 110ms, the capacity is 1024*0.11/8 = 14.1 Mbytes. Adjusting 

TCP window size is problematic for several reasons: firstly, on some operating systems (such 

as IRIX for the SGI,) the window size can only be modified by building a new version of the 

kernel- hence this is not an operation a user-level application can invoke. Secondly, one needs 

to know the current capacity of the network in order to set the window size correctly. The 

current capacity varies with the amount of background traffic already on the network and the 

path to the destination. 

Several alternative solutions are possible. One solution is to provide TCP with better 

estimates of the current capacity of a link. This is the approach of the WEB100 Consortium 

[Web100]. The consortium is developing techniques to modify router operating systems to 
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report available bandwidth over a network link. Furthermore they are modifying operating 

systems kernels to allow better monitoring of TCP performance. Another solution is to use 

striped (or parallel) TCP [Park00, Leigh01, Allcock01]. In parallel TCP, the payload is divided 

into N partitions which are delivered over N TCP connections. Both Leigh (in CAVERNsoft) 

and Allcock (in GridFTP) have shown that parallel TCP can provide throughput as high as 

80% of a network’s available bandwidth, however its performance is unstable when excessive 

numbers of sockets are used. Furthermore it is difficult to predict the correct number of 

sockets to use. 

In this research I take a more aggressive approach by using UDP augmented with 

aggregated acknowledgments to provide a reliable bulk data transmission scheme. I call this 

Reliable Blast UDP (RBUDP). A similar scheme called NetBLT was first proposed in 1985 

(RFC969) by Clark et al [Clark87].  I extend Clark’s work by providing both analytical and 

experimental results to show that RBUDP can provide the performance predictability that is 

lacking in parallel TCP. Furthermore I will provide an equation similar to TCP’s 

bandwidth*delay product to allow one to predict RBUDP performance. This prediction will be 

useful in the future, for network resource reservation on the Grid. 

It is important to remember that I intend aggressive protocols such as parallel TCP and 

Reliable Blast UDP for high speed dedicated links or links over which quality of service is 

available. I do not intend these protocols for use over the broader Internet. 
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8.2 Reliable Blast UDP 

Reliable Blast UDP has two goals. The first is to keep the network pipe as full as possible 

during bulk data transfer. The second goal is to avoid TCP’s per-packet interaction so that 

acknowledgments are not sent per window of transmitted data, but aggregated and delivered 

at the end of a transmission phase. Figure 8-1 below illustrates the RBUDP data delivery 

scheme. In the first data transmission phase (A to B in the figure), RBUDP sends the entire 

payload at a user-specified sending rate using UDP datagrams. Since UDP is an unreliable 

protocol, some datagrams may become lost due to congestion or an inability of the receiving 

host from reading the packets rapidly enough. The receiver therefore must keep a tally of the 

packets that are received in order to determine which packets must be retransmitted. At the 

end of the bulk data transmission phase, the sender sends a DONE signal via TCP (C in the 

figure) so that the receiver knows that no more UDP packets will arrive. The receiver 

responds by sending an Acknowledgment consisting of a bitmap tally of the received packets 

(D in the figure). The sender responds by resending the missing packets, and the process 

repeats itself until no more packets need to be retransmitted. 

 



 112

Sender Receiver

… 

A 

B C D 

E F G 

UDP data traffic 

TCP signaling traffic 

 

Figure 8-1. The Time Sequence Diagram of RBUDP 

In RBUDP, the most important input parameter is the sending rate of the UDP blasts.  

To minimize loss, the sending rate should not be larger than the bandwidth of the bottleneck 

link (typically a router). Tools such as Iperf [Iperf] and netperf [Netperf] are typically used to 

measure the bottleneck bandwidth.  In theory if one could send data just below this rate, 

data loss should be near zero. In practice however, other factors need to be considered. In our 

first implementation of RBUDP, I chose a send rate of 5% less than the available network 

bandwidth predicted by Iperf.  Surprisingly this resulted in approximately 33% loss!  After 

further investigation I found that the problem was in the end host rather than the network.  

