
 I

A Flexible Advance Reservation Model for

Multi-Domain WDM Optical Networks

BY

Eric He (Ding He)

B.S., Beijing Institute of Technology, 1994

M.S., Beijing Institute of Technology, 1997

THESIS

Submitted as partial fulfillment of the requirements
of the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2006

Chicago, Illinois

 II

ACKNOWLEDGE

 III

TABLE OF CONTENTS
LIST OF TABLES ...V
LIST OF FIGURES ..VI
LIST OF ABBREVIATIONS.. VII
SUMMARY ...IX
1. INTRODUCTION...1

1.1 The Internet is Not Enough for Advanced Applications.. 2
1.1.1 Low Bandwidth ... 3
1.1.2 Lack of Quality of Service ... 6
1.1.3 Absence of Advance Reservation.. 9

1.2 All-Optical Networks.. 9
1.3 Flexible Advance Reservation ... 12
1.4 Contributions .. 14
1.5 Organization ... 16

2. RELATED WORK ..17
2.1 Routing and Wavelength Assignment (RWA) ... 17
2.2 Interdomain Routing and Signaling.. 19
2.3 Advance Reservation .. 20
2.4 Deployed Optical Control Planes... 21
2.5 Comparison ... 25

3. FLEXIBLE ADVANCE RESERVATION MODEL..27
3.1 Flexible Advance Reservation Model (FARM) .. 27
3.2 FARM in Meta-scheduler ... 30

4. COORDINATED INTRADOMAIN AND INTERDOMAIN CONTROL PLANE34
4.1 AR-PIN: Interdomain Control Plane... 36
4.1 AR-PIN: Interdomain Control Plane... 37
4.2 AR-PDC: Intradomain Control Plane.. 40
4.3 Apply FARM to AR-PIN/PDC... 42
4.4 Algorithms... 45
4.5 AR-PIN/PDC Services .. 50

5. SIMULATION ..53
5.1 Flexibility Improves Both Acceptance Rate and Resource Utilization 55
5.2 Comparison of Different Routing Algorithms... 57
5.3 Impact of Advance Reservations on Immediate Reservations..................................... 59
5.4 The Dropping Problem and IR Admission Control... 60
5.5 AR Admission Control .. 62
5.6 Summary... 63

6. IMPLEMENTATION OF AR/PIN-PDC...65
6.1 Service Description of AR-PIN/PDC.. 65

 IV

6.2 Data Structures .. 72
6.3 Two Web Service Modes: Synchronous and Asynchronous.. 83

6.3.1 Web Services .. 83
6.3.2 Synchronous vs. Asynchronous Web Services... 85
6.3.3 Synchronous Mode Interdomain Reservation .. 87
6.3.4 Asynchronous Mode Interdomain Reservation .. 88

6.4 AR-PIN/PDC Web Interface ... 91
7. DEPLOYMENT AND EXPERIMENTS ..94

7.1 Testbed Deployment ... 94
7.2 Experimental Results... 97

7.2.1 Components of Inter-domain Reservation Latency ... 97
7.2.2 Components of Inter-domain Reservation Claim Latency........................... 102
7.2.3 Effect of Time Slot Granularity ... 105

7.3 Summary... 106
8. Reliable Blast UDP – an Advance Data Transmission Protocol over Photonic Networks.108

8.1 The problem of Bulk Data Transfers... 108
8.2 Reliable Blast UDP..111
8.3 Analytical Model for RBUDP..114
8.4 Experimental Results..118

8.4.1 From the Fast PC to the Slow PC (Chicago to Amsterdam) – when the
Bottleneck is in the Receiving Host Computer .. 119
8.4.2 From the Slow PC to the Fast PC (Amsterdam to Chicago) – when the
Bottleneck is in the Sending Host Computer ... 121
8.4.3 Effect of Payload Size on Throughput .. 122
8.4.4 Adapting RBUDP for High Speed Data Streaming....................................... 123

8.5 Conclusions ... 125
9. CONCLUSIONS AND FUTURE WORK...127

9.1 Contributions .. 128
9.2 Future Work.. 130

REFERENCES ...131
APPENDIX A: AR/PIN-PDC WSDL FILE ..137
APPENDIX B: AR/PIN-PDC JAVA CLIENT EXAMPLES...142

 V

LIST OF TABLES

Table 1-1 Network flows created by Ultra-High resolution Grid visualization applications 8
Table 2-1 Feature comparison of related research to this thesis... 26
Table 7-1 Detail of four domains in the photonic testbed. .. 95
Table 7-2 Detail of computing clusters in the photonic testbed. ... 95
Table 7-3 The round trip time between each pair of AR-PIN/PDC servers 99
Table 7-4 Inter-domain reservation measurements ... 100
Table 7-5 Comparison of actual and theoretical RTTs. ... 102
Table 7-6 Inter-domain reservation claim measurements ... 104
Table 8-1 Specification of host PCs in the experimental testbed .. 119

 VI

LIST OF FIGURES

Figure 1-1. The Large Hadron Collider Data Grid Hierarchy... 4
Figure 1-2. Number of Class A, B and C Users Compared with Their Bandwidth Appetite 6
Figure 1-3. LambdaVision Driven by SAGE .. 8
Figure 3-1. The Specification of Flexible Advance Reservations... 29
Figure 3-2. Apply FARM to Meta-Scheduler.. 30
Figure 3-3. The Relation of Blocking Rate of Meta-Scheduler and Individual Local Schedulers 33
Figure 4-1. AR-PIN/AR-PDC System Architecture.. 38
Figure 4-2. Structure of Multiple Photonic Domains.. 38
Figure 4-3. Class Diagram of Photonic Switches ... 42
Figure 4-4. JOIN Operation in AR-PDC Resource Manager .. 44
Figure 5-1. 14 Node NSFNET Topology .. 54
Figure 5-2. Blocking Rate under Different Flexibilities ... 56
Figure 5-3. Resource Utilization under Different Flexibilities ... 57
Figure 5-4. Blocking Rate of Different Routing Algorithms .. 58
Figure 5-5. Comparison of Wavelength Sharing between ARs and IRs.. 59
Figure 5-6. Blocking Rate of IRs for Different Minimum Durations ... 62
Figure 5-7. Effect of AR Admission Control .. 64
Figure 6-1. Class Diagram of Basic Data Structures in AR-PIN/PDC.. 74
Figure 6-1. Class Diagram of Basic Data Structures in AR-PIN/PDC.. 73
Figure 6-2. AR-PIN in Synchronous Web Service Mode.. 88
Figure 6-3. AR-PIN in Asynchronous Web Service Mode.. 90
Figure 6-4. Lightpath Reservation WebInterface of AR-PIN/PDC... 92
Figure 6-5. Lightpath Status Viewing Interface of AR-PIN/PDC ... 93
Figure 7-1. AR-PIN/PDC Multi-domain Photonic Testbed Topology .. 96
Figure 7-2. Interdomain Reservation Signaling End-to-End Latency Analysis 101
Figure 7-3. Interdomain Reservation Claim Signaling End-to-End Latency Analysis 105
Figure 7-4. Effect of Time Slot Granularity on Reservation Processing Time............................ 107
Figure 8-1. The Time Sequence Diagram of RBUDP... 112
Figure 8-2. RBUDP throughput from Chicago to Amsterdam.. 121
Figure 8-3. RBUDP throughput from Amsterdam to Chicago.. 121
Figure 8-4. Throughput vs. Payload Size. ... 123

 VII

LIST OF ABBREVIATIONS

AAA Authorization, Authentication and Accounting

AFR Alternate Fixed Routing

AR Advance Reservation

AR-PDC Advance Reservation enabled Photonic Domain Controller

AR-PIN Advance Reservation enabled Photonic Interdomain Negotiator

BoD Bandwidth on Demand

CERN European Center for Nuclear Research

CR-LDP Constraint-based Routing Label Distribution Protocol

CSPF Constrained Shortest Path First

DRAGON Dynamic Resource Allocation via GMPLS Optical Network

DWDM Dense Wavelength-division Mutiplexing

ERO Explicit Route Object

FARM Flexible Advance Reservation Model

FR Fixed Routing

GLIF Global Lambda Integrated Facility

GMPLS Generalized Multi-Protocol Label Switching

IR Immediate Reservation

LFN Long Fat Network

LHC Large Hadron Collider

LLP Least Load Path routing

LMP Link Management Protocol

MEMS Micro-Electro-Mechanical System

NIC Network Interface Card

OBGP Optical Border Gateway Protocol

ODIN Optical Dynamic Intelligent Network

ODPP On-Demand Parallel Probe

 VIII

OGSA Open Grid Service Architecture

OSPF-TE Open Shortest Path First-Traffic Engineering

OXC Optical Cross-Connect

QoS Quality of Service

RBUDP Reliable Blast User Datagram Protocol

RFORP Robust Fast Optical Reservation Protocol

RPC Remote Procedure Call

RSVF-TE Resource ReSerVation Protocol with Traffic Engineering

RTT Round Trip Time

RWA Routing and Wavelength Assignment

SAGE Scalable Adaptive Graphics Environment

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

STSD Specified Starting time and Specified Duration

STUD Specified Starting time and Unspecified Duration

TCP Transmission Control Protocol

UCLP User Controlled Light Path

UTSD Unspecified Starting time and Specified Duration

UTUD Unspecified Starting time and Unspecified Duration

VPN Virtual Private Networks

WDM Wavelength-division Mutiplexing

XML Extensible Markup Language

 IX

SUMMARY

Grid is a computing architecture that consists of distributed clusters of computers

interconnected by a network. Grid computing is used in a variety of data and

compute-intensive scientific domains such as bioscience, nanotechnology, geoscience,

high-energy physics. To facilitate the transportation of enormous (e.g. terabyte-sized)

data-sets between Grid clusters, a new type of Grid computing architecture, called the

LambdaGrid, has emerged. LambdaGrids are Grids that are interconnected by

ultra-high-speed networks that can be directly controlled by applications. Typically the unit of

control is a light path (often called a Lambda) in an optical network. In order for

data-intensive applications to function efficiently, they need to be able to reserve enough

bandwidth, through the allocation of these light paths. This thesis focuses on the problem of

efficient scheduling of light paths between Grid clusters. Prior approaches use rigid

scheduling schemes- i.e. resources are scheduled in terms of when the resources are needed

and for how long. This thesis will show that contrary to obvious expectations, a flexible

advance scheduling model can provide better overall resource utilization and user experience

than a rigid scheduling scheme.

In this thesis I propose a Flexible Advance Reservation Model (FARM) and describe how

to apply this model to the cross-domain lightpath reservation problem by incorporating

Routing and Wavelength Assignment algorithms. Next, I present the architecture,

dpadmin
Underline

 X

implementation and services of a coordinated Interdomain and Intradomain optical control

plane called AR-PIN/PDC, which is capable of flexible advance reservations, and provides web

services. The simulation results show that by relaxing the reservation time constraint, the

acceptance rate and resource utilization can be improved dramatically. Through simulations,

I also analyze the impact of advance reservations on immediate reservations and conclude

that both AR and IR requests need admission control algorithms in order to let both types of

reservations coexist and use resource properly. The AR-PIN/PDC software has been deployed

in an international photonic testbed consisting of four domains. Over the testbed, I measure

the components of end-to-end signaling latency during inter-domain reservation and claim

processes. The results show that the major latency component during claim processes is the

optical switching time and domain level parallelism can effectively reduce the claim latency.

And the time slot granularity is the major factor affecting the reservation latency.

dpadmin
Underline

 1

CHAPTER 1

INTRODUCTION

The purpose of this thesis research is to provide advanced networking services with

massive bandwidth, Quality of Service and advance reservation, to high end applications.

Specifically, this thesis seeks approaches of application-driven intra-domain and inter-domain

layer 1 lightpath provision, with the capability of advance reservation. In this thesis, I created

a Flexible Advance Reservation Model (FARM), applied this model to Routing and Wavelength

Assignment (RWA) problem, and designed routing and signaling algorithms to implement a

coordinated inter-domain and intra-domain optical control plane with advance reservation

capability. Through simulations, I found that admission control of both Advance Reservation

(AR) and Immediate Reservation (IR) are necessary in order to maintain a well-balanced

AR/IR mixed situation. After the implementation and deployment, I did experiments over an

international testbed to measure and analyze the end-to-end lightpath reservation and claim

process, and proved the parallelism can effectively reduce the delay.

 2

1.1 The Internet is Not Enough for Advanced Applications

The Internet has been an extremely successful technology innovation. Currently, there

are approximately one billion users of the common Internet. The “killer application” that

fostered the Internet into a global phenomenon was the World Wide Web. Developed in the late

1980s at the European Center for Nuclear Research (CERN) from research by Tim

Berners-Lee, the Web was initially created to share data on nuclear physics. By using

hyperlinks and graphical “browsing” technology, the Web greatly simplifies the process of

searching for, accessing, and sharing information on the Internet, making it much more

accessible to a non-technical audience.

However, advanced applications, represented by Grid applications, are raising network

requirements of which the Internet can meet neither at present and even in the foreseeable

future. A computational Grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end computational

capabilities [Foster01].

“It mainly concerns with coordinated resource sharing and problem solving in dynamic,

multi-institutional virtual organizations. The sharing concerned is not primarily file

exchange but rather direct access to computers, software, data, and other resources, as is

required by a range of collaborative problem-solving and resource-brokering strategies

emerging in industry, science, and engineering. This sharing is, necessarily, highly controlled,

 3

with resource providers and consumers defining clearly and carefully just what is shared, who

is allowed to share, and the conditions under which sharing occurs. A set of individuals and/or

institutions defined by such sharing rules form a virtual organization.”

The Grid is a new type of infrastructure that builds upon, abstract and unify the

innovations that originally arose from addressing the requirements of large-scale,

resource-intensive science and engineering applications. One of the most important

characteristics of the Grid is that it is distributed infrastructure. Therefore, from the earliest

days of their design and development, Grids have always utilized networking services,

especially those based on the Internet technologies. The shared Internet provides best-effort

packet-forwarding service, which is not enough for scientific collaboration and Grid

applications in several aspects: bandwidth is too low, quality of service is not guaranteed, and

bandwidth cannot be reserved in advance. I will give advanced application examples to

explain these aspects. (I will illustrate these aspects with an advanced application example.)

1.1.1 Low Bandwidth

The Large Hadron Collider (LHC) is a particle accelerator and collider located at CERN,

near Geneva, Switzerland. Currently under construction, the LHC is scheduled to start

operation in November 2007, when it will become the world’s largest particle accelerator. The

current estimates are that the major LHC experiments will store data onto permanent

 4

storage at a raw recording rate of 0.1-1.5 GigaBytes/sec (GB/s). A single copy of the archive is

estimated to grow at a rate of 5-8 PetaBytes (PB)/year. [Messina04] This data will be accessed

and processed repeatedly by the worldwide collaborations searching for new physics processes.

Figure 1-1. The Large Hadron Collider Data Grid Hierarchy

[Source: Harvey Newman, California Institute of Technology]

This Figure demonstrates that in the large hadron collider Data Grid hierarchy, the bandwidth
requirements on the networks connecting the “Tier0”, “Tier1” and “Tier2” should be in the order of
10Gbps, and the networks connecting the “Tier3” and “Tier4” should be in the order of 1Gbps.

Following initial processing and storage at the “Tier0” facility at the CERN laboratory site,

the processed data is distributed through high-speed networks to ~10 to 20 national “Tier1”

centers in the United States, leading European countries, Japan, and elsewhere. The data is

there (then or The data there is…) further processed and analyzed and then stored at

approximately 60 “Tier2” regional centers, each serving a small to medium-sized country, or

 5

one region of a larger country. Data subsets are accessed and further analyzed by physics

groups using one of hundreds of “Tier3” workgroup servers and thousands of “Tier4” desktops.

[Newman03] As depicted in Figure 1-1, the bandwidth requirements on the networks

connecting the “Tier0”, “Tier1” and “Tier2” should be in the order of 10Gbps, and the networks

connecting the “Tier3” and “Tier4” should be in the order of 1Gbps. However, the most popular

connection type to the Internet is digital subscriber line (DSL), which has only 1-10 Mbps.