Specifically, the receiver was not fast enough to keep up with the network while moving data 

from the kernel buffer to application buffers.  When I used a faster computer as the receiver, 
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the loss rate decreased to less than 2%.  The details of this experiment are further discussed 

in Section 5.   

The chief problem with using Iperf as a measure of possible throughput over a link is that 

it does not take into account the fact that in a real application, data is not simply streamed to 

a receiver and discarded. It has to be moved into main memory for the application to use. This 

has motivated us to produce app_perf (a modified version of iperf) to take into account an 

extra memory copy that most applications must perform. I can therefore use app_perf as a 

more realistic bound for how well a transmission scheme should be able to reasonably obtain. 

In the experiments detailed in Section 8.4, I however include both iperf and app_perf ’s 

prediction of available bandwidth. 

Three versions of RBUDP were developed: 

1. RBUDP without scatter/gather optimization – this is a naïve implementation of 

RBUDP where each incoming packet is examined (to determine where it should go in the 

application’s memory buffer) and then moved there. 

2. RBUDP with scatter/gather optimization – this implementation takes 

advantage of the fact that most incoming packets are likely to arrive in order, and if 

transmission rates are below the maximum throughput of the network, packets are 

unlikely to be lost. The algorithm works by using readv() to directly move the data from 

kernel memory to its predicted location in the application’s memory. After performing this 
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readv() the packet header is examined to determine if it was placed in the correct location. 

If it was not (either because it was an out-of-order packet, or an intermediate packet was 

lost), then the packet is moved to the correct location in the user’s memory buffer. 

3. “Fake” RBUDP – this implementation is the same as the scheme without the 

scatter/gather optimization except the incoming data is never moved to application 

memory. This was used to examine the overhead of the RBUDP protocol compared to raw 

transmission of UDP packets via Iperf. 

Experiments that compare these versions of the protocol, and an analytical model of 

RBUDP, will be presented in Section 8.3 and 8.4 respectively. 

 

8.3 Analytical Model for RBUDP 

The purpose of developing an analytical model for RBUDP is two-fold. Firstly I wanted to 

develop an equation similar to the “bandwidth * delay product” equation for TCP, to allow us 

to predict RBUDP performance over a given network. Secondly I wanted to systematically 

identify the factors that influenced the overall performance of RBUDP so that I can predict 

how much benefit any potential enhancement in the RBUDP algorithm might provide. 

First of all, all variables are defined as follows: 

 Bachievable = achievable bandwidth 

 Bsend  = chosen send rate 
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Stotal = total data size to send (ie payload) 

Ttotal = total predicted send time 

Tprop = propagation delay 

TudpSendi = time to send UDP blast on ith iteration. 

Nresend = number of times to resend (depends on loss%) 

Tack = time to acknowledge a blast (at least 1 ACK is always needed) 

Li = % packet loss on ith iteration 

In our model I am attempting to predict the achievable bandwidth (Bachievable)of RBUDP: 

total
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T
SB =              (8-1) 

 

Following the RBUDP algorithm, I estimate Ttotal as:       
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In (8-2), the first term is the time to send the main payload, the second term is the time to 

transmit missing packets, called Tresend, the last term is the time to send each 

acknowledgement.  

Specifically: 
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Given this equation, let us consider two possible situations - one where no loss occurs, 

and one where loss does occur. If no loss occurs, I can eliminate the middle term so that the 

best achievable performance can be computed using: 
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In the denominator, 
sendpacket

total

BS
S

**8  is very small compared to other factors and can 

be omitted. 
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I can then derive the ratio of Bbest and Bsend as: 

total

sendsend

best
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BRTTB
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1

+
=           (8-5) 

where: 

 2*Tprop is RTT (Round Trip Time). 

This ratio shows that in order to maximize throughput, I should strive to minimize 

total

send

S
BRTT *

 by maximizing the size of the data I wish to deliver. For example, given Tprop for 

Chicago to Amsterdam is 55ms, and Bsend is 600 Mbps, and if I wish to achieve a throughput of 

90% of the sending rate, then the payload, Stotal needs to be at least 74.25 Megabytes.   

In Section 8.4 (Figure 8-2) I will use equation 8-3 to compare the theoretical best rate Bbest 

against experimental results, over a variety of send rates (Bsend).  

Furthermore I will compare Bbest against experimental results with varying payload sizes 

(Stotal) (Section 8.4, Figure 8-4).  

Now let us turn to consider the situation where loss does occur. I will take a simplifying 

assumption that a constant loss rate of L occurs at every pass of the algorithm. I realize that 

in a real network subsequent losses in the retransmit phases should be smaller, rather than 

constant, because I will be retransmitting a significantly smaller payload at each iteration. 

However to estimate that accurately would require us to develop a model for the buffer in the 

intervening routers too. Hence I can take our simplifying assumption as a worst-case 
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estimate. 

So, given loss rate L, retransmits will occur until the amount of data left is less than 1 

packet. Therefore the number of retransmits required can be estimated as: 

⎣ ⎦)/(log totalpacketLresend SSN =         (8-6) 

The data size of all retransmits is therefore: 
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      (8-7) 

I can now plug (8-6) and (8-7) back into equation (8-3) to produce our new estimate of 

Bachievable given constant loss rate L. In Section 8.4 (Figure 8-4) I will put this prediction to use 

comparing an experimental situation where packet loss was observed.  

 

8.4 Experimental Results 

The testbed network consisted of an OC-48 link (2.5 Gbps) brought by SURFnet from 

Amsterdam to the StarLight facility in Chicago.  There was little-to-no traffic on the link 

when the experiments were performed. Linux PCs were placed at each end of the link. The 

specifications of each PC is shown in エラー! 参照元が見つかりません。 below.  Wgsara (in 

Amsterdam) was the slower PC, Charybdis (in Chicago) was the faster one.  The network 

bottleneck resides in the Gigabit Ethernet cards of host computers. 
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Host Name CPU Memory Size 
System 

Bandwidth 
wgsara2.phys.uu.nl 

(Amsterdam) 
Pentium III 

800 MHz 
512M Bytes 238 MBytes/s 

charybdis.sl.startap.net 
(Chicago) 

XEON 
1.8 GHz 

512M Bytes 844 MBytes/s 

Table 8-1 Specification of host PCs in the experimental testbed 

In the first set of experiments, data was sent via RBUDP from the faster PC to the slower 

PC (from Chicago to Amsterdam). In the second set of experiments data was sent in the 

opposite direction. This allowed us to examine the performance of RBUDP when the 

bottleneck was either at the processor or in the network. The result was compared against 

predicted results from our analytical model. A third set of experiments examined RBUDP 

throughput for different payload sizes. 

 

8.4.1 From the Fast PC to the Slow PC (Chicago to Amsterdam) – when the 

Bottleneck is in the Receiving Host Computer 

In this experiment, Iperf measured maximum available bandwidth at 878 Mbps, and 

app_perf measured maximum possible throughput at 643 Mbps.  In Figure 8-2 I plot these 

thresholds as lines across the top of the graph. Plotting the achieved throughput at various 

sending rates for the fake and real RBUDP algorithms, I notice that at sending rates below 

the network capacity, RBUDP performs well - i.e., RBUDP gives the application exactly what 

the application asks for. I also notice that as the sending rates approach the capacity of the 
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network, Fake RBUDP achieves almost the same throughput as Iperf,  and the real RBUDP 

begins to hurt in performance because the underpowered CPU is unable to keep up with 

handling the incoming packets.  However, as real RBUDP is able to match the maximum 

performance of app_perf, this means that RBUDP is making as much use of the network for 

useful data transfer as the CPU will allow. Finally, notice that there is a close match between 

our experimental results and our prediction from equation 8-4 (which estimated RBUDP 

performance when loss rate is zero.)   