Even in the next 10 years, the Internet connection speed has little chance to reach 1Gbps.

Cees de Laat classified the network users to A, B and C classes (can you say to class A, B and

C), as shown in Figure 1-2. [DeLaat03] The first group, class A, includes typical home users

with services provided by DSL or cable modems, who may have access at rates around 1Mbps,

who use web browsing, emailing, etc. They need full Internet routing. Class B consists of

enterprises, universities or Grid-based virtual organizations that operate at gigabit per

second LAN speed. The majority of the traffic typically stays within the virtual organization.

The class C represents a few hundred truly high-end applications currently being developed,

which need transport capacities of multiple gigabits per second for a duration of minutes to

hours, originating from a few places, destined for a few other places. Class C traffic often does

not require Internet routing. However, it requires dynamic path provision because most of

these applications require the gathering and utilization and releasing of resource at multiple

sites.

 6

Figure 1-2. Number of Class A, B and C Users Compared with Their Bandwidth Appetite

[Source: Cees de Laat, University of Amsterdam]
This Figure compares the bandwidth and number of users of classes A, B and C users. Most network
users belong to class A. They use little bandwidth but need full Internet routing. Very small percentage
of users belong to class C, but they use huge amount of bandwidth and usually communicate in
few-to-few fashion.

1.1.2 Lack of Quality of Service

As shown in Figure 1-3, Scalable Adaptive Graphics Environment (SAGE) is a specialized

middleware for enabling data, high-definition video and extremely high-resolution graphics to

be streamed in real-time from remotely distributed rendering and storage clusters to scalable

displays over ultra high-speed networks. [Renambot04] Interactive ultra-high-resolution

 7

LambdaGrid visualization applications routinely access remote datasets spanning over

multiple terabyte and visualize the rendered pixels on high-resolution displays. The network

bandwidth requirements for browsing these datasets or pushing the rendered pixels to remote

displays are in the range of several tens to hundreds of gigabits per second. In addition to the

huge bandwidth usage, these applications usually create hundreds of bidirectional streams

between distant endpoints, each (what is “each”) with differing flow requirements operating

over differing transport protocols. Table 1-1 quantifies the broad variety of flows that

simultaneously emanate from SAGE. [Wang06]

When the Internet was first deployed many years ago, it lacked the ability to provide

Quality of Service (QoS) guarantee because its infrastructure was too limited. It ran at

default QoS level, or “best effort”. Integrated services tried to solve the problem by resource

reservation. But it failed due to scalability issues. DiffServ took another way of prioritization

and aggregation to limit the number of traffic classes in the backbone, but DiffServ (or

backbone. However, DiffServ….) also failed because end-to-end QoS was difficult to guarantee

by aggregating flows.

 8

Figure 1-3. LambdaVision Driven by SAGE

This Figure shows the SAGE application running on the 55-panel LambdaVision. The LambdaVision is
an ultra-high-resolution visualization and networking instrument designed to support collaboration
among co-located and remote experts requiring interactive ultra-high-resolution imagery. SAGE enbles
data, high-definition video and extremely high-resolution graphics coming from different applications
and locations to display simultaneously on LambdaVision.

Table 1-1 Network flows created by Ultra-High resolution Grid visualization applications

Type of Flow Number of Flows Bandwidth per
Flow

Latency
Sensitive

Jitter
Sensitive

Reliability
Requirement

Burstiness Message
Size

Protocol

Audio Stream 1 per user Low 1Mbps Yes Yes Med Constant Small UDP-based
HD Video
Stream

1 per user Med to High
25Mbps-1.5Gbps

Yes Yes Med Constant Small to
Med

UDP-based

Application
Stream

1-100 per
application

High 1-2.5Gbps Yes Variable High Application
Dependent

Large UDP-based

Bulk Data 1 per render node High No No High Application
Dependent

Large UDP/TCP-b
ased

Annotations/
Static Content

1-10 per user Low 1Mbps No No High One Burst Small TCP-based

Control Channel 1 per rendering node
+ 1 per display

Low 64Kbps No Yes High Short Burst Small TCP-based

Synchronization
Channel

1 per rendering node
+ 1 per display

Low 1Mbps Yes Yes High Constant Small TCP-based

SAGE UI 1 per user Low 64Kbps No No High Short Burst Small TCP-based
VNC Streams 1 per user Low 1Mbps Yes Yes High Small

Burst
Small TCP-based

 9

1.1.3 Absence of Advance Reservation

Advance reservation is required to guarantee the availability of network resources. The

nature of resource reservations in Grid computing is quite different from those of telephone

calls. For the latter, their durations are usually not known in advance and hence cannot be

planned in advance. In contrast, resource allocations in Grid environments usually require a

large number of different types of resources to be acquired simultaneously. Therefore, they

have to be reserved in advance, in a manner similar to the reservation of hotels, airlines, and

rental cars for vacation travel.

As I said (mentioned) in the last (or previous) section, the current Internet can only

provide fairness-based best-effort services. Everyone gets a fair share from the available

resources when he/she starts running the networking applications. There is no resource

reservation service available in the Internet, let alone advance reservation services.

1.2 All-Optical Networks

Over the past ten years, the network bandwidth has been improved 240X from 155 Mbps

to 40 Gbps. This growth rate has been outpacing that of disk speed/capacity and processing

power during the same period. This has produced a major technology mismatch, perhaps best

illustrated by the fact that most PCs today are sold with Gigabit Ethernet (GigE) interfaces,

 10

even though typically available file transfer speeds across the shared Internet are only 10-20

Mbps. Even with Dense Wavelength-division multiplexing (DWDM) technology enabling

immerse amounts of bandwidth on a single pair of fiber strands, today’s networks are still

clogged up and slow to a crawl. Alternatively, lambdas dedicated to individual researchers

create the equivalent of high-occupancy-vehicle expressway lanes, delivering more reliable

and predictable network performance. This has been considered the most promising

mechanism to meet all these demands from Grid applications. 10 Gbps is common to be

carried on each wavelength and 40 Gbps starts emerging. When 32 wavelengths are

multiplexed, one fiber can carry more than 1 terabits per second! When the control plane

provides the lightpath advance reservation capability, the applications can be guaranteed to

achieve certain quality of service in specific time slots. When Grids are powered by dedicated

lambdas and the networking is not the system bottleneck any more, we call them Lambda

Grids.

The OptIPuter [Smarr03] is a National Science Foundation funded project to interconnect

distributed storage, computing and visualization resources using photonic networks at tens of

gigabits per second. The main goal of the project is to exploit the trend that network capacity is

increasing at a rate far exceeding processor speed, while at the same time plummeting in cost.

This allows one to experiment with a new paradigm in distributed computing - where the

photonic networks serve as the computer's system bus and compute clusters, taken as a whole,

 11

serve as the peripherals in a potentially planetary-scale computer. I consider photonic

networks as all-optical networks comprised of optical fibers and 3D MEMS

(Micro-Electro-Mechanical Systems) optical switching devices. There is no translation of

photons to electrons in photonic networks, hence I can avoid electronic bottlenecks. MEMS

optical switches are controlled by special control software that allows applications to request

and acquire end-to-end lightpaths. This special software is called Photonic Domain Controller

(PDC), which is one of the topics covered in this thesis.

Increasingly, research organizations are buying dark fiber or wavelengths, and they want

to share their resources with each other in a manner similar to how they might share

computing resources in Grid environments. A collection of Grid computing resources

interconnected by an application-configurable network of lightpaths is called a LambdaGrid

[DeFanti03]. This provides data-intensive applications with the necessary deterministic

network bandwidth to transport data between grid instruments, high-performance storage

systems, compute clusters and visualization systems, which is often needed for real-time

interactive scientific exploration. An international virtual organization, GLIF, the Global

Lambda Integrated Facility, was established to promote this paradigm [GLIF].

Photonic Interdomain Controller (PIN) is software that allows applications to provision for

or (provide) and control multi-domain lightpaths [Yu04]. PIN specializes in the interdomain

routing and signaling schemes over heterogeneous optical network domains. In a

 12

multi-domain environment, security management and policy administration are also critical.

Our collaborator, at the University of Amsterdam, has done some pioneering research on

Authorization, Authentication and Accounting (AAA) and we are leveraging it within PIN

software [Oudenaarde05].

1.3 Flexible Advance Reservation

As I mentioned in Section 1.1, advance reservation of lightpath resource is a critical

functionality that the LambdaGrid needs to provide. For customers, the major performance

parameter of resource reservations is acceptance rate or blocking rate, which is defined as the

ratio of accepted (blocked) reservation requests of all submitted requests. For network

operators, the major performance parameter is resource utilization, which is related directly to

their revenue. In comparison to immediate reservations, advance reservations usually degrade

the resource utilization and the acceptance rate due to the resource fragmentation

[Burchard03]. In order to improve the network performance, fragmentation must be avoided.

Allowing flexibility in defining the advance reservations can result in better resource

utilization while offering greater convenience to users. In this paper I will examine, through

simulations, the degree by which flexibility affects performance.

 13

Incorporating flexible advance reservation into PIN/PDC is not trivial. As PIN/PDC is

based on all-optical networks, one main problem that PIN/PDC has to solve is Routing and

Wavelength Assignment (RWA). The RWA problem is a NP-hard problem. Usually it can be

simplified by decoupling the problem into two sub problems: the routing problem and the

wavelength assignment problem. The routing problem can be solved by Fixed Routing, Fixed

Alternate Routing, or Adaptive Routing algorithms. Adaptive Routing is considered to be able

to achieve the best performance by feeding the wavelength assignment status back to the

routing algorithm [Zang00]. The flexibility of advance reservations introduces a new temporal

dimension into the resource allocation problem. The wavelength resources along the path have

to maintain both wavelength and temporal consistency.

For interdomain distributed control, the addition of a temporal dimension makes the

resource state of each domain too large to disseminate to other domains. Therefore, only the

relatively static topology summary information of each domain is disseminated to other

collaborating domains. The Grid community consists of many Virtual Organization (VO) based

collaborations, which means that the resource of each domain is usually not open for all the

world, instead, each domain wants to define their own collaborators and individual access

policy. I believe that the peer-to-peer publish/subscribe model is more effective in this regard

and more scalable for interdomain topology exchange.

 14

The multi-domain lightpath reservation problem is actually one type of meta-scheduling

problem. Meta-scheduling can be defined as the act of locating and allocating resources for a

job from a collection of distributed resources [Snell00]. The key to meta-scheduling is that the

user need not be aware of where the resources are, who owns the resources, or who

administers the resources in order to use them. Therefore, the meta-scheduler has to be in

charge of probing, selecting and reserving the best set of resources by communicating with a

bunch of local schedulers. This same methodology can be applied to the cross-domain lightpath

reservation problem. The new version of PIN/PDC with flexible Advance Reservation (AR)

capability is called Advance Reservation Photonic Interdomain Negotiator and Photonic

Domain Controller (AR-PIN/PDC).

1.4 Contributions

Through the design and implementation of AR-PIN/PDC, I recognized and addressed

numerous research problems in the control plane and data plane of optical networking.

Specifically, this dissertation makes the following contributions.

 I created a Flexible Advance Reservation Model (FARM), applied this model to

Routing and Wavelength Assignment (RWA), and designed algorithms to achieve

interdomain and intradomain lightpath advance reservation. A peer-to-peer based

 15

publish/subscription topology model is used to avoid huge amount of state flooding.

The On-Demand Parallel Probe algorithm renders the periodic dissemination of

time-based resource availability information unnecessary and hence makes the

system more scalable.

 Through simulations, I found that by introducing some flexibility on the time

parameters of advance reservations, the network performance can be improved

dramatically. Also it is confirmed that both Advance Reservation (AR) and Immediate

Reservation (IR) admission control are necessary in order to maintain a well-balanced

AR/IR mixed environment.

 I implemented the fore-mentioned algorithms in the software AR-PIN/PDC. As a set

of services, AR-PIN/PDC can be easily deployed in JBoss application server. Because

it provides standard web service interfaces, writing clients is very easy in most

platforms and environments.

 I deployed AR-PIN/PDC in four domains in US and Europe, making scheduling

cross-continent lightpaths possible. In this testbed, I measured and analyzed the

components in the end-to-end lightpath reservation and claim, and proved the

parallelism of probing and claiming effectively reduces the delay, and the time slot

granularity is the major factor affecting the computation time.

 16

 Reliable Blast UDP (RBUDP) protocol was designed and implemented. This protocol

is a very aggressive protocol designed for dedicated or QoS-enabled high bandwidth

networks such as optical networks. For large bulk transfers, RBUDP can provide

delivery at precise, user-specified sending rates. I provided an analytical model that

provides a good prediction of RBUDP performance.

1.5 Organization

The remainder of the dissertation is organized as follows. In chapter 2, I describe related work. In

chapter 3, a unified Flexible Advance Reservation Model (FARM) is described and I will show how to

implement the model for the meta-scheduling problem. In chapter 4, I will elaborate on the architecture of

AR-PDC and AR-PIN, especially the interdomain routing and signaling processes, algorithms and their

functions. In chapter 5, comprehensive simulation results are shown on how flexibility improves network

performance and the impact of advance reservations on immediate reservations. In chapter 6, I will describe

the web services that AR-PIN/PDC will provide, data structures and compare two distributed web service

modes. In chapter 7, several series of experiments were run to analyze the end-to-end signaling latency for

inter-domain reservations and claims. In chapter 8, I will describe a high performance data transport protocol

– RBUDP – which is suitable for transporting data over photonic networks. Then the dissertation is

concluded by chapter 9.

 17

CHAPTER 2

RELATED WORK

In this chapter, I will review previous work and literature in several aspects related to this

dissertation: routing and wavelength assignment, interdomain routing and signaling, advance

reservation, and deployed optical control planes.

2.1 Routing and Wavelength Assignment (RWA)

Most RWA approaches in wavelength-routed optical WDM networks have been reviewed

and compared in (in what） [Zang00]. Because the combined routing and wavelength

assignment are hard problems, all RWA approaches divided the entire problem into two

subproblems: routing subproblem and wavelength assignment subproblem. Routing

subproblem can be solved by Fixed Routing, Fixed-Alternate Routing, and Adaptive Routing.

Fixed routing is the simplest but usually leads to high blocking probabilities. Fixed-alternate

routing and adaptive routing provide significant benefits over fixed-shortest-path routing in

terms of resource utilization and blocking rate. Of the eleven wavelength assignment

heuristics summarized in Zang’s paper, only four of them are for single fiber situations.

 18

1. Random Wavelength Assignment (R)

This scheme first searches the space of wavelengths to determine the set of all

wavelengths that are available on the required route. Among the available wavelengths, one

is chosen randomly.

2. First Fit (FF)

The first available wavelength is selected. This scheme performs well in terms of blocking

probability and fairness, and is preferred in practice because of its small computational

overhead and low complexity.

3. Least-Used (LU)/SPREAD

LU selects the wavelength that is the least used in the network, thereby attempting to

balance the load among all the wavelengths. The performance of LU is worse than Random.

4. Most-Used (MU)/PACK

MU is the opposite of LU in which it attempts to select the most-used wavelength in the

network. It outperforms LU significantly.

In these methods, First-Fit is used mostly because of the algorithmic simplicity and good

performance.

In [Chu04], upon the arrival of a lightpath request, if there is any link in the selected

route which currently has no free wavelength, I can not set up the lightpath on this route.

Otherwise, I should first try to find a common free wavelength on all the links along the

 19

selected path. If there is no common free wavelength, I then check whether wavelength

converters can help. A lightpath is divided into several segments by the intermediate OXCs

which currently have free converters. Each segment still suffers the wavelength continuity

constraint. A lightpath can be setup successfully if and only if every segment has common free

wavelength(s). For each link, the first-fit wavelength assignment scheme is used.

[Yang05] designed a hybrid weighted shortest path first (HW-SPF) heuristic to find the

route. Then the Fragmentation or Trace-back regenerator allocation strategy is used on the

resultant route. The first-fit wavelength assignment is used by the regenerator allocation

strategy. The HW-SPF heuristic is adapted to accept advance reservation requests in this

thesis.