RBUDP performance (data size = 450 MB)
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Figure 8-2. RBUDP throughput from Chicago to Amsterdam 

Payload is 450MB. Bottleneck is in the receiving host. The lines indicating iperf and app_perf 
throughput show the maximum performance when the tools are sending at the network’s full data rate. 
App_perf is a more realistic indication of the rate at which an application can absorb incoming data 
packets as it takes into account the additional overhead involved in most applications that need to take 
the data off the network and use it. 
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8.4.2 From the Slow PC to the Fast PC (Amsterdam to Chicago) – when the 

Bottleneck is in the Sending Host Computer 

I repeated the experiment in the opposite direction. This time the bottleneck was in the 

sending PC rather than in the receiving PC. Figure 8-3 shows that when the host computer is 

fast enough, iperf and app_perf performances match, as do the different implementations of 

RBUDP. Fake RBUDP is able to reach the maximum performance obtained by iperf; and Real 

RBUDP is able to reach the maximum performance obtained by app_perf- again confirming 

RBUDP’s ability to maximize bandwidth utilization for useful data delivery. 

RBUDP performance (data size = 450 MB)
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Figure 8-3. RBUDP throughput from Amsterdam to Chicago 

Payload is 450MB. Bottleneck is in the sending host. The maximum of the sending rate is 725Mbps.  
See Figure 8-2 for an explanation of the iperf and app_perf lines in the graph. 
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8.4.3 Effect of Payload Size on Throughput 

From the analysis in Section 8.3, I know that the propagation time is the primary factor 

affecting RBUDP overhead. For smaller payloads, the time spent in the acknowledgement 

phase is almost constant while the time spent blasting UDP packets decreases. In Figure 8-4 I 

compare an experimental situation where I send data at 611Mbps (experiencing no loss) 

against our theoretical prediction, which assumes no loss (equation 8-3.) Furthermore I 

compare an experimental situation sending data at 682Mbps experiencing 12% loss, against 

our theoretical prediction where I assume a constant 12% loss per iteration. 

Firstly, the results show that RBUDP performs best for large payloads. Secondly, the 

results show that a 12% packet loss does not impact throughput greatly for large payloads. 

Finally, our analytical models provide good boundaries for our experimental results for 0% 

loss and 12% loss. 
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Figure 8-4. Throughput vs. Payload Size.  

Larger payloads produce better network utilization 

8.4.4 Adapting RBUDP for High Speed Data Streaming 

Even though the initial motivation of RBUDP is for bulk data transfer over long distance, 

some applications require high performance reliable streaming transport.  In Section 8.3, I 

showed that in order to achieve fairly high throughput, the payload needs to be large.  In 

streaming applications, if the size of objects to be streamed is small, I combine multiple objects 

to form a large payload.  However this will cause end-to-end latency to increase because of the 

buffering needed to form the large payloads.  Based on our analytical model, I can determine 

the minimum sending rate needed to ensure a desired object throughput rate, given the 

maximum delay the application is able to tolerate.  
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Let: 

Sobj = size of streamed objects. 

Nobj = number of objects per payload. 

Bobj = required throughput of objects. (number of objects per second) 

For example, in the case of graphics streaming, object throughput rate is measured in 

frames per second. 

D = the maximum extra delay the applcation can tolerate. 

Then the size of a payload is: 

objobjtotal NSS *=          (8-8) 

where: 

DBN objobj *=          (8-9) 

The required raw bandwidth is: 

objobjbest SBB *=           (8-10) 

Assuming we are operating over an over-provisioned network, we plug (8-8), (8-9) and 

(8-10) back in equation (8-5) to compute the rate at which RBUDP needs to send data to 

achieve the application’s requested throughput: 

D
RTT

BS
B objobj

Send

−
=

1

*
       (8-11) 
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Hence, using a graphics streaming application as an example: given that RTT is 100ms, 

Sobj is 800*600*3, (assuming image resolution of 800x600 and 3 bytes color information for 

each pixel), if I want to achieve a frame rate Bobj of 20 frames/second, the maximum extra 

delay introduced will be 0.5 seconds, the sending rate needs to be at least 288 Mbps and each 

payload must encapsulate 10 image frames. RBUDP was deployed as an important 

component in software Quanta. [He03] During IGrid 2002, Luc Renambot applied Quanta’s 

RBUDP to a parallel graphics streaming application called Griz. Using our analytical model 

and the parameters from the above example, I was able to predict the number of animation 

frames that Griz had to package into a single payload to achieve full utilization of the 

Amsterdam-Chicago Starlight link [Renambot02]. 

 

8.5 Conclusions 

RBUDP is a very aggressive protocol designed for dedicated- or QoS-enabled high 

bandwidth networks (such as our aforementioned DiffServ and IP-over-DWDM testbeds). It 

eliminates TCP’s slow-start and congestion control mechanisms, and aggregates 

acknowledgments so that the full bandwidth of a link is used for pure data delivery. For large 

bulk transfers, RBUDP can provide delivery at precise, user-specified sending rates. RBUDP 

performs at its best for large payloads rather than smaller ones, because with smaller 

payloads the time to deliver the payload approaches the time to acknowledge the payload. The 
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scatter-gather algorithm to reduce memory copies, provides better performance over the 

non-scatter-gather algorithm for slower CPUs when the loss rate is not very high. This benefit 

is expected to increase for faster networks. 

I have provided an analytical model that provides a good prediction of RBUDP 

performance. This prediction can be used as a rule of thumb in a manner similar to the 

bandwidth * delay product for TCP. Furthermore this prediction can be used to estimate how 

future ideas for improving the algorithm might impact RBUDP performance. 
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

In order for data-intensive distributed applications to function efficiently, they need to be 

able to reserve enough bandwidth, through the allocation of lightpaths. This dissertation 

addresses the problem of efficient scheduling of lightpaths between Grid clusters. Specifically, 

this dissertation seeks approaches of application-driven intra-domain and inter-domain layer 1 

lightpath provisioning, with the capability of advance reservation. In this dissertation, I 

proposed a Flexible Advance Reservation Model (FARM) and described how to apply this 

model to inter-domain and intra-domain lightpath reservation problem by incorporating 

Routing and Wavelength Assignment algorithms. Through simulations, I found that the 

flexibility on time parameters of advance reservation requests can improve the system 

performance dramatically. And in order to maintain a well-balanced AR/IR mixed environment, 

both ARs and IRs need admission control. AR-PIN/PDC (Advance Reservation enabled 

Photonic Inter-domain Negotiator and Photonic Domain Controller) is an implementation of 

my design and algorithms. I deployed AR-PIN/PDC in four domains internationally. Over the 

testbed, some experiments were performed to measure the components of end-to-end signaling 
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latency. I found that the parallelism can reduce the latency effectively and the major factor 

affecting the computation time is the time slot granularity. 

 

9.1 Contributions 

Through the design and implementation of AR-PIN/PDC, I recognized and addressed 

numerous research problems in the control plane and data plane of optical networking. 

Specifically, this dissertation makes the following contributions. 

 I created a Flexible Advance Reservation Model (FARM), applied this model to 

Routing and Wavelength Assignment (RWA), and designed algorithms to achieve 

interdomain and intradomain lightpath advance reservation. A peer-to-peer based 

publish/subscription topology model is used to avoid huge amount of state flooding. 

The On-Demand Parallel Probe algorithm renders the periodic dissemination of 

time-based resource availability information unnecessary and hence makes the 

system more scalable. 

 Through simulations, I found that by introducing some flexibility on the time 

parameters of advance reservations, the network performance can be improved 

dramatically. Also it is confirmed that both Advance Reservation (AR) and Immediate 
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Reservation (IR) admission control are necessary in order to maintain a well-balanced 

AR/IR mixed environment. 

 I implemented the fore-mentioned algorithms in the software AR-PIN/PDC. As a set 

of services, AR-PIN/PDC can be easily deployed in JBoss application server. Because 

it provides standard web service interfaces, writing clients is very easy in most 

platforms and environments. 

 I deployed AR-PIN/PDC in four domains in US and Europe, making scheduling 

cross-continent lightpaths possible. In this testbed, I measured and analyzed the 

components in the end-to-end lightpath reservation and claim, and proved the 

parallelism of probing and claiming effectively reduces the delay, and the time slot 

granularity is the major factor affecting the computation time. 