2.2 Interdomain Routing and Signaling

OBGP [Francisco01] extended the BGP routing protocol to support interdomain lightpath

setup and management. Connectivity information in BGP is propagated through UPDATE

messages. Each OBGP speaker contains complete autonomous system (AS) path information

to reach a particular network. Signaling is also implemented through OBGP protocol.

However, OBGP assumes that each OXC has the capability to convert wavelengths. OBGP

also didn’t consider the effect of physical layer impairments. These factors don’t prevent us

from using OBGP as a reachability disseminating protocol.

 20

[Jukan04] used flooding-based protocol to transfer the user path request to the

destination through all possible paths. The state vector composed by service-specific path

quality attributes, such as physical layer impairments, reliability, policy, and traffic

conditions, is updated at each hop. The flooding is stopped when the service cannot be met. If

more than one messages arrive at the destination, the best path is selected based on some

criteria. The signaling overhead is huge and increases exponentially with the number of hops.

In [Yang04], a domain gateway uses a local routing scheme to compute alternate local

routes between itself and each interior node in the same domain as well as between itself and

each neighboring domain gateway. Then a next-hop computation function is used to join the

alternate local routes of this domain to the alternate routes of adjacent domains to form the

next-hop interfaces leading to desired destinations. Finally, a hop-by-hop lightpath selection

function uses the obtained local and next-hop routing information to establish interdomain

end-to-end lightpaths.

2.3 Advance Reservation

Advance reservation has been widely studied in networks other than all-optical networks.

Guerin and Orda [Guerin00] investigated the computational complexity of routing algorithms

when supporting different models of advance reservations. Greenberg et al. [Greenberg99]

proposed a call admission control algorithm that occasionally allows a call in progress to be

 21

interrupted in order to efficiently share resources among book-ahead (BA) calls and non-BA

calls. The Globus Architecture for Reservation and Allocation (GARA) is a toolkit used to

implement advance reservations of grid resources in Globus software [Foster99, Curti05]. The

performance issues of applying advance reservations to meta-scheduling problem have been

examined by Snell et al. [Snell00].

[Zheng02] analyzed RWA algorithms for three types of advance reservations of lightpaths:

Specified Starting Time and Specified Duration (STSD); Specified starting Time Unspecified

Duration (STUD); Unspecified starting Time Specified Duration (UTSD).

2.4 Deployed Optical Control Planes

The UCLP (User Controlled Light Path) [Boutaba04, Wu05] software allows end users to

self provision and dynamically reconfigure optical (layer one) networks within a single

domain or across multiple independent management domains. Sometimes this is also referred

to as user controlled traffic engineering. Users can also create daughter optical VPNs (Virtual

Private Networks) and hand off control and management of these VPNs to other users. The

UCLP software is designed to allow end users to create their own discipline or application

specific IP network, particularly in support for high end grid applications. More importantly

these networks can be dynamically reconfigured at any time without getting permission or

signaling the optical network manager. The UCLP web services software is based on the Open

 22

Grid Service Architecture (OGSA) using Globus Toolkit 3 and Java/Jini services. UCLP is now

deployed across CA*net 4 networks.

The ODIN (Optical Dynamic Intelligent Network) service [Mambretti03, Mambretti06] is

software being designed and developed iCAIR as an intermediary between high-performance

distributed global applications and lower level network service layers. ODIN provides a single

point of control for a defined set of network requests within a single administrative domain.

This point of control is incorporated within a process that resides on a control server. The

process has a complete “understanding” of the topology and current resource allocations

within the administrative domain. ODIN was deployed on the OMNInet testbed.

Bandwidth on Demand (BoD) [Gommans03, Gommans06] service provides a QoS path

based on Generic Authorization, Authentication, Accounting (AAA) towards a multi domain

solution. As each administrative domain implements the authorization of its resources to an

AAA server, more than one AAA server needs to communicate by means by AAA requests in

order to authorize a QoS path. For each type of AAA request there exists a corresponding

Driving Policy that instructs the AAA server how to deal with the request. Concrete resources

are controlled by Application Specific Module (ASM), whereas generic actions are delegated to

the generic part of an AAA server.

There are some other systems geared on provision circuit-switched end-to-end paths.

[Veeraraghavan03, Veeraraghavan06] All of the aforementioned work assumes the physical

 23

network is based on SONET or Ethernet segments and therefore do not incorporate RWA

algorithms.

Generalized Multi-Protocol Label Switching (GMPLS) is a well-accepted control plane in

optical networking industry. It extends MPLS to provide the control plane (signaling and

routing) for devices that switch in any of these domains: packet, time, wavelength and fiber.

The suite of GMPLS protocols consists of three separate protocols: OSPF-TE,

RSVP-TE/CR-LDP, and LMP.

The routing protocol in GMPLS is usually Open Shortest Path First-Traffic Engineeting

(OSPF-TE). [Kompella05] OSPF determines the shortest path from a source node to a

destination node. The traffic engineering extensions provide a way of describing the traffic

engineering topology (including bandwidth and administrative constraints) and distributing

this information within a given OSPF area. In OSPF-TE, the route is usually computed at the

source using Constrained Shortest Path First (CSPF).

Once the path is computed with OSPF-TE, the next thing is to establish the forwarding

state along the path, as well as possibly to reserve resources along the path. There are two

possible mechanisms to accomplish this: RSVP-TE(Resource ReSerVation Protocol with

Traffic Engineering) and CR-LDP (Constraint-based Routing Label Distribution Protocol).

[Ashwood03, Berger03] Both protocols use Explicit Route Object (ERO) to forward the path

information from the source to other nodes along the explicit route.

 24

Because data channels and control channels are separated in GMPLS, a mechanism is

required to manage the data links, both in terms of link provision and fault management.

This is accomplish by Link Management Protocol (LMP). [Lang05]

GMPLS is not designed for peer-to-peer networking architecture and more like a device

management and control protocol for telco-provided networks. It is very difficult to

incorporate multi-domain, advance reservation and Authentication, Authorization and

Accounting (AAA) functions into it. Besides, GMPLS is a complicated suite of protocol.

Implementing GMPLS is not trivial. Calient sells their photonic switches with GMPLS three

times more expensive than those without GMPLS.

Robust Fast Optical Reservation Protocol (RFORP) [Yu04] discovers wavelength

availability hop by hop along the pre-selected route. To minimize wavelength discovery failure,

RFORP optimizes the use of wavelength conversion during discovery. When an OXC along the

selected lightpath route does not have the common available wavelengths as the upstream

OXCs, the wavelength discovery request will be rollback to the neighboring upstream OXCs

to check if wavelength conversion could be deployed to resolve the wavelength-blocking

problem. It attempts to recover from wavelength fails when the rollback request propagates

back to the source OXC that is also non-converting. RFORP minimizes end-to-end reservation

delay by employing parallel concurrent reservation. RFORP assumes that border switches are

OEO switches and there is no wavelength continuity constraint between domains, and

 25

therefore only considered RWA algorithms within domains. This assumption is not necessary

valid, I extend the wavelength continuity constraint beyond domain borders in this paper.

The Dragon Project (Dynamic Resource Allocation via GMPLS Optical Networks) is trying

to build an inter-domain lightpath resource management system and leverage the GMPLS

protocol as the intra-domain control plane [Yang06, Lehman06]. Generally they use GMPLS as

the intra-domain control plane. For those devices who can not talk GMPLS, a Virtual Label

Swapping Router (VLSR) is employed to bridge GMPLS protocols and SNMP/TL1/CLI

transactions. Between domains, they use Network Aware Resource Broker (NARB) to provide

inter-domain service capability propagation, compute ERO using source routing, performs

request authorization and book ahead reservations. In the process of state exchange, the

topology or topology summary, Label Switching Path (LSP) reservation information, and AAA

policy information of each domain will be disseminated to all other domains. This puts a huge

amount of load on the control plane network which usually has relatively low bandwidth.

2.5 Comparison

In this dissertation, I describe a coordinated intra-domain and inter-domain control plane,

taking into account both cross-domain RWA and flexible advance reservation. I propose a

publish/subscribe route advertising model and On-Demand Parallel Probe (ODPP) algorithm

to achieve the scalability of inter-domain information dissemination. The intra-domain control

plane can work on not only GMPLS-enabled switches, but also bare MEMS switches that can

 26

only talk TL1 language. In Table 2-1, I listed major related research and compared them to my

research.

Through simulations, I found that flexibility in advance reservations can improve

performance dramatically. I also explored the impact of introducing advance reservations

schemes into an immediate reservation system. Through experiments, I found that the parallel

probing and parallel claiming effectively reduce the end-to-end signaling time.

RWA Circuit-Switched

Control Plane

Advance

Reservation

Flexible

AR

Multiple

Domain

Deploy in

Real Testbeds

[Yang04, 05] X X X

[Zheng02] X X X

GARA X X

UCLP X X X

ODIN X X X

BoD X X X

RFORP X X X

GMPLS X X

DRAGON X X X X

AR-PIN/PDC X X X X X X

Table 2-1 Feature comparison of related research to this thesis.

 27

CHAPTER 3

FLEXIBLE ADVANCE RESERVATION MODEL

3.1 Flexible Advance Reservation Model (FARM)

I assume that Immediate Reservation (IR) requests use resources immediately upon

arrival if they are admitted, without announcing their holding times. In contrast, Advance

Reservation (AR) requests specify clearly a start time and an end time (or a holding time). The

AR request holding time is usually an estimate or a safe upper bound. The resource used by

this request will be made available to other requests when the customer finishes his/her job or

the holding time expires, whichever happens first.

The specification of an Advance Reservation (AR) request consists of two types of

parameters: time-related parameters and resource-related parameters. For fixed advance

reservations, time-related parameters include reservation start time “tstart” and reservation

end time “tstop”.

I believe that if I give some flexibility on the time parameters, the call acceptance rate will

be improved. This is because flexibility tends to aggregate the reservations together thereby

reducing the effect of fragmentation, and in turn enhancing resource utilization. This

 28

hypothesis will be proven in the simulations in chapter 5. Zheng and Mouftah [Zheng02]

classified advance reservations into three types: specified starting time and specified duration

(STSD); specified starting time and unspecified duration (STUD); and unspecified starting

time and specified duration (UTSD). Different wavelength assignment algorithms are used for

each request type. There is, however, another possible condition where both starting time and

duration are unspecified and only a time window is specified with an earliest time and latest

time (UTUD). I wish (hope) to use this to express the notion of flexibility because all the other

three reservation types can be expressed as UTUD with some constraints such as the earliest

time or the longest time. It is possible the RWA algorithm will find that there are many

candidate solutions. I want to put a limit on the maximum number of returned candidate

solutions. Also we need to specify the criteria by which the resource agent can select the best

candidate. The criteria could be the earliest or the longest.

The resource-related parameters are dependent on the type of the resource. In this paper,

now that I am focusing on layer 1 lightpaths, the parameters should include a source node

and a destination node. In all-optical circuit switching networks, the bandwidth granularity is

a wavelength. A request which needs multiple wavelengths can be decomposed into multiple

requests wherein each request provisions a single wavelength. Therefore, in my scheme, I

consider only single wavelength reservations.

 29

Figure 3-1. The Specification of Flexible Advance Reservations

This Figure shows that relation and meaning of the time-related parameters in flexible advance
reservation specification. tstart is the earliest time, tstop is the latest time, tmd is minimum duration.

Therefore, a flexible advance reservation is defined as follows:

),,,,,(ctttdsR mdstopstart= (3-1)

where s is the source node, d is the destination node, tstart is the earliest time, tstop is the

latest time, tmd is minimum duration, and c is the selection criteria. The time related

parameters are shown in Figure 3-1.

Flexibility can also improve the user efficiency and satisfaction. For example, for fixed

reservations, a user can only get the answer yes or no for a proposed reservation. When

flexibility is introduced, the local resource manager will search a wider range of time slots

when resources are available. This eliminates the need for the user to begin the process over

again with another new proposed reservation. I will show how the flexibility improves the call

acceptance rate by simulations in chapter 5.

trequest
time tstart tstop

tmd

 30

3.2 FARM in Meta-scheduler

Meta-scheduling is the process that a super scheduler schedules resources across multiple

sites by negotiating with corresponding local resource managers. [Weissman98] Usually the

advance reservation in meta-scheduling is implemented by co-reservation. Figure 3-2

illustrates the steps to apply flexible advance reservations to meta-scheduling. These are:

Figure 3-2. Apply FARM to Meta-Scheduler

Meta-scheduling is the process that a super scheduler schedules resources across multiple sites by
negotiating with corresponding local resource managers. Usually the advance reservation in
meta-scheduling is implemented by co-reservation. This Figure illustrates the steps to apply flexible
advance reservations to meta-scheduling.

2c

2b
3c3b

4

3a

2a

User Meta
Scheduler

Resource
Manager

Resource
Manager

Resource
Manag`e
r

Local
Scheduler

Database Database Database

Local
Scheduler

Local
Scheduler

 31

1). The user submits a flexible advance reservation request to the meta-scheduler. The

meta-scheduler analyzes the request, computes a set of resources which can satisfy the user’s

request.

2). The meta-scheduler decomposes the original request into sub-requests and send them

to their local resource managers. The resource managers fetch the resource availability

information during the flexible time range from their scheduling database and sends it back to

the meta-scheduler.

3). The meta-scheduler collects all the resource availability information. It (“It” refers to

Information?) then determines the range of time that is common for all the resources to meet

the original request. If there are more than one of them, the best one will be selected based on

the user specified criteria. At this point, the flexible time parameters of the original request

are fixed. Then the meta-scheduler sends the fixed advance reservation requests to all involved

local schedulers to reserve the needed resources. If any reservation attempt fails, the

meta-scheduler releases all existing reservations for this job.

4). If all involved local schedulers returns success to the meta-scheduler, then the

meta-scheduler returns success to the user and sends back the reservation handle.

Cross-domain lightpath reservation is similar to meta-scheduling of multiple resources.

However, the nature of wavelength resource makes the problem more complicated. The

multiple domain all-optical lightpath reservation has one more constraint: wavelength

 32

continuity. Therefore, both meta-scheduler and local schedulers have to maintain time

continuity as well as wavelength continuity. I will discuss how I solved the problem and the

algorithms in detail in chapter 4.

The flexibility can improve the call acceptance rate of local resource managers. The

improvement is even more important when a meta-scheduler wants to co-reserve multiple

resources from independent resource managers for the same period of time. For example, if the

blocking rate of each resource is 0.05, then the blocking rate of meta-scheduling of 10

independent resources is 1-(0.9510) = 0.401. This high blocking rate is intolerable in most cases.

If the blocking rate of each resource can be improved to 0.01 through flexible advance

reservations, then the blocking rate of meta-scheduling can be improved to 1 - (0.9910) = 0.096,

This blocking rate is acceptable. This makes it possible to schedule large scale scientific

collaborations involving a lot of distributed resources. In other words, if the maximum blocking

rate we can tolerate is 10%, then in the case of meta-scheduling of 10 independent resources,

then the blocking rate of each individual local resource is required to be lower than 1%,

assuming all resources having the same blocking rate. The relation of blocking rate of

meta-scheduler and individual scheduler is depicted in Figure 3-3. Therefore, improvement

brought by the flexible advance reservations has significant impact on meta-scheduling, also in

cross-domain lightpath scheduling.

 33

Blocking rate of meta-scheduler consisting of 10 local schedulers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2
Blocking rate of local scheduler

B
lo

ck
in

g
ra

te
 o

f m
et

a-
sc

he
du

le
r

Figure 3-3. The Relation of Blocking Rate of Meta-Scheduler and Individual Local Schedulers

This Figure shows the relation of blocking rate of meta-scheduler having 10 resources and individual

scheduler, assuming all resources having the same blocking rate. For example, if the maximum blocking
rate we can tolerate is 10%, then in the case of meta-scheduling of 10 independent resources, then the
blocking rate of each individual local resource is required to be lower than 1%. Therefore, improvement
brought by the flexible advance reservations has significant impact on meta-scheduling..