 Reliable Blast UDP (RBUDP) protocol was designed and implemented. This protocol 

is a very aggressive protocol designed for dedicated or QoS-enabled high bandwidth 

networks such as optical networks. For large bulk transfers, RBUDP can provide 

delivery at precise, user-specified sending rates. I provided an analytical model that 

provides a good prediction of RBUDP performance. 
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9.2 Future Work 

This dissertation aims to let application reserve and set up layer 1 lightpaths on demand. 

However, in layered network model, application is layer 7 and lightpath is layer 1. In order for 

applications to utilize the layer 1 ligthpaths smoothly and effectively, a lot of work needs to be 

done from layer 2 to 6. For example, typical LambdaGrid applications have hundrends to 

thousands of parallel flows with different Quality of Service requirements. These flows 

emanate from network interfaces in the endpoints (i.e. the compute clusters) to communicate 

with other endpoints over multiple lightpaths. It is a challenging research problem how to 

multiplex and optimize m flows into n lightpaths (m>>n).  

Based on functionalities, the communication network can be divided into data plane, 

control plane and management plane. This dissertation addresses how to set up lightpath in 

control plane and how to transmit bulk data over data plane. However, the management plane 

is also important, especially the monitoring function. The applications always want to know 

when the network resource is ready to use and be notified if fault occurs. The monitoring can 

occur in multiple layers. For example, optical layer monitoring detects the health of lightpaths; 

IP layer monitoring decides if the end-to-end connections can be established; transport layer 

monitoring judges how much bandwidth is available for applications to use. 
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APPENDIX A 

AR/PIN-PDC WSDL FILE 

 

<?xml version="1.0" encoding="UTF-8"?> 

<definitions name="PDCService" targetNamespace="http://localhost:8080/pdc-ws"  

xmlns:tns="http://localhost:8080/pdc-ws" xmlns="http://schemas.xmlsoap.org/wsdl/" 

xmlns:ns2="http://localhost:8080/pdc-ws/types" xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"> 

  <types> 

    <schema targetNamespace="http://localhost:8080/pdc-ws/types" xmlns:tns="http://localhost:8080/pdc-ws/types" 

xmlns:soap11-enc="http://schemas.xmlsoap.org/soap/encoding/" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 

xmlns="http://www.w3.org/2001/XMLSchema"> 

      <complexType name="PDCReserveReturn"> 

        <sequence> 

          <element name="destAddr" type="string" nillable="true"/> 

          <element name="finish" type="long"/> 

          <element name="message" type="string" nillable="true"/> 

          <element name="reservationId" type="string" nillable="true"/> 

          <element name="srcAddr" type="string" nillable="true"/> 

          <element name="start" type="long"/></sequence></complexType></schema></types> 

  <message name="PDCEndpoint_advancereserveHH"> 

    <part name="String_1" type="xsd:string"/> 

    <part name="String_2" type="xsd:string"/> 

    <part name="String_3" type="xsd:string"/> 

    <part name="String_4" type="xsd:string"/> 

    <part name="String_5" type="xsd:string"/> 

    <part name="String_6" type="xsd:string"/> 

    <part name="long_7" type="xsd:long"/> 

    <part name="long_8" type="xsd:long"/> 

    <part name="long_9" type="xsd:long"/> 

    <part name="int_10" type="xsd:int"/></message> 

  <message name="PDCEndpoint_advancereserveHHResponse"> 
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    <part name="result" type="ns2:PDCReserveReturn"/></message> 