 34

CHAPTER 4

COORDINATED INTRADOMAIN AND INTERDOMAIN

CONTROL PLANE

AR-PIN and AR-PDC are interdomain and intradomain lightpath control software that

work together to enable advance reservations for end-to-end interdomain lightpaths.

The system architecture is shown in Figure 4-1. I use an example to show the sequence of

interactions between users, AR-PIN and AR-PDC. The following steps will be executed when

client A in domain “1” sends a reservation request to the AR-PIN/AR-PDC system:

Periodically, or based on topology changes, the collaborating domains exchange topology

summary with each other.

1. Client A sends a lightpath reservation request to its local interdomain agent

AR-PIN1.

2. AR-PIN1 computes the domain-level paths.

3. The source domain queries resource availability from each AR-PDC on the

domain-level path.

 35

4. Each queried AR-PDC checks its own AAA policy, resource database, then returns

the timeslot-wavelength availability matrix.

5. All the returned timeslot-wavelength availability matrices are intersected at

AR-PIN1. Based on the result, the best switch-level path is selected. Then the reservations of

all involved domains are performed in parallel.

6. Within the reservation time window, the lightpath provision is triggered by

committing the reservation. To do that, the device drivers send TL1 commands to switches to

set up the end-to-end lightpath.

Next I will explain each major component of AR-PIN and AR-PDC in detail.

 36

Peer-to-Peer
Topology
Publish/Subscription AR-PIN 3

Client B

Domain 3TL1
control
messages

Lightpath

Photonic
Switches

Interdomain
Path

Topology Summary
&

AR-PIN 1

Client A

Domain 1 Domain 2

AAA

RWA

Device Driver

AR-PDC1

AAA

RWA

Device Driver

AR-PDC

AAA

RWA

Device Driver

AR-PDC

Interdomain
Signaling

Interdomain
Path

Topology Summary
&

Interdomain
Signaling

Interdomain
Path

Topology Summary
&

Interdomain
Signaling

AR-PIN 2

Figure 4-1. AR-PIN/AR-PDC System Architecture

This Figure shows that the major components of AR-PIN and AR-PDC and the interactions among them and
photonic switches. Three domains are shown in the Figure.

Client A
Requests a lightpath
to Client B.

 37

4.1 AR-PIN: Interdomain Control Plane

A domain is an independently managed network cloud exposing a set of ingress and egress

points and links with service specifications. Each link is controlled and managed by a single

domain. The separation points between neighboring domains are switches. These switches are

called as border switches. Ports on border switches can terminate links of multiple different

domains. Every border switch needs a globally unique address or name for addressing

purposes.

When a domain advertises its topology information to other collaborating domains, it is not

necessary to include the details such as internal switches and internal links. Instead, it will

just send out a topology summary of its own domain consisting of only border switches and

abstracted links. For example, the advertisement from domain A will be:

Switch 1-2: wavelength w1, w2, w3, w4.

Switch 1-3: wavelength w1, w2, w3, w4, w5, w6, w7, w8.

 38

Figure 4-2. Structure of Multiple Photonic Domains

This Figure shows the switches and links of three routing domains. There are two catagaries of
switches: border switches and internal switches. Topology summary of a domain consists of only border
switches and abstract links. Only topology summaries are exchanged.

These two abstracted links are shown as dotted lines in Figure 4-2. The abstract link is

actually an abstraction of a bunch of consecutive physical links in the same domain. The

topology summary can be generated manually or automatically from the intradomain topology

database. The topology summary generation is a maximum-flow problem and it can be solved

by the Ford-Fulkerson method [Cormen01].

AR-PIN runs a peer-to-peer publish/subscribe based routing protocol to exchange topology

summaries among different domains. The peer-to-peer exchange mode is more suitable than

1 2

3

A

B

C
D

E

F G

 Border Switch

Internal Switch

1,2,3 Domain ID

A,B,C… Border Switch ID

 39

blind flooding because it is possible that a domain may want to selectively advertise different

sets of resources to different domains. The information exchange is based on the nature of the

subscription. Every domain that wants to share its own wavelength resources maintains a list

of collaborating domains (subscriber). The information exchange is triggered by any change of

the interdomain topology of the domain. In other words, whenever the topology changes in a

domain, the topology summary will be regenerated, the AR-PIN in this domain will update the

new topology summary to all subscribed domains (push model) or just send a change

notification and let the domains to request the update by themselves (pull model). The pull

mode should always be supported to boot-strap newly started domains or out-of-sync domains.

After receiving the topology summaries from all collaborating domains, each domain can

compose its own global topology. Because each domain gets different topology summaries from

different collaborating domains, every domain has its own unique global topology database. In

this global view, each node is a border switch, and each link is an abstract link managed by a

domain.

When a lightpath reservation request arrives, the local domain will compute a domain-level

path based on its own view of global topology. This path includes only border switches. Source

routing will be used to compute the path. There are several possible path computation

algorithms such as Shortest Path First, Fixed Alternate, Least-Load-Path, etc. The detailed

discussion of these algorithms is beyond the scope of this paper.

 40

4.2 AR-PDC: Intradomain Control Plane

AR-PDC provisions intradomain lightpaths. Reservation requests may come from local

domain users or its peering interdomain control plane AR-PIN. During the AR-PIN resource

probing process, it (what is it) relies on AR-PDC to extend the domain-level path into a

switch-level path and check the wavelength availability status.

Authorization, Authentication and Accounting (AAA)

When a reservation request comes from foreign domains, they need to go through the AAA

mechanism to ensure the foreign user is authenticated. Then according to the identity of the

user and the local access policy, the network resources will be filtered, and a virtual topology

will be generated, which will be used in the following Routing and Wavelength Assignment

(RWA) operation.

Intradomain Routing and Wavelength Assignment (IRWA)

AR-PDC does the RWA job at the switch level. I also divide the RWA problem into two sub

problems: routing and wavelength assignment. For the routing problem, AR-PDC can use

Fixed, Fixed Alternate or Adaptive algorithms – same as interdomain path computation. For

the wavelength assignment problem, I execute a join operation on all hops from the ingress

switch to the egress switch and return the resulting timeslot-wavelength availability matrix to

PIN. When I use the Fixed Alternate algorithm, I can return the matrices of all paths to PIN

 41

and let PIN choose the best one according to the intersection result with the matrix of the

explored part of the path.

Device Driver

If a request gets reserved successfully, the user needs to claim the request when he/she

wants to activate the reservation. Then each domain along the path will send TL1 commands

to management ports of MEMS switches to set up cross connects. At the present time I have

built device drivers for Calient DiamondWave PXC [Calient] and Glimmerglass Reflexion 3D

[Glimmerglass] MEMS switches. Also a dummy switch is implemented for the purpose of

emulation and debugging of high layer software. PDC software has unified interface to

different types of MEM switches as shown in the class diagram Figure 4-3.

 42

Figure 4-3. Class Diagram of Photonic Switches

This Figure shows that class diagram of photonic switches. PDCSwitch is the abstract parent class, it
specifies the unified interface to different types of MEM switches. Currently three sub-classes are
implemented for Calient switches, Glimmerglass switches and dummy switches respectively.

4.3 Apply FARM to AR-PIN/PDC

I described how to implement flexible advance reservation in meta-scheduling in chapter 3.

The same principle can be applied to AR-PIN/PDC. In the context of cross-domain lightpath

reservations, the meta-scheduler is implemented in AR-PIN, the local scheduler and the

resource manager reside in AR-PDC.

 43

I apply the FARM model to AR-PIN/PDC and reiterate the four steps shown in Figure 3-2. I

call this algorithm On-Demand Parallel Probe (ODPP) because AR-PIN probes wavelength

resources in each domain in parallel.

1). The user submits a flexible advance reservation request to AR-PIN, then AR-PIN

computes domain level path based on its own global topology view, which has been described in

section 4.1.

2.1). AR-PIN decomposes the original lightpath request into sub-requests and sends them to

their local AR-PDCs. Each AR-PDC then computes its own local switch level path. Next the

AR-PDC resource manager will operate a two-dimensional JOIN operation over the computed

path, which is shown as Figure 4-4. The parameter tstart and tstop from the original request

specification (see equation 3-1) specifies the time range. The purpose of the JOIN is to remove

unusable resources which cannot satisfy the wavelength and time continuities. Therefore the

two dimensions are time slot and wavelength.

 44

Figure 4-4. JOIN Operation in AR-PDC Resource Manager

An important operation during intra-domain and inter-domain resource probing is two-dimensional
matrix join. Wavelength and time slot are the two dimensions. The purpose of the operation is to find
slots maintaining the wavelength continuity and time continuity. It can be implemented by two
dimensional bit-wise AND.

2.2). After the JOIN operation, the available time slots and wavelengths are found. The

next operation is FILTER. The tmd in equation (3-1), minimum duration, is used to filter out

those small time fragments whose duration is smaller than tmd. For example, if the tmd in

Figure 4-4 is two time slots, then the red block in the right 2D plane will be filtered because

its duration is only one slot. The final resulting 2D matrix is then sent back to the source

domain’s AR-PIN.

3.1). The AR-PIN collects timeslot-wavelength 2D matrices from all involved domains. It

will operate JOIN and FILTER one more time in order to maintain the wavelength and time

continuities of the end-to-end cross-domain lightpath. If there exists more than one candidate,

Time Slot

Wavelength

JOIN =

 45

the best one will be selected based on user specified criteria, parameter c in the equation (3-1).

3.2). The AR-PIN needs to populate the selected timeslot-wavelength combination back to

all involved domains. The resources may become unavailable due to other reservations. Two

phase commit is adopted to make sure the reservations of all domains are all successful or all

properly rolled back.

4). The AR-PIN will send back the reservation handle to the user if the two phase commit

succeeds.

4.4 Algorithms

pdc-probe

During intra-domain probing process, the AR-PDC will be asked to find out the wavelength

availability in the local domain. The ingress and egress switch are specified, a time range is

given as well. The probe function initializes the wavelength-timeslot 2D availability matrix

first. Then it uses some path computation algorithm such as Dijkstra’s algorithm to compute

the switch-level path at line 2. From line 4-7, for each hop on the switch-level path, all marked

slots within the specified time range are found by querying database, and a

wavelength-timeslot matrix is formed according to those marked slots. After that the matrix

is joined together at line 6. Finally the result matrix is returned at line 8.

Let me analyze the complexity of the probe algorithm. The major time consumed by the

 46

algorithm is database access. Therefore, I only consider the complexity of database access.

The database access are at line 3 and 5. The store-db just perform once, and the find-mark-db

just need one database operation to retrieve all marked slot on each link in the time range.

Therefore, the complexity is O(h), h is the length of the switch-level path.

pdc-probe(resID, ingress, egress, range)

1. init(matrix);

2. compute-switch-path(ingress, egress);

3. store-db(resID, path);

4. for each hop h on the path

5. marks = find-mark-db(h,range);

6. matrixl = compute-matrix(marks);

7. matrix = join(matrix, matrixl);

8. return matrix;

pdc-reserve

After the source PIN server selected the wavelength and fixed the time window, it starts the

forward reservation process domain by domain. In each domain, pdc-reserve finds the

correspond lightpath based on the reservation ID first. Then from line 2-4, the mark operation

 47

needs to be performed for each time slot and each switch-level hop. In line 5-8, if the local

domain is the source or destination domain, the switch port connecting to the client computer

also need to be marked because I want to make sure the switch port is exclusively used by this

reservation and this lightpath. The database access complexity is decided by line2-4. The

mark operation will run h*t times, therefore the complexity is O(h*t);

pdc-reserve(resID, window, wavelength)

1. lightpath = getLightpath(resID);

2. for each hop h in the lightpath

3. for each time slot t in window

4. mark-db(h, wavelength, t, resID);

5. if the local domain is the source

6. mark-db(srcClientPort, t, resID);

7. if the local domain is the destination

8. mark-db(destClientPort, t, resID);

pin-odpp (On-Demand Parallel Probe)

The input to the interdomain lightpath reservation includes the source and destination

 48

end-points, the time range in which the reservation is allowed, the minimal duration and the

criterion for choosing the best solution. First the wavelength-timeslot matrix is initialized, the

unique reservation ID is generated. Then in line 3 the domain-level path is computed based

on the global topology view that the source domain has. From line 4-7, probing is performed in

each domain on the selected domain-level path in parallel. All the wavelength-timeslot

matrices are joined together to find the common wavelength and timeslot. Then from line 8-9,

in the result matrix, the wavelength is selected based on the criterion, be the longest duration

or the earliest duration, at the same time, the time window is fixed. Line 10-11 is real

reservation process, domain by domain, the selected wavelength resource is marked in the

slot database.

 Because pin-reserve is a distributed process, I need to analyze both computation

complexity and communication complexity. The computation complexity for the parallel

probing is decided by the maximum of all domains, which is O(max(h)). The reservation

process is domain by domain in sequential. So the complexity is O(d*h*t) considering the

reservation in each domain is O(h*t), in which d is the number of domains on the domain-level

path. For parallel probing, the total number of messages is 2(d-1) because the source domain

will send a probeRequest message to each domain and receive a probeResponse message from

each domain. For sequential reserving, the total number of messages is also 2(d-1). Therefore,

the global communication complexity is O(h). However, the local communication complexity is

 49

different for probing and reserving process. For probing, the local communication complexity

of the source domain is O(h) because all messages are sent or received by the source domain.

For reserving, all involved domain has communication complexity of O(1).

The parallelism of probing process effectively reduces the end-to-end interdomain

signaling time. I will prove this by experiments in chapter 7.

pin-odpp(s,d,range,md,c)

1. init(matrix);

2. generate(resID);

3. compute-domain-path(s,d);

4. for each domain d on the path p in parallel

5. find ingress and egress for domaind;

6. matrixd=probe(resID,ingress,egress,range);

7. matrix = join(matrix, matrixd);

8. wavelength = select(matrix, c);

9. window = fix-window(matrix, c);

10. for (d=srcDomain; d<=destDomain;d->nextDomain)

11. d.pdc-reserve(resId, window, wavelength);

12. return result;

 50

pin-parallelClaim

Once the reservation instances and lightpath instances have been fixed and written into

database during the reservation process, it is pretty straightforward to claim the reservation

when the client application wants to use the lightpath resource. The parallelism of probing

process effectively reduces the end-to-end interdomain signaling time. I will prove this by

experiments in chapter 7.

pin-parallelClaim(resID)

13. for each domain d on the path p in parallel

14. find all lightpath lList having resID;

15. for each lightpath l in lList

16. makeCrossConnects(l);

17. return result;

4.5 AR-PIN/PDC Services

AR-PIN/PDC provides advance and immediate reservation service for applications or higher

layer resource management systems. Their service interfaces should be defined clearly. As

 51

described earlier AR-PIN accepts interdomain lightpath reservations while AR-PDC accepts

intradomain lightpath reservations. Both in fact have similar interfaces. The interfaces are

described as follows:

 Reserve: This function allows the application to submit a reservation with a specification

of endpoints and time constraints to the reservation system. If the reservation succeeds, the

system will reply with a unique reservation handle. This handle will be used for other

operations such as modification and cancellation. The endpoints can be computing cluster

nodes or photonic switch ports.

 Cancel: Before the reservation is bound, it can be cancelled.

 Modify: Before the reservation is bound, it can also be modified. For example, one can

extend or shorten the reservation duration. If the modification request failed because part of

the resources cannot be reserved, the original reservation should keep intact.

 Bind: When the application is ready to use a reservation, the resource manager may need

to do some special processing for the application, or provide some run-time information to the

application. For instance, in lightpath reservation systems, the control plane needs to set up

the end-to-end lightpath for the application by make proper cross-connects in photonic

switches. Also, the control plane may need to provide the IP addresses of end-points to

application. This process is known as binding a reservation.

 52

 Unbind: When a session of resource usage ends, the reservation should be unbound. After

unbinding, the resource is still in reserved status and cannot be used by others. Therefore, if

the application will not use the resource any more and the original reservation end time is in

the future, it should cancel the reservation so that the resource can be returned to the pool of

available resources.

 Terminate: This operation should be used when the reservation is in bound status. In fact

Terminate is implemented as a combination of executing unbind and followed by cancel.

 Query Reservation Status: The client can discover the status of a reservation by polling it.

The status includes whether the start of the reservation has begun and whether the

reservation has been committed.

 Query Reservation Attributes: The client can discover the attributes associated with an

existing reservation. These attributes include time-related or resource-related.

 Subscribe Notification: The client can subscribe to certain topics so that the resource

manager can send messages when the status of the reservation changes or the reservation

manager wishes to provide extra information to the application.

 53

CHAPTER 5

SIMULATION

The simulation work I conducted in the thesis mainly consists of two parts. In the first

part I validate that how the flexibility in advance reservations can improve acceptance rate

and resource utilization. In the real world, immediate reservations co-exist with advance

reservations. Therefore, in the second part the impact of advance reservations on immediate

reservations is analyzed and it is concluded that both AR and IR requests need admission

control algorithms in order to let both types of reservations live together and use the resources

properly.

I ran simulations on the NSFNET topology with 14 nodes as shown in Figure 5-1. I

assumed that each link is a single bi-directional fiber with 8 wavelengths. The entire topology

was fully-optical without any wavelength converter. In the workload, the starting time of both

advance and immediate reservations is a Poisson distribution and the reservation duration has

a negative exponential distribution with mean duration of 30 minutes. All these distributions

are mutually independent. For advance reservations, the book ahead time, tstart – treserve, is

randomly selected between zero and the maximum allowed value. All requests try to reserve a

lightpath with exactly one wavelength. I ran the simulations on five different randomly

 54

generated workloads and took the average of the results. In all simulations, the path

computation method employed is an adaptive routing algorithm using FIXED wavelength

search since it can reach a reasonable balance of performance and complexity [Mokhtar98]. It

searches through wavelengths in a fixed order until the available path is found. A standard

shortest path algorithm is used to find a path on the effective topology.

Figure 5-1. 14 Node NSFNET Topology.

This Figure shows the NSFNET 14 node model. The number on the links represent the relative
distance.

For flexible advance reservations, the degree of flexibility is defined as:

mdstartstop tttflex /)(−= (5-1)

7

4
1

5

1

4 4

8

1

2

12

7

5

5

13

4

5

2

2 1

WA

CA1

CA2

UT

CO

TX

NE

IL

MI
NY

PA
NJ

MD

GA

2

5

 55

5.1 Flexibility Improves Both Acceptance Rate and Resource Utilization

The goal of the first set of experiments is to evaluate how flexibility affects the blocking

rate and resource utilization of advanced reservations. I changed the degree of flexibility of the

starting time of reservations from 0, 1, …, to 10. Figure 5-2 shows how the blocking rate varies

with network load. The network load is denoted by the number of requests. The different

curves represent the different degrees of flexibility. I can see that simply introducing 1 or 2

units of flexibility improves the performance considerably, but more flexibility does not help as

much. For example, when the blocking rate is 5%, the system load is improved from 1100

requests to 1450 by introducing 1 unit of flexibility, and to 1720 by introducing 2 units of

flexibility. Figure 5-3 shows how the relation of resource utilization vs. network load is affected

by different flexibility. The maximum resource utilization can be improved from 47% to 57% by

just introducing 1 unit of flexibility.

 56

0.00

5.00

10.00

15.00

20.00

25.00

30.00

500 1000 1500 2000 2500 3000
number of requests

bl
oc

ki
ng

 ra
te

flex=0

flex=1

flex=2

flex=3

flex=10

Figure 5-2. Blocking Rate under Different Flexibilities

This Figure shows how the blocking rate varies with network load. The network load is denoted by the
number of requests. The different curves represent the different degrees of flexibility. We can see that
simply introducing 1 or 2 units of flexibility improves the performance considerably, but more flexibility
does not help as much.

 57

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
number of requests

re
so

ur
ce

 u
til

iz
at

io
n

flex=0

flex=1

flex=2

flex=3

flex=10

Figure 5-3. Resource Utilization under Different Flexibilities

This Figure shows how the relation of resource utilization vs. network load is affected by different
flexibility. The maximum resource utilization can be improved from 47% to 57% by just introducing 1 unit
of flexibility.

5.2 Comparison of Different Routing Algorithms

In another set of simulations, I wanted to evaluate how different routing algorithms

(heuristics) perform under flexible advance reservations. The flexibility of starting time of

reservations is 1 unit in simulations. I compared the three routing algorithms: Fixed Routing

(FR), Alternate Fixed Routing (AFR), and Least Load Path Routing (LLP). LLP is one form of

adaptive routing. In most prior RWA research in which flexibility is not considered, adaptive

 58

routing showed superior performance to FR and AFR routing. However, from the simulation

results in Figure 5-4, we can see the Alternate Fixed Routing (AFR) algorithm has the best

performance and the Fixed Routing (FR) has the worst. The flexible advance reservation

introduces a new temporal dimension into the resource allocation. The resource availability

information is a three dimensional matrix of hop, wavelength and time slot. The reserved units

scatter within this three dimensional matrix. The uncertainty of time parameters makes it

difficult to filter out useful resource status and feed it back to the routing algorithm. This is

why the LLP routing algorithm cannot perform well by just calculating average utilization of

each wavelength within the reservation time window.

Blocking Rate vs. Network Load

0.01

0.1

1

10

100

0 10 20 30 40 50 60 70 80 90

Network Load (Erlang)

B
lo

ck
in

g
R
at

e
(%

)

FR

AFR

LLP

Figure 5-4. Blocking Rate of Different Routing Algorithms.

When Flexibility of Advance Reservations is 1T, the blocking rate of three routing algorithms: Fixed
Routing (FR), Alternate Fixed Routing (AFR), and Least Load Path Routing (LLP) are compared. We
can see the AFR algorithm has the best performance and FR has the worst.

 59

5.3 Impact of Advance Reservations on Immediate Reservations

Certain extemporaneous activities can not or need not be planned ahead. As such our

system should be able to take immediate reservations as well. There are three ways to share

the wavelength resources between AR and IR requests: full sharing, partial sharing and strict

partitioning.

0
5

10
15

20
25
30
35
40
45

50
55
60

500 1000 1500 2000 2500 3000

number of requests

bl
oc

ki
ng

 ra
te

Partition-IR

Partition-AR

Share-IR

Share-AR

Figure 5-5. Comparison of Wavelength Sharing between ARs and IRs

I consider two situations: all AR and IR requests share all eight wavelengths (Share), or AR requests use
four wavelengths and IR requests use the other four wavelengths (Partition). From this Figure, we can
see that the Share case has much lower blocking rate than the Partition case. When the number of
request is 3000, the blocking rate is 58% for strict-partitioning and only 21% for full-sharing case. The
blocking rate of Share-AR is almost zero because it has time advantage over Share-IR.

 60

In this simulation, there are eight wavelengths in the WDM network. I consider two

situations: all AR and IR requests share all eight wavelengths (Share), or AR requests use four

wavelengths and IR requests use the other four wavelengths (Partition). All AR and IR

requests have independent identically-distributed Poisson distribution and occupy 50% of the

entire load respectively. From Figure 5-5, we can see that the Share case has much lower

blocking rate than the Partition case. When the number of request is 3000, the blocking rate is

58% for strict-partitioning and only 21% for full-sharing case. The blocking rate of Share-AR is

almost zero because it has time advantage over Share-IR.

5.4 The Dropping Problem and IR Admission Control

Even though sharing brings about greater blocking rate performance, it also introduces a

new problem: IR dropping. An admitted IR request may be dropped when the IR request

conflicts with a reserved AR request. High and unpredictable dropping degrades the service

satisfaction dramatically. I have two means to improve the user experience. Firstly, I could

introduce one more parameter for IR requests: Minimum Duration (MD). The IR admission

control algorithm will scan the future time slots to make sure the needed resources of this IR

request are vacant within the Minimum Duration. Another measure is to notify the user when

he/she is possible to be dropped in advance. When the IR request is admitted, I can continue

search the future time slot table to find the next conflict point. After the conflicting point, when

 61

the AR customer claims the AR request, the conflicting IR request will be dropped out after a

short period. During the short period, the IR user can have time to gracefully stop his/her

application. I can imagine that if I specifying a larger MD, the probability of blocking will be

increased. This is confirmed in the simulation results shown in Figure 5-6.

In this simulation, the IR profile is fixed. With an increase in AR load, the blocking rate of

IRs increases because more resources are pre-occupied by ARs. At the same time, the blocking

probability is higher if the user specifies higher Minimum Duration for IRs. The average

duration of IRs is 1800 seconds.

 62

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400 1600
number of ARs

bl
oc

ki
ng

 ra
te

MD=0

MD=180

MD=360

MD=900

MD=1800

MD=2700

Figure 5-6. Blocking Rate of IRs for Different Minimum Durations

In this simulation, the IR profile is fixed. With an increase in AR load, the blocking rate of IRs increases
because more resources are pre-occupied by ARs. At the same time, the blocking probability is higher if
the user specifies higher Minimum Duration for IRs. The average duration of IRs is 1800 seconds.

5.5 AR Admission Control

Since AR requests book reservations relatively far ahead, this gives AR requests priority

over IR requests. If there is no admission control for AR requests, it is possible that AR

requests occupy majority of the resources, which causes a high blocking rate of IR requests or

even starvation. In order to provide a certain level of service guarantees to IR requests, it is

necessary to put an upper limit on admitted AR requests. From an economic perspective, the

 63

charge of IR requests is usually more than AR requests. For example, the ticket fare is usually

less expensive if you book earlier in airline reservation systems. At the same time, there are

always some impromptu circumstances which cannot be anticipated. We need to keep this type

of resource requests from starving.

The method I employed is to reserve partial wavelengths for IR requests only. For example,

AR requests can only use the first five of the total eight wavelengths. From Figure 5-7, we can

see that the AR admission control brings down the blocking rate of IR requests from 82% to

34% when the number of requests is 3000, while it increases the blocking rate of AR requests

at the same time because of reduced available wavelength resources. Therefore I achieved a

much better balance between AR and IR requests. The percentage of resources specially left to

IR requests can be adjusted in run-time by the network administrator.

5.6 Summary

Through the simulation work, I found that the system performance can be improved

dramatically by introducing some flexibility on the time parameters of advance reservations.

IR minimum duration is necessary to have good Quality of Service and user experience. AR

admission control is necessary in order to maintain a well-balanced AR/IR mixed environment.

 64

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500 3000

number of AR requests

bl
oc

ki
ng

 ra
te

AR -woAC

IR-woAC

AR-w/AC

IR-w/AC

Figure 5-7. Effect of AR Admission Control

AR requests can only use the first five of the total eight wavelengths when admission control is employed.
From this Figure, we can see that the AR admission control brings down the blocking rate of IR requests
from 82% to 34% when the number of requests is 3000, while it increases the blocking rate of AR requests
at the same time because of reduced available wavelength resources.

 65

CHAPTER 6

IMPLEMENTATION OF AR/PIN-PDC

The AR-PIN/PDC (Advance Reservation enabled Photonic Inter-domain Negotiator and

Photonic Domain Controller) software provides the lightpath reservation and provision

services through a series of remote procedure calls. In order to accept diverse client types, I

implement these remote procedure calls as web services. As long as the client can generate

proper XML-based messages and send to the AR-PIN/PDC web services, the client code can be

written by Java, C/C++, Python, etc. I chose JBoss as the web service hosting software

because of its easy-to-use and stability. In this chapter, I will list all the interfaces that

AR-PIN/PDC provides. Then I will expose the internal of AR-PIN/PDC implementation by

describing the important data structures and how the algorithms described in Chapter ? are

implemented in the distributed environment. After that I will describe the database tables

and implementation. Finally I will briefly introduce JBoss software and the deployment of

AR-PIN/PDC.

6.1 Service Description of AR-PIN/PDC

AR-PIN/PDC software exposes the following web services:

 66

1. advanceReserveHH

Parameters:

String srcCluster, String srcNode, String srcNic,

String destCluster, String destNode, String destNic,

long start, long period, long minDuration, int criterion.

Return :

PDCReserveReturn

This function is used to reserve a lightpath between two end-points. The client needs to

specify two types of information. The first type is end-point information. These parameters

include the cluster name, node name and the name of the network interface card (NIC) of both

source and destination. Because I assume that all lightpaths are bidirectional in this thesis,

the source and destination are just names of two end-points. There is no difference to specify

an end as the source or the destination. The other type of parameters is time-related. They

include the time range defined by the start time and the period, the minimum duration and

the selection criterion. It is possible that the RWA algorithm finds that more than one solution

satisfy the user-specified request, the selection criterion is used to make the decision which

 67

solution should be chosen. For now the criterion includes only two options: the earliest or the

longest duration. This can be extended in the future. For example, some other options can be

the lightest-loaded path, the shortest path or the lowest cost path. This function returns a

PDCReserveReturn data structure. This data structure includes the following elements:

String reservationId: The reservation ID returned from the AR-PIN/PDC server. The

client needs this ID to claim or cancel the reservation later on. If the reservation is failed, the

returned ID will be null.

String srcAddr: The IP address of the source end-point. Applications will need IP

addresses of end-points to communicate to each other.

String destAddr: The IP address of the destination end-point.

long start: The start time of the reservation.

long end: The finish time of the reservation.

String message: In case the reservation is failed, this message will show what problem it

is.

2. advanceReserveSH

Parameters:

String srcSwitch, int srcPort,

 68

String destCluster, String destNode, String destNic,

long start, long period, long minD, int criterion.

Return:

PDCReserveReturn

This function only works in local domain. It is used to reserve a lightpath between a

photonic switch port and a computing end-point. The switch end is always defined as the

source end because the lightpath is not directional. The optical switch parameters include the

switch name and the port number. The time-related parameters and the returned data

structure are same as the advanceReserveHH function.

3. advanceReserveSS

Parameters:

String srcSwitch, int srcPort,

String destSwtich, int destPort,

long start, long period, long minD, int criterion.

Return:

PDCReserveReturn

 69

This function only works in local domain. It is used to reserve a lightpath between two

photonic switch ports. There is no difference between source and destination because the

lightpath is not directional. The optical switch parameters include the switch name and the

port number. The time-related parameters and the returned data structure are same as the

advanceReserveHH function.

4. claim

Parameter: String reservationId.

Return: int.

It is called to claim a reservation. The only parameter is the reservation ID. This function

should be called within the valid reservation time window. When this function is called, the

AR-PIN/PDC server tries to make proper cross connects of photonic switches to set up the

reserved lightpath. It returns 1 if the claim is successful and 0 if it’s failed.

5. unbind

 70

Parameter: String reservationId.

Return: int.

It is called to unbind a reservation during a reservation session. The only parameter is

the reservation ID. This function should be called within the valid reservation time window

and the reservation is in bound status. The server will first tear down the lightpath by

breaking the related cross connects, then change the reservation status to “reserved” in the

database. It returns 1 if the termination is successful and 0 if it’s failed

6. terminate

Parameter: String reservationId.

Return: int.

It is called to terminate a reservation. The only parameter is the reservation ID. If this

function is called before the reservation is claimed, the AR-PIN/PDC server just nulls the

reservation in the database without touching the photonic switches. If this function is called

when the reservation is in active status, the server will first tear down the lightpath by

breaking the related cross connects, then change the reservation status in the database. It

 71

returns 1 if the termination is successful and 0 if it’s failed

7. modify

Parameters: String reservationId, long start, long finish.

Return: PDCReserveReturn.

This function is used to modify existing reservations in the system. Claimed reservations

can not be modified. Therefore, the reservations have to be in “reserved” status. The user

needs to specify the original reservation ID, the new start time and finish time. The

AR-PIN/PDC will return a PDCReserveReturn data structure.

8. renew

Parameters: String reservationId, long period.

Return: PDCReserveReturn.

This function tries to renew active reservations. The reservations have to be in “claimed”

status. The user needs to specify the original reservation ID and the extra time he/she needs

 72

after the original finish time. The AR-PIN/PDC will return a PDCReserveReturn data

structure.