  <message name="PDCEndpoint_breakPorts"> 

    <part name="int_1" type="xsd:int"/> 

    <part name="int_2" type="xsd:int"/> 

    <part name="int_3" type="xsd:int"/></message> 

  <message name="PDCEndpoint_breakPortsResponse"/> 

  <message name="PDCEndpoint_claim"> 

    <part name="String_1" type="xsd:string"/></message> 

  <message name="PDCEndpoint_claimResponse"> 

    <part name="result" type="xsd:int"/></message> 

  <message name="PDCEndpoint_connectPorts"> 

    <part name="int_1" type="xsd:int"/> 

    <part name="int_2" type="xsd:int"/> 

    <part name="int_3" type="xsd:int"/></message> 

  <message name="PDCEndpoint_connectPortsResponse"/> 

  <message name="PDCEndpoint_getHostName"/> 

  <message name="PDCEndpoint_getHostNameResponse"> 

    <part name="result" type="xsd:string"/></message> 

  <message name="PDCEndpoint_getNumberOfPorts"> 

    <part name="String_1" type="xsd:string"/></message> 

  <message name="PDCEndpoint_getNumberOfPortsResponse"> 

    <part name="result" type="xsd:int"/></message> 

  <message name="PDCEndpoint_getSwitchOutPort"> 

    <part name="int_1" type="xsd:int"/> 

    <part name="int_2" type="xsd:int"/></message> 

  <message name="PDCEndpoint_getSwitchOutPortResponse"> 

    <part name="result" type="xsd:int"/></message> 

  <message name="PDCEndpoint_init"/> 

  <message name="PDCEndpoint_initResponse"/> 

  <message name="PDCEndpoint_terminate"> 

    <part name="String_1" type="xsd:string"/></message> 

  <message name="PDCEndpoint_terminateResponse"> 

    <part name="result" type="xsd:int"/></message> 

  <message name="PDCEndpoint_unbind"> 

    <part name="String_1" type="xsd:string"/></message> 

  <message name="PDCEndpoint_unbindResponse"> 

    <part name="result" type="xsd:int"/></message> 

  <portType name="PDCEndpoint"> 

    <operation name="advancereserveHH" parameterOrder="String_1 String_2 String_3 String_4 String_5 String_6 
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long_7 long_8 long_9 int_10"> 

      <input message="tns:PDCEndpoint_advancereserveHH"/> 

      <output message="tns:PDCEndpoint_advancereserveHHResponse"/></operation> 

    <operation name="breakPorts" parameterOrder="int_1 int_2 int_3"> 

      <input message="tns:PDCEndpoint_breakPorts"/> 

      <output message="tns:PDCEndpoint_breakPortsResponse"/></operation> 

    <operation name="claim" parameterOrder="String_1"> 

      <input message="tns:PDCEndpoint_claim"/> 

      <output message="tns:PDCEndpoint_claimResponse"/></operation> 

    <operation name="connectPorts" parameterOrder="int_1 int_2 int_3"> 

      <input message="tns:PDCEndpoint_connectPorts"/> 

      <output message="tns:PDCEndpoint_connectPortsResponse"/></operation> 

    <operation name="getHostName"> 

      <input message="tns:PDCEndpoint_getHostName"/> 

      <output message="tns:PDCEndpoint_getHostNameResponse"/></operation> 

    <operation name="getNumberOfPorts" parameterOrder="String_1"> 

      <input message="tns:PDCEndpoint_getNumberOfPorts"/> 

      <output message="tns:PDCEndpoint_getNumberOfPortsResponse"/></operation> 

    <operation name="getSwitchOutPort" parameterOrder="int_1 int_2"> 

      <input message="tns:PDCEndpoint_getSwitchOutPort"/> 

      <output message="tns:PDCEndpoint_getSwitchOutPortResponse"/></operation> 

    <operation name="init"> 

      <input message="tns:PDCEndpoint_init"/> 

      <output message="tns:PDCEndpoint_initResponse"/></operation> 

    <operation name="terminate" parameterOrder="String_1"> 

      <input message="tns:PDCEndpoint_terminate"/> 

      <output message="tns:PDCEndpoint_terminateResponse"/></operation> 

    <operation name="unbind" parameterOrder="String_1"> 

      <input message="tns:PDCEndpoint_unbind"/> 

      <output message="tns:PDCEndpoint_unbindResponse"/></operation></portType> 

  <binding name="PDCEndpointBinding" type="tns:PDCEndpoint"> 

    <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/> 

    <operation name="advancereserveHH"> 

      <soap:operation soapAction=""/> 

      <input> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input> 

      <output> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation> 

    <operation name="breakPorts"> 
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      <soap:operation soapAction=""/> 