6.2 Data Structures

In this section, I will describe the important data classes defined in AR-PIN/PDC. All

these data classes have a corresponding table in database. Persistence is very important for

this kind of service providing software. When application is shut down for some unexpected

reasons such as power off or hardware failure, all the data and status can be easily restore

from database.

There is a paradigm mismatch between object-oriented classes and relational tables in

databases. People have spent significant time of effort to bridge the object/relational

paradigm mismatch. It is estimated that 30% of Java application code written is to handle

this problem. [Bauer04] Therefore, automated object/relational mapping is being researched

in the past years and Hibernate was emerged as the most promising solution. In AR-PIN/PDC,

I used Hibernate to map the following classes to the corresponding tables in MySQL database:

Cluster

The client-side end points are abstracted as clusters because beowulf clusters consisting

of commodity PCs are getting popular and becoming the mainstream platform of storage,

 73

computing and visualization.

int id: Unique ID of the cluster.

String name: Name of the cluster.

int domain: Domain ID to which the cluster belongs.

ClusterNode

A computer cluster usually consists of multiple computer nodes. Each computer node can

have one or more than one optical interface cards connecting to the photonic switches. This

class abstracts a pair of a cluster node and network interface card (NIC).

int id: Unique numeric ID of the cluster node.

int cluster: Cluster ID to which the node belongs.

String node: Name of the cluster node.

String nic: Name of the network interface card (NIC).

int switch: Switch ID to which the cluster node/NIC connects to.

int port: Switch port number to which the cluster node/NIC connects to.

String ipaddr: IP address of the cluster node/NIC.

 74

Figure 6-1. Class Diagram of Basic Data Structures in AR-PIN/PDC

 75

Domain

A domain is an independently managed network cloud exposing a set of ingress and

egress points and links with service specifications. In this thesis, each domain runs one

instance of AR-PIN/PDC server.

int id: Numeric ID of the domain. This ID is unique and consistent in all domains globally.

int local: Specify if this domain is a local domain.

String server: Name of the local AR-PIN/PDC server.

String organization: Name of the organization that runs this domain.

DomainRoute

For interdomain lightpath requests, the first step is to find the domain-level route.

DomainRoute class keeps this information. As far as how to generate this information, there

are several ways. It can be specified statically by administrators, or it can be computed

dynamically by some path computation algorithms such as Shortest-Path First, based on the

topology information received from other collaborative domains.

int id: ID of the domain-level route.

int srcDomain: Source domain ID.

int destDomain: Destination domain ID.

int hop: Number of domain-level hops. It equals to the number of all involved domains minus

 76

one.

String route: A string to express the domain-level route. The string consists of domain IDs and

border switch IDs listed alternatively and separated with commas, starting from the source

domain ID and ends with the destination domain ID. For example, in “1,A,2,B,3”. 1,2,3 are

domain IDs and A,B are border switches although they are actually numbers.

Lightpath

This class keeps the detail information of lightpaths. For intradomain lightpaths, the

end-to-end information of switches, ports and links is stored. For interdomain lightpaths, only

local information is stored, i.e., from ingress switch to egress switch.

int id: ID of the lightpath.

int wavelength: Wavelength ID of the lightpath.

String reservation: The reservation ID to which the lightpath belongs. One reservation can

have multiple lightpaths.

String switchList: A string to express the switch-level route. The string consists of switch IDs

ordered from the source/ingress switch to the destination/egress switch and separated with

commas.

String linkList: A string to express the switch-level route together with switchList. The string

consists of link IDs with the same order as switchList, separated by commas. The number of

 77

items in linkList should be that of switchList minus one.

String crsList: A string to express the ports on the switch-level route. The string consists of

incoming port and outgoing port of each switch on the route, with the same order as

switchList, separated by commas. The number of items in crsList should be as twice as that of

the switchList.

Reservation

Every advance reservation will have an instance of this class. The handler, sometimes I

call it reservation ID, is a unique String representing this reservation. For interdomain

reservation, a sub-reservation will be created for each foreign domain. In this system, I

specify absolute time using a milliseconds value represents the number of milliseconds that

have passed since January 1, 1970 00:00:00.000 GMT.

int id: Unique internal numeric ID.

String handler: A string to represent this reservation uniquely.

long early: The earliest time of the allowed time window for flexible advance reservations.

long late: The latest time of the allowed time window for flexible advance reservtions.

long md: The milliseconds value of minimal duration that the user requested.

long start: After the AR-PIN/PDC reserves the resource successfully, the flexible time window

will be fixed. This parameter is the start time of the fixed window.

 78

long end: The end time of the fixed window after reservation.

String parent: If this reservation is a child reservation of another interdomain reservation,

this parameter stores the handler of the parent reservation, otherwise it is null.

int parentDomain: If this reservation is a child reservation of another interdomain

reservation, this parameter stores the ID of the domain where the parent reservation is

located.

int interdomain: If this reservation is interdomain and it is the parent, this parameter is 1,

otherwise it is 0. Please note, for child reservations of interdomain, this is also 0.

String domainRoute: The domain-level route retrieved from the database.

String status: The status of the reservation. It could be

“reserved”: The reservation has been made successfully, but not claimed yet.

“claimed”: The reservation has been claimed successfully and the lightpaths are set up.

“terminated”: A “claimed” reservation is terminated before it expires.

“cancelled”: A “reserved” reservation is cancelled before it is claimed.

“expired”: A “claimed” reservation will be terminated by the system when the end time

arrives, after that the status becomes “expired”.

Subresv

For interdomain reservation, a sub-reservation will be created for each foreign domain.

 79

Each sub-reservation corresponds to a reservation in a remote domain.

int id: Numeric ID.

String handler: The handler of the parent reservation.

int domain: The ID of the remote domain.

String remoteHandler: The hander of the corresponding reservation in the remote domain.

String status: The status of the remote reservation.

Switch

This class abstracts physical photonic switches.

int id: Numeric ID.

String name: Unique name in String format.

int type: Currently AR-PIN/PDC supports three types of switches: 1 – Calient, 2 –

Glimmerglass, 3 – dummy.

int ports: Number of ports.

String address: IP address of the management interface.

int tl1port: The TL1 communication TCP port of the management interface.

String username: User name of TL1 management interface.

String password: Password of TL1 management interface.

 80

int border: This parameter specifies if this switch is a border switch.

SwitchPort

This class abstracts a port on a photonic switch.

int id: Numeric ID.

int switchId: The ID of the photonic switch to which the port belongs.

int inport: Together with outport, they specify the cross connect status. The inport specifies

which output port this input port connects to. 0 if not connected.

int outport: The outport specifies which inport port this outport port connects to. If the

connection is bidirectional, inport and outport should be in pair.

Link

This class represents the DWDM optical link connecting two photonic switches. It has no

direction.

int id: Numeric ID.

int switchA: ID of one of connecting photonic switches.

int switchB: ID of another of connecting photonic switches.

double distance: The physical distance between the two connected switches.

 81

Segment

A DWDM optical link consists of multiple wavelengths and connects two photonic

switches. The Segment class represents one wavelength within a link.

int id: Numeric ID.

int link: The ID of Link to which the segment belongs.

int wavelength: The wavelength ID.

int portA: The port number of the wavelength on the switcha in the corresponding Link.

int portB: The port number of the wavelength on the switchb in the corresponding Link.

Slot

This is the slot table of wavelengths. The slot table is three-dimensional, consisting of

link, wavelength and timeslot. The database only keeps the reserved units in the

three-dimensional space. Please note AR-PIN/PDC keeps two important constants. The first

constant is the time slot granularity SLOT_GRANULARITY. AR-PIN/PDC divides the

continuous time range into discrete time slots of fixed size. Thus, reservations can be made for

a number of consecutive slots. The slot granularity is defined by the duration covered by a

single slot. If the slot granularity is too small, the number of slots needed by a reservation will

be very large, which results in too many database operations. The other constant is the

largest number of time slots the system supports MAX_SLOT. If this number is too large, the

 82

AR-PIN/PDC server has to consume excessive memory and the database may be very large.

The product of SLOT_GRANULARITY and MAX_SLOT is the latest time when the finish

time of reservations can be set. For example, if SLOT_GRANULARITY is one minute, and

MAX_SLOT is 60*24*30 = 43200, it means that I can reserve wavelengths to as late as 30

days from now.

int id: Numeric ID.

int link: The ID of the link.

int wavelength: The ID of the wavelength.

long timeslot: The absolute slot number, i.e., the absolute time divided by

SLOT_GRANULARITY.

String reservation: The handler of the reservation to which the time slot belongs.

PortSlot

The main function of AR-PIN/PDC is manage end-to-end lightpaths. When I say

end-to-end lightpaths, that means from NIC to NIC. In other words, the lightpath not only

includes the wavelengths on the way and the switch ports where these wavelengths connect,

but also the switch ports where client NICs connect to. Therefore, these ports are also

resources clients need to reserve. PortSlot class manages the time slot of these switch ports.

This slot table is two-dimensional, consisting of switch port and time slot.

 83

int id: Numeric ID.

int switch: The numeric ID of the photonic switch to which the port belongs.

int port: The photonic switch port number.

long timeslot: The absolute slot number, i.e., the absolute time divided by

SLOT_GRANULARITY.

String reservation: The handler of the reservation to which the time slot belongs.

6.3 Two Web Service Modes: Synchronous and Asynchronous

6.3.1 Web Services

Why is the Internet so successful? An important reason is that it uses Internet Protocol

as the only protocol in Layer 3. Under IP, different data link protocols such as ATM, Ethernet

or PPP can be used to transport data; above IP, different applications such as web browsing,

email, file transfer or Voice or IP can be built upon. All these protocols speak the same

language – IP – so that they can understand each other and support each other and

conglomerate into a huge Internet society. I can say it is the IP that makes all data within the

Internet be able to talk to each other. The distributed applications have the same situation.

The diverse distributed systems need a common “language” to communicate to each other.

XML-based web services are believed to be a good candidate.

 84

Service Oriented Architecture (SOA) is a component-based architecture, it divides a

distributed application into a number of separate services that, individually, perform a

specific function, but when put together make up the components of a larger application. The

rational of SOA is not new. Component-based distributed systems have been around for years.

Three famous architectures are DCOM (Distributed Component Object Model), CORBA

(Common Object Request Broker Architecture) and Java/RMI (Remote Method Invocation).

DCOM is Microsoft specific, Java/RMI is Java specific, CORBA is both platform and language

independent, but its complexity and lack of security and versioning make it hard to be

accepted by the industry [Henning06]. XML-based Web service is a promising technology to

push SOA to a success.

The potential users of AR-PIN/PDC are the scientists from different fields such as

astronomy, biology, geographer, physics etc. The application and technologies they used are

very diverse. For example, their applications may use different operating systems, different

programming languages. What if their applications all want to reserve lightpaths, including a

wide range of legacy application? Obviously we should use a standardized way to provide the

lightpath service – XML-based web services.

In web service world, XML is the universal data format. This saves us a lot time and

effort to “marshalling” data for RPC calls among distributed systems because almost all

modern systems provides decent XML processing engine. However, use of XML-RPC was

 85

limited as SOAP (Simple Object Access Protocol) evolved rapidly and offered richer semantics

than XML-RPC.

There are two paradigms in terms of the remote method invocations among distributed

systems: RPC style and Message-Centric style. RPC is a good model for function-centric

invocations. It works well when I have clearly defined functions and associated parameters.

RPCs are typically associated with synchronous functional invocations and do not support

messaging semantics such assured delivery. In Message-Centric style, data is exchanged in a

prescribed message format that both the sender and the receiver can understand. This

programming model is often used for loosely coupled integration with messages and events

flowing back and forth. One of the strengths of the Message-Centric model is support for

asynchrous invocations.

6.3.2 Synchronous vs. Asynchronous Web Services

There are two principle architectures for Web Service interfaces: synchronous Web

Services and asynchronous Web Services. There two architectures are distinguished by their

request-response handling. With synchronous services, clients invoke a request on a service

and then suspend their processing while they wait for a response. With asynchronous services,

clients initiate a request to a service and then resume their processing without waiting for a

response. The service handles the client request and returns a response at some later point, at

 86

which time the client retrieves the response and proceeds with its processing.

Because the client suspends its own processing after making its service request,

synchronous services are best when the service can process the request in a small amount of

time or when applications require a more immediate response to a request. Web services that

reply on synchronous communication are usually RPC-oriented.

With asynchronous services, the client invokes the service but does not – or cannot – wait

for the response. Often, with these services, the client does not want to wait for the response

because it may take a significant amount of time for the service to process the request. The

client can continue with some other processing rather than wait for the response. Later, when

it does receive the response, it resumes whatever processing initiated the service request.

When I implemented AR-PIN/PDC software, I used both synchronous and asynchronous

communications. For some requests such as inter-domain reservation request, it takes long

time to run the probing process in parallel and then the reservation process domain by

domain. Therefore, asynchronous mode is more proper for clients because they do not wait for

the long time. For some requests such as reservation claim request, the client application may

want to wait for the response from the server to make sure the lightpaths have been set up,

then they can send data over the lightpaths. For some operations such as domain-by-domain

reservation, the synchronous mode will be extremely inefficient because the source domain

has to wait for the response from each domain before it can send reservation to the next

 87

domain. In the next two sections, I will take the Inter-domain reservation as an example to

compare different communication scenarios of synchronous and asynchronous mode.

6.3.3 Synchronous Mode Interdomain Reservation

In this scenario, all AR-PIN/PDC web services are provided in synchronous mode. In

another word, all web service calls are RPC based. When the client calls the local

AR-PIN/PDC server, it will be blocked to wait for the return from the local AR-PIN/PDC

server, i.e., to wait for the entire probing and reservation process to finish. During probing

process, the local AR-PIN/PDC server can not execute parallel probing in RPC mode unless it

creates new threads for every remote PIN peers. As shown in Figure 6-2, the local AR-PIN

server probes the remote AR-PIN1 server first, waits for the probing response, then probes

the remote AR-PIN2 server, etc. This is quite inefficient. During the reservation process, it

can not be implemented in domain-by-domain forward reservation style using RPC style web

services. It is the same as the probing process, the local AR-PIN server has to reserve each

remote domain in serial fashion.

 88

Figure 6-2. AR-PIN in Synchronous Web Service Mode

When the AR-PIN works in Synchronous mode, The local AR-PIN server can not execute parallel
probing in RPC mode. It has to probe the remote AR-PIN1 first, wait for the response, then probes the
remote AR-PIN2, etc. For the same reason, the reservation can not be implemented in forward
domain-by-domain style. The local AR-PIN server has to reserve each remote domain after it receives
the response from the previous domain.

6.3.4 Asynchronous Mode Interdomain Reservation

In Figure 6-3, I implemented all the communications between AR-PIN servers using

asynchronous web services. We can see that parallel probing can be achieved by sending

 89

probing messages to all remote domains. An advantage is that the local AR-PIN server doesn’t

have to be blocked and wait for the responses from remote servers, it can continue other

operations, for example, accepting next request from clients. The domain-level forward

reservation can also be easily implemented using message-based web services. One

requirement on this kind of message-centric web service invocation is that the application

server needs to ensure the robust delivery of messages.

For the interaction between the client and the local PIN-server, if the web service client

wants to receive asynchronous the response from the server, it needs to provide a callback

endpoint capable of receiving and processing response messages. It is possible for some

complicated client applications to include a light-weight message server or application server.

However, most time the client wants to avoid the message server and the complicated callback

mechanism, then a technique know as polling can be used as an alternative. This technique

requires the client to periodically call the server to check for the status.

 90

Figure 6-3. AR-PIN in Asynchronous Web Service Mode

When AR-PINs are implemented in asynchronous mode, the web services are fired by sending and
receiving messages between peers. In this mode, the parallel probing and domain-level forward
reservation can be implemented.

 91

6.4 AR-PIN/PDC Web Interface

Other than web services that the AR-PIN/PDC software provides, a web interface is also

written for interactively reserve lightpaths and view the reservation status. Figure 6-4 is the

main interface to reserve a lightpath. The user selects the source and destination cluster, node

and NIC, specifies the time range within which the reservation should be made, and the

minimum duration, then a reservation message will be sent to AR-PIN/PDC. After the

reservation is made successfully, the reservation ID and the endpoint IP addresses will be

returned and printed on screen. Figure 6-5 shows the interface that you can see the status of

all the reservations. Also it is the interface that you can claim and terminate a reservation.