      <input> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input> 

      <output> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation> 

    <operation name="claim"> 

      <soap:operation soapAction=""/> 

      <input> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input> 

      <output> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation> 

    <operation name="connectPorts"> 

      <soap:operation soapAction=""/> 

      <input> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input> 

      <output> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation> 

    <operation name="getHostName"> 

      <soap:operation soapAction=""/> 

      <input> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input> 

      <output> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation> 

    <operation name="getNumberOfPorts"> 

      <soap:operation soapAction=""/> 

      <input> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input> 

      <output> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation> 

    <operation name="getSwitchOutPort"> 

      <soap:operation soapAction=""/> 

      <input> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input> 

      <output> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation> 

    <operation name="init"> 

      <soap:operation soapAction=""/> 

      <input> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input> 
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      <output> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation> 

    <operation name="terminate"> 

      <soap:operation soapAction=""/> 

      <input> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input> 

      <output> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation> 

    <operation name="unbind"> 

      <soap:operation soapAction=""/> 

      <input> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input> 

      <output> 

        <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation></binding> 

  <service name="PDCService"> 

    <port name="PDCEndpointPort" binding="tns:PDCEndpointBinding"> 

      <soap:address location="http://localhost:8080/pdc-ws/PDCService"/></port></service></definitions> 
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APPENDIX B 

AR/PIN-PDC JAVA CLIENT EXAMPLES 

 

Because AR-PIN/PDC provides web services, the client could be Java-based, C-based or 

Python-based. In this Appendix, I will show two Java client examples The first example 

reserves a lightpath, and the second one claims a lightpath. 

 

Reserve client: 
 

package edu.uic.evl.pdc.client; 

import java.util.*; 

 

public class reserve { 

 

        public static void main(String [] args) { 

                String resvID, srcIP, destIP, error; 

                Date now = new Date(); 

                long start = now.getTime() + 0; 

                // Reservation window end time is 10 minutes later. 

                long period = 10*60*1000; 

                // The mininum duration is also 10 minutes. 

                long md = 10*60*1000; 

                long realStart; 

                long realFinish; 

                Date startDate; 

                Date finishDate; 

                // Source endpoint information. 

                String c1 = "yorda.evl.uic.edu"; 

                String n1 = "node11"; 
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                String i1 = "nic1"; 

                // Destination endpoint information. 

                String c2 = "yorda.evl.uic.edu"; 

                String n2 = "node12"; 

                String i2 = "nic1"; 

                PDCReserveReturn ret = null; 

 

                try { 

                        PDCService service = new PDCServiceLocator(); 

                        PDCEndpoint endpoint = service.getPDCEndpointPort(); 

                        ret = endpoint.advancereserveHH(c1, n1, i1, 

                                                        c2, n2, i2, 

                                                        start, period, md, 1); 

                        resvID = ret.getReservationId(); 

                        srcIP = ret.getSrcAddr(); 

                        destIP = ret.getDestAddr(); 

                        realStart = ret.getStart(); 

                        realFinish = ret.getFinish(); 

                        error = ret.getMessage(); 

                        System.out.println("Reservation ID: " + resvID); 

                        System.out.println("Source IP address: " + srcIP); 

                        System.out.println("Destination IP address: " + destIP); 

                        System.out.println("Error Message: " + error); 

                        startDate = new Date(realStart); 

                        finishDate = new Date(realFinish); 

                        System.out.println("Reservation Start Time: " + startDate.toString()); 

                        System.out.println("Reservation Finish Time: " + finishDate.toString()); 

                } 

                catch(Exception e) { 

                        e.printStackTrace(); 

                } 

        } 

} 
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Claim client: 

 
package edu.uic.evl.pdc.client; 

import java.util.*; 

 

public class claim { 

    public static void main(String [] args) { 

        try { 

            PDCService service = new PDCServiceLocator(); 

            PDCEndpoint endpoint = service.getPDCEndpointPort(); 

            System.out.println(endpoint.claim(args[0])); 

        } 

        catch(Exception e) { 

            e.printStackTrace(); 

        } 

    } 

} 

 

 

 