 92

Figure 6-4. Lightpath Reservation WebInterface of AR-PIN/PDC.

The users need to select the cluster and node of the two endpoints, choose the reservation time range,

minimum duration, and hit the “Reserve” button. After the reservation is fulfilled by AR-PIN server
successfully, the reservation ID, IP addresses of endpoints will be returned and printed on the screen.

 93

Figure 6-5. Lightpath Status Viewing Interface of AR-PIN/PDC.

In View screen, all active reservations in the local AR-PIN will be listed. When users click a reservation,
a popup window showing the endpoint information will be brought up. On the window, users can click
buttons to claim or terminate reservations if they are in “reserve” status, cancel or unbind reservations
if they are in “claimed” status.

 94

CHAPTER 7

DEPLOYMENT AND EXPERIMENTS

The AR-PIN/PDC software has been deployed to four sites in different continents to

control four domains: University of Illinois at Chicago, Northwestern University, University

of California at San Diego, and University of Amsterdam. All four AR-PIN/PDC servers have

been set up to control real photonic switches to provide real lightpaths. In this chaptor, I will

describe the photonic testbed in detail. Then I will show some experiment results I have done

on this testbed. The objectives of the experiments are mainly two: one is to analyze the

different components of the end-to-end signaling latency and compare different algorithms;

the other goal is to find what are the major computational factors affecting the end-to-end

signaling latency.

7.1 Testbed Deployment

The muli-domain photonic testbed consists of four domains. Each domain has one

photonic switch. The detail of the four domains is listed in the table 7-1 and the topology of

the testbed is depicted in Figure 7-1. There are two types of 3D MEMS switches. One is

 95

Calient DiamandWave® PXC photonic switch, [Calient] the other type is manufactured by

Glimmerglass Networks. Other than the StarLight domain having a Calient switch, all three

domains contains a Glimmerglass switch. [Glimmerglass]

The AR-PIN/PDC servers are deployed on Jboss 4.0.4 application servers. JBoss is an

Domain ID AR-PIN/PDC server Organization Photonic Switch

1 iching.evl.uic.edu
Electronic Visualization Laboratory
University of Illinois at Chicago (EVL)

Glimmerglass

2 gjall.sl.startap.net
StarLight, downtown Chicago
Northwestern University (SL)

Calient

3 calit2-host8.optiputer.net
University of California at
San Diego (UCSD)

Glimmerglass

4 remrandt0.uva.netherlight.nl University of Amsterdam (UvA) Glimmerglass

Table 7-1 Detail of four domains in the photonic testbed.

Domain Cluster Name Node Name NIC Name

EVL yorda.evl.uic.edu node11-node16 nic1

EVL scylla.evl.uic.edu node11-node16 nic1

SL charybdis.sl.startap.net node1 nic1, nic2

SL atlas.sl.startap.net node1 nic1, nic2

UCSD cluster.ucsd.edu node1-node4 nic1

UvA rembrandt.uva.netherlight.nl Node3-node6 nic1

Table 7-2 Detail of computing clusters in the photonic testbed.

 96

Figure 7-1. AR-PIN/PDC Multi-domain Photonic Testbed Topology.

The muli-domain photonic testbed consists of four domains: EVL/UIC, StarLight at Chicago
downtown, UCSD and UvA. Each domain has one photonic switch. The detail of the four domains is
listed in the table 7-1 and the topology of the testbed is depicted in this Figure. There are two types of
3D MEMS switches. One is Calient DiamandWave® PXC photonic switch, the other type is
manufactured by Glimmerglass Networks. Other than the StarLight domain having a Calient switch,
all three domains contains a Glimmerglass switch. There are one or more computing clusters connected
to each photonic switch. One AR-PIN/PDC server is running on each domain.

GGN

GGN

GGN
calient

cluster

node 1-4

scylla node 11-16

yorda node 11-16

rembrandt node 3-6

charybdis

nic 1-2

atlas

nic 1-2

PIN/PDC

control plane

PIN/PDC

PIN/PDC

PIN/PDC

UCSD
EVL

StarLight

NetherLight

 97

open source Java EE-based application server implemented in Java. I chose JBoss application

server because it’s very stable, the services can be hot-deployed, and it provides robust Java

messaging service. All servers run Linux operating systems with 2.6.0 or above kernel version,

although they have different flavors such as SUSE, Debian or ROCK.

7.2 Experimental Results

As I mentioned in section 6.3, AR-PIN/PDC can be implemented in synchronous or

asynchronous mode. The asynchronous mode can be much more efficient and lower end-to-end

latency than the synchronous mode. The experiments performed in this section are based on

the asynchronous implementation. In section 7.2.1 and 7.2.2, I will measure different

components in the end-to-end latency of inter-domain reservation process and inter-domain

claim process repectively. In section 7.2.3, I will investigate how the time slot granularity

affects the computation time, in turn the end-to-end latency.

7.2.1 Components of Inter-domain Reservation Latency

The components of inter-domain reservation can be divided into two categories:

propagation time and processing time. Propagation time is the period from when the sending

server sends the control message to when the receiver receives the message. Actually it

 98

includes the time on wire and the marshalling/unmarshalling time. In Figure 6-3, I showed

the sequence diagram of inter-domain reservation process in asynchronous mode. I define the

components of end-to-end inter-domain reservation latency ordered by time as follows:

(1) Propagation time from the client to the local AR-PIN server tcs.

(2) Time to check domain-level path and prepare probing messages: tproc1.

(3) Propagation time of the probing message from the local AR-PIN server to the remote

AR-PIN server i during probing process : tp-prop-f[i].

(4) Probing time at remote AR-PIN server i : tprobing[i].

(5) Propagation time of the probe-response message from the remote AR-PIN server i to

the local server : tp-prop-b[i].

(6) Time to join all returned matrices and find the reservation solution, reserve the local

domain: tproc2.

(7) Propagation time of the reserve message from the AR-PIN server i-1 to next hop i :

tr-prop-f[i].

(8) Reservation time at remote AR-PIN server i : tresv[i].

(9) Propagation time of the reserve-response message from the destination AR-PIN

server to the source server : tr-prop-b.

(10) Propagation time from the local AR-PIN server to the client : tsc.

 99

Assume one domain-level route consisting of N domains (i=1 for the source domain and

i=N for the destination domain) including source and destination domains, the end-to-end

reservation delay can be expressed as follow:

scbproprfpropr

N

i
resvprocbproppprobingfproppproccsresv ttitittitititMaxttT +++++++++= −−−−

=
−−−− ∑])[][(])[][][(

2
21

 (7-1)

I did four sets of experiments to measure the components of end-to-end latency. They

differ in the domain-level path:

(1) EVL-SL

(2) EVL-UCSD

(3) EVL-UvA

(4) EVL-SL-UCSD-UvA

All AR-PIN/PDC servers run NTP protocol to have time synchronized during

measurements. I run 5 times on each case, and I took the average as results. The result is

shown in Table 7-4 and depicted as a diagram in Figure 7-2. Table 7-3 shows the round trip

time between each pair of AR-PIN/PDC servers.

Link EVL-SL EVL-UCSD EVL-UvA SL-UCSD SL-UvA UCSD-UvA

RRT(ms) 1.0 60.4 104.0 58.1 104.0 163.0

Table 7-3 The round trip time between each pair of AR-PIN/PDC servers

 100

ms EVL-SL EVL-UCSD EVL-UvA EVL-SL-UCSD-UvA

tcs 1281 1288 1292 1437

tproc1 135 74 73 215

MAX(tp-prop-f[i]) 31 572 910 967

MAX(tprobing[i]) 88 118 227 212

MAX(tp-prop-b[i]) 26 588 920 1031

tproc2 628 835 708 833

tr-prop-f[2] 39 772 1338 62

tresv[2] 226 205 220 212

tr-prop-f[3] N/A N/A N/A 867

tresv[3] N/A N/A N/A 361

tr-prop-f[4] N/A N/A N/A 1602

tresv[4] N/A N/A N/A 207

tr-prop-b 25 630 1211 1353

tsc 84 69 78 71

Table 7-4 Inter-domain reservation measurements

 101

Figure 7-2. Interdomain Reservation Signaling End-to-End Latency Analysis

The Figure shows the components of inter-domain reservation signaling latency. The four sets of
experiments run on EVL-SL, EVL-UCSD, EVL-UvA, and EVL-SL-UCSD-UvA lightpaths respectively.
The upward diagonal strip parts are propagation delay between AR-PINs, the downward diagonal strip
parts are propagation delay between client and AR-PIN server. The solid parts are processing delay.
From the Figure, the major delay is propagation delay. The propagation delay is proportional to Round
Trip Time between parties. The entire end-to-end delay divides into two parts: probing process and
reservation process. The probing process is parallel, therefore the four domain case has similar delay to
the two domain case. The reservation process is serial, therefore the four domain is much longer.

If I add tp-prop-f[i] and tp-prop-b[i] together, noted as tp-prop[i] the sum should have a relation

with the round trip time from the local server to the remote server trrt[i]. When I compare

these two sets of values in Table 7-5, I find that the actual value is much large than ping RTT

time. I guess that there are two factors. One is a close to constant marshalling and

Interdomain Reservation Signaling End-to-End Latency Analysis

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

EVL-SL EVL-UCSD EVL-UvA EVL-SL-
UCSD-UvA

m
s

sc
r-prop-b
resv[4]
r-prop-f[4]
resv[3]
r-prop-f[3]
resv[2]
r-prop-f[2]
proc2
MAX(p-prop-b)
MAX(probing)
MAX(p-prop-f)
proc1
cs

 102

unmarshalling time a. The other factor is that each message delivery needs multiple RTTs,

assuming b RTTs. The relation should be

][*][itbait rttpropp +=− (7-2)

If I try to fit the curve to the real experimental values, I get a=18.5, b=40ms, which

means each marshalling/unmarshalling takes about 20 ms and each message delivery in

JBoss takes about 9 round trip times.

Another phenomenon I noticed is that the tcs is very large for all four cases, the average is

about 1.3 seconds, I don’t know how to explain this yet. The only thing I can guess right now is

that JBoss application server takes significant time to load the enterprise Java beans.

Path tp-prop [i](ms) trrt[i] (ms)

EVL-SL 57 1

EVL-UCSD 1160 60.4

EVL-UvA 1998 104

Table 7-5 Comparison of actual and theoretical RTTs.

7.2.2 Components of Inter-domain Reservation Claim Latency

I define the components of end-to-end inter-domain reservation claim latency ordered by

time as follows:

(1) Propagation time from the client to the local AR-PIN server tcs.

(2) Propagation time of the claim message from the local AR-PIN server to the remote

 103

AR-PIN server i during probing process : tc-prop-f[i].

(3) Claiming time at remote AR-PIN server i : tclaiming[i].

(4) Propagation time of the claim-response message from the remote AR-PIN server i to

the local server : tc-prop-b[i].

(5) Propagation time from the local AR-PIN server to the client : tsc.

Assume one domain-level route consisting of N domains (i=1 for the source domain and

i=N for the destination domain) including source and destination domains, the end-to-end

reservation delay can be expressed as follow:

scbpropcgclaifpropccsclaim titititMaxtT ++++= −−−−])[][][(min (7-3)

I did the same set of experiments for the interdomain claiming process. The result is

shown in Table 7-6 and Figure 7-3.

People usually are not in hurry during reservation process while they hope claiming

process as short as possible, because the claiming process is often initiated by applications

such as remote visualization. They hope the lightpaths can be set up quickly and data can

start to flow on them early. I can see the parallel claim effectively shorten the end-to-end

latency comparing to the serial reservation process. Usually the end-to-end claim latency is

dominated by the slowest or the farthest optical switch. From Figure 7-3, we can see the

StarLight domain always has much faster response comparing to other domains. That’s

because Calient optical switches has much faster switching speed than Glimmerglass

 104

switches. Specifically, the Calient switches have about 500 ms switching time and the

Glimmerglass switches have about 1300 ms switching time. Both types of switches are

controlled by communicating TL1 commands over the management port. I was informed by

Glimmerglass engineers that they have C library which supports much faster switching than

TL1 interface. After preliminary experiments, I got very positive result on their C library. The

switching time can be reduced from 1300 ms over TL1 to 44 ms over C library. It is not trivial

work to incorporate the C library into the JBoss architecture. But this will be one of our

future work.

ms EVL-SL EVL-UCSD EVL-UvA EVL-SL-UCSD-UvA

tcs 182 182 182 263

tc-prop-f[1] 5 4 4 5

tclaiming[1] 1924 2029 2102 1943

tc-prop-b[1] 43 19 42 38

tc-prop-f[2] 45 N/A N/A 39

tclaiming[2] 330 N/A N/A 363

tc-prop-b[2] 33 N/A N/A 48

tc-prop-f[3] N/A 528 N/A 519

tclaiming[3] N/A 1303 N/A 1211

tc-prop-b[3] N/A 539 N/A 544

tc-prop-f[4] N/A N/A 1195 1234

tclaiming[4] N/A N/A 1047 1050

tc-prop-b[4] N/A N/A 912 954

tsc 80 79 79 80

Table 7-6 Inter-domain reservation claim measurements

 105

Interdomain C laim S ignaling Latency Analysis

0

500

1000

1500

2000

2500

3000

3500

4000

ms

Figure 7-3. Interdomain Reservation Claim Signaling End-to-End Latency Analysis

This Figure shows the components of inter-domain claim signaling latency. Apparently, the
dominant component is the parallel claim, which is the sum of the time during which the
photonic switches set up the cross connects and the propagation delay. The parallelism
effectively reduces the end-to-end delay. The claim time of StarLight is much shorter because
the calient switch responses much faster.

7.2.3 Effect of Time Slot Granularity

In section 4.4, I analyzed the computation complexity of different algorithms, and

mentioned that database access will be the most time-consuming part in the algorithms. The

database access complexity of pdc-probe() is O(h), in which h is the number of hops. The

database access complexity of pdc-reserve() is O(h*t), in which h is the number of hops and t is

S-C prop.

Parallel
Claims

C-S prop.

EVL-SL EVL-UCSD EVL-UvA EVL-SL-UCSD-UvA

 106

the number of time slots in the reservation window. Usually the number of hops won’t be large

in reality, but the number of time slots could be very large when the time slot granularity is

small. I ran a set of experiments to compare the time consumed by pdc-reserve() under

different time slot granularities. The result is shown in Figure 7-4. We can see that the

client-server propagation and the server-client propagation is pretty stable but the server

processing time is almost proportional to the time slot granularity. Specifically, when the slot

granularity is 1, i.e., one time slot is one minute, the server processing time is 0.36 seconds;

when the slot granularity is 60, i.e., one time slot is one second, the server processing time is

13.8 seconds. This result matches our earlier algorithm analysis pretty well. Therefore, I set a

maximum time slot granularity in AR-PIN/PDC to avoid the excess reservation time.

7.3 Summary

Through the experiments, I draw two main conclusions. Firstly, the parallelism in

reservation and claim processes effectively reduce the end-to-end signaling latency. Secondly,

the time slot granularity is the major factor affecting the computation time.

 107

Effect of Slot Granularity

0

2000

4000

6000

8000

10000

12000

14000

16000

0 10 20 30 40 50 60 70

Slot Granularity

m
ill

is
ec

on
ds

client-server propagation
server processing
server-client propagation

Figure 7-4. Effect of Time Slot Granularity on Reservation Processing Time

This Figure shows different latency components with the increasing of the time slot
granularity. The propagation parts are quite constant while the server processing time is
almost proportional to the time slot granularity. This conforms to the algorithm complexity
analysis before.

 108

CHAPTER 8

Reliable Blast UDP – an Advance Data Transmission Protocol over

Photonic Networks

With AR-PIN/PDC, high performance applications can have dedicated lightpaths with

multiple gigabits of bandwidth available. Full use of this bandwidth is the goal of new

generation of transport protocols. At the transport layer, there is already consensus among

network researchers that the current TCP implementations are not suitable for long distance

high performance bulk data transfer. Either TCP needs to be modified radically or new

transport protocols should be introduced. Reliable Blast UDP (RBUDP) was developed to fill

the gap. [He02]

8.1 The problem of Bulk Data Transfers

Even if networked applications could make Gigabit “lambda reservations,” it does not

however guarantee that they will be able to make full use of that bandwidth. This problem is

particularly evident when one attempts to perform large bulk data transfers over long

distance, high speed networks (often referred to as “long fat networks” or LFNs) [Stevens94].

 109

LFNs such as those between the US and Europe or Asia have extremely high round-trip

latencies (at best 120ms). This latency results in gross bandwidth under-utilization when

TCP is used for data delivery. This is because TCP’s windowing mechanism imposes a limit on

the amount of data it will send before it waits for an acknowledgement. The long delays that

occur over international networks means that TCP will spend an inordinate amount of time

waiting for acknowledgments, which in turn means that the client’s data transmission will

never reach the peak available capacity of the network. Traditionally this is “remedied” by

adjusting TCP’s window and buffer sizes to match the bandwidth * delay product (or capacity)

of the network. For example, for a 1Gbps connection between Chicago and Amsterdam, with

an average round trip time of 110ms, the capacity is 1024*0.11/8 = 14.1 Mbytes. Adjusting

TCP window size is problematic for several reasons: firstly, on some operating systems (such

as IRIX for the SGI,) the window size can only be modified by building a new version of the

kernel- hence this is not an operation a user-level application can invoke. Secondly, one needs

to know the current capacity of the network in order to set the window size correctly. The

current capacity varies with the amount of background traffic already on the network and the

path to the destination.

Several alternative solutions are possible. One solution is to provide TCP with better

estimates of the current capacity of a link. This is the approach of the WEB100 Consortium

[Web100]. The consortium is developing techniques to modify router operating systems to

 110

report available bandwidth over a network link. Furthermore they are modifying operating

systems kernels to allow better monitoring of TCP performance. Another solution is to use

striped (or parallel) TCP [Park00, Leigh01, Allcock01]. In parallel TCP, the payload is divided

into N partitions which are delivered over N TCP connections. Both Leigh (in CAVERNsoft)

and Allcock (in GridFTP) have shown that parallel TCP can provide throughput as high as

80% of a network’s available bandwidth, however its performance is unstable when excessive

numbers of sockets are used. Furthermore it is difficult to predict the correct number of

sockets to use.

In this research I take a more aggressive approach by using UDP augmented with

aggregated acknowledgments to provide a reliable bulk data transmission scheme. I call this

Reliable Blast UDP (RBUDP). A similar scheme called NetBLT was first proposed in 1985

(RFC969) by Clark et al [Clark87]. I extend Clark’s work by providing both analytical and

experimental results to show that RBUDP can provide the performance predictability that is

lacking in parallel TCP. Furthermore I will provide an equation similar to TCP’s

bandwidth*delay product to allow one to predict RBUDP performance. This prediction will be

useful in the future, for network resource reservation on the Grid.

It is important to remember that I intend aggressive protocols such as parallel TCP and

Reliable Blast UDP for high speed dedicated links or links over which quality of service is

available. I do not intend these protocols for use over the broader Internet.

 111

8.2 Reliable Blast UDP

Reliable Blast UDP has two goals. The first is to keep the network pipe as full as possible

during bulk data transfer. The second goal is to avoid TCP’s per-packet interaction so that

acknowledgments are not sent per window of transmitted data, but aggregated and delivered

at the end of a transmission phase. Figure 8-1 below illustrates the RBUDP data delivery

scheme. In the first data transmission phase (A to B in the figure), RBUDP sends the entire

payload at a user-specified sending rate using UDP datagrams. Since UDP is an unreliable

protocol, some datagrams may become lost due to congestion or an inability of the receiving

host from reading the packets rapidly enough. The receiver therefore must keep a tally of the

packets that are received in order to determine which packets must be retransmitted. At the

end of the bulk data transmission phase, the sender sends a DONE signal via TCP (C in the

figure) so that the receiver knows that no more UDP packets will arrive. The receiver

responds by sending an Acknowledgment consisting of a bitmap tally of the received packets

(D in the figure). The sender responds by resending the missing packets, and the process

repeats itself until no more packets need to be retransmitted.

 112

Sender Receiver

…

A

B C D

E F G

UDP data traffic

TCP signaling traffic

Figure 8-1. The Time Sequence Diagram of RBUDP

In RBUDP, the most important input parameter is the sending rate of the UDP blasts.

To minimize loss, the sending rate should not be larger than the bandwidth of the bottleneck

link (typically a router). Tools such as Iperf [Iperf] and netperf [Netperf] are typically used to

measure the bottleneck bandwidth. In theory if one could send data just below this rate,

data loss should be near zero. In practice however, other factors need to be considered. In our

first implementation of RBUDP, I chose a send rate of 5% less than the available network

bandwidth predicted by Iperf. Surprisingly this resulted in approximately 33% loss! After

further investigation I found that the problem was in the end host rather than the network.

Specifically, the receiver was not fast enough to keep up with the network while moving data

from the kernel buffer to application buffers. When I used a faster computer as the receiver,

 113

the loss rate decreased to less than 2%. The details of this experiment are further discussed

in Section 5.

The chief problem with using Iperf as a measure of possible throughput over a link is that

it does not take into account the fact that in a real application, data is not simply streamed to

a receiver and discarded. It has to be moved into main memory for the application to use. This

has motivated us to produce app_perf (a modified version of iperf) to take into account an

extra memory copy that most applications must perform. I can therefore use app_perf as a

more realistic bound for how well a transmission scheme should be able to reasonably obtain.

In the experiments detailed in Section 8.4, I however include both iperf and app_perf ’s

prediction of available bandwidth.

Three versions of RBUDP were developed:

1. RBUDP without scatter/gather optimization – this is a naïve implementation of

RBUDP where each incoming packet is examined (to determine where it should go in the

application’s memory buffer) and then moved there.

2. RBUDP with scatter/gather optimization – this implementation takes

advantage of the fact that most incoming packets are likely to arrive in order, and if

transmission rates are below the maximum throughput of the network, packets are

unlikely to be lost. The algorithm works by using readv() to directly move the data from

kernel memory to its predicted location in the application’s memory. After performing this

 114

readv() the packet header is examined to determine if it was placed in the correct location.

If it was not (either because it was an out-of-order packet, or an intermediate packet was

lost), then the packet is moved to the correct location in the user’s memory buffer.

3. “Fake” RBUDP – this implementation is the same as the scheme without the

scatter/gather optimization except the incoming data is never moved to application

memory. This was used to examine the overhead of the RBUDP protocol compared to raw

transmission of UDP packets via Iperf.

Experiments that compare these versions of the protocol, and an analytical model of

RBUDP, will be presented in Section 8.3 and 8.4 respectively.

8.3 Analytical Model for RBUDP

The purpose of developing an analytical model for RBUDP is two-fold. Firstly I wanted to

develop an equation similar to the “bandwidth * delay product” equation for TCP, to allow us

to predict RBUDP performance over a given network. Secondly I wanted to systematically

identify the factors that influenced the overall performance of RBUDP so that I can predict

how much benefit any potential enhancement in the RBUDP algorithm might provide.

First of all, all variables are defined as follows:

 Bachievable = achievable bandwidth

 Bsend = chosen send rate

 115

Stotal = total data size to send (ie payload)

Ttotal = total predicted send time

Tprop = propagation delay

TudpSendi = time to send UDP blast on ith iteration.

Nresend = number of times to resend (depends on loss%)

Tack = time to acknowledge a blast (at least 1 ACK is always needed)

Li = % packet loss on ith iteration

In our model I am attempting to predict the achievable bandwidth (Bachievable)of RBUDP:

total

total
achievable

T
SB = (8-1)

Following the RBUDP algorithm, I estimate Ttotal as:

()

())(*)1(

)(
resend

0

N

1i

propackresend

udpSendprop

udpSendprop

TTN

TT

TTT

i

total

+++

⎟
⎠

⎞
⎜
⎝

⎛
++

+=

∑
=

 (8-2)

In (8-2), the first term is the time to send the main payload, the second term is the time to

transmit missing packets, called Tresend, the last term is the time to send each

acknowledgement.

Specifically:

send

total
udpSend

B
ST =0

 116

send

udpSendi
udpSendi

B
SLT 1i −−

=
*1

send

ack
ack

B
ST =

8/⎟
⎠
⎞

⎜
⎝
⎛=

packet

total
ack

S
SS send

packet

total
ack B

S
ST /

*8
⎟
⎠
⎞

⎜
⎝
⎛=

Spacket = 1.5Kbytes

Consequently:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
+++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

⎟
⎠
⎞

⎜
⎝
⎛ +=

∑
=

− −

prop
sendpacket

total
resend

send

udpSendi
propresend

send

total
prop

T
BS

SN

B
SLTN

B
STT

i

total

**8
*)1(

)(
resend

1
N

1i

1

 (8-3)

Given this equation, let us consider two possible situations - one where no loss occurs,

and one where loss does occur. If no loss occurs, I can eliminate the middle term so that the

best achievable performance can be computed using:

⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ += prop

sendpacket

total

send

total
propbest T

BS
S

B
STT

**8

prop
sendpacket

total

send

total

total
best

T
BS

S
B
S

SB
2

**8
++

= (8-4)

In the denominator,
sendpacket

total

BS
S

**8 is very small compared to other factors and can

be omitted.

 117

I can then derive the ratio of Bbest and Bsend as:

total

sendsend

best

S
BRTTB

B
*1

1

+
= (8-5)

where:

 2*Tprop is RTT (Round Trip Time).

This ratio shows that in order to maximize throughput, I should strive to minimize

total

send

S
BRTT *

 by maximizing the size of the data I wish to deliver. For example, given Tprop for

Chicago to Amsterdam is 55ms, and Bsend is 600 Mbps, and if I wish to achieve a throughput of

90% of the sending rate, then the payload, Stotal needs to be at least 74.25 Megabytes.

In Section 8.4 (Figure 8-2) I will use equation 8-3 to compare the theoretical best rate Bbest

against experimental results, over a variety of send rates (Bsend).

Furthermore I will compare Bbest against experimental results with varying payload sizes

(Stotal) (Section 8.4, Figure 8-4).

Now let us turn to consider the situation where loss does occur. I will take a simplifying

assumption that a constant loss rate of L occurs at every pass of the algorithm. I realize that

in a real network subsequent losses in the retransmit phases should be smaller, rather than

constant, because I will be retransmitting a significantly smaller payload at each iteration.

However to estimate that accurately would require us to develop a model for the buffer in the

intervening routers too. Hence I can take our simplifying assumption as a worst-case

 118

estimate.

So, given loss rate L, retransmits will occur until the amount of data left is less than 1

packet. Therefore the number of retransmits required can be estimated as:

⎣ ⎦)/(log totalpacketLresend SSN = (8-6)

The data size of all retransmits is therefore:

⎣ ⎦

L
LLSS

StotalSpacketL

totalresend −
−

=
1

)1(*
)/(log

 (8-7)

I can now plug (8-6) and (8-7) back into equation (8-3) to produce our new estimate of

Bachievable given constant loss rate L. In Section 8.4 (Figure 8-4) I will put this prediction to use

comparing an experimental situation where packet loss was observed.

8.4 Experimental Results

The testbed network consisted of an OC-48 link (2.5 Gbps) brought by SURFnet from

Amsterdam to the StarLight facility in Chicago. There was little-to-no traffic on the link

when the experiments were performed. Linux PCs were placed at each end of the link. The

specifications of each PC is shown in エラー! 参照元が見つかりません。 below. Wgsara (in

Amsterdam) was the slower PC, Charybdis (in Chicago) was the faster one. The network

bottleneck resides in the Gigabit Ethernet cards of host computers.

 119

Host Name CPU Memory Size
System

Bandwidth
wgsara2.phys.uu.nl

(Amsterdam)
Pentium III

800 MHz
512M Bytes 238 MBytes/s

charybdis.sl.startap.net
(Chicago)

XEON
1.8 GHz

512M Bytes 844 MBytes/s

Table 8-1 Specification of host PCs in the experimental testbed

In the first set of experiments, data was sent via RBUDP from the faster PC to the slower

PC (from Chicago to Amsterdam). In the second set of experiments data was sent in the

opposite direction. This allowed us to examine the performance of RBUDP when the

bottleneck was either at the processor or in the network. The result was compared against

predicted results from our analytical model. A third set of experiments examined RBUDP

throughput for different payload sizes.

8.4.1 From the Fast PC to the Slow PC (Chicago to Amsterdam) – when the

Bottleneck is in the Receiving Host Computer

In this experiment, Iperf measured maximum available bandwidth at 878 Mbps, and

app_perf measured maximum possible throughput at 643 Mbps. In Figure 8-2 I plot these

thresholds as lines across the top of the graph. Plotting the achieved throughput at various

sending rates for the fake and real RBUDP algorithms, I notice that at sending rates below

the network capacity, RBUDP performs well - i.e., RBUDP gives the application exactly what

the application asks for. I also notice that as the sending rates approach the capacity of the

 120

network, Fake RBUDP achieves almost the same throughput as Iperf, and the real RBUDP

begins to hurt in performance because the underpowered CPU is unable to keep up with

handling the incoming packets. However, as real RBUDP is able to match the maximum

performance of app_perf, this means that RBUDP is making as much use of the network for

useful data transfer as the CPU will allow. Finally, notice that there is a close match between

our experimental results and our prediction from equation 8-4 (which estimated RBUDP

performance when loss rate is zero.)

RBUDP performance (data size = 450 MB)

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200

Sending Rate (Mbps)

Th
ro

ug
ht

pu
t (

M
bp

s)

Fake RBUDP Real RBUDP iperf throughput
appperf throughput Best Theoretical Throughput

Figure 8-2. RBUDP throughput from Chicago to Amsterdam

Payload is 450MB. Bottleneck is in the receiving host. The lines indicating iperf and app_perf
throughput show the maximum performance when the tools are sending at the network’s full data rate.
App_perf is a more realistic indication of the rate at which an application can absorb incoming data
packets as it takes into account the additional overhead involved in most applications that need to take
the data off the network and use it.

 121

8.4.2 From the Slow PC to the Fast PC (Amsterdam to Chicago) – when the

Bottleneck is in the Sending Host Computer

I repeated the experiment in the opposite direction. This time the bottleneck was in the

sending PC rather than in the receiving PC. Figure 8-3 shows that when the host computer is

fast enough, iperf and app_perf performances match, as do the different implementations of

RBUDP. Fake RBUDP is able to reach the maximum performance obtained by iperf; and Real

RBUDP is able to reach the maximum performance obtained by app_perf- again confirming

RBUDP’s ability to maximize bandwidth utilization for useful data delivery.

RBUDP performance (data size = 450 MB)

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900 1000

Sending Rate (Mbps)

Th
ro

ug
ht

pu
t (

M
bp

s)

Fake RBUDP Real RBUDP iperf throughput appperf throughput

Figure 8-3. RBUDP throughput from Amsterdam to Chicago

Payload is 450MB. Bottleneck is in the sending host. The maximum of the sending rate is 725Mbps.
See Figure 8-2 for an explanation of the iperf and app_perf lines in the graph.

 122

8.4.3 Effect of Payload Size on Throughput

From the analysis in Section 8.3, I know that the propagation time is the primary factor

affecting RBUDP overhead. For smaller payloads, the time spent in the acknowledgement

phase is almost constant while the time spent blasting UDP packets decreases. In Figure 8-4 I

compare an experimental situation where I send data at 611Mbps (experiencing no loss)

against our theoretical prediction, which assumes no loss (equation 8-3.) Furthermore I

compare an experimental situation sending data at 682Mbps experiencing 12% loss, against

our theoretical prediction where I assume a constant 12% loss per iteration.

Firstly, the results show that RBUDP performs best for large payloads. Secondly, the

results show that a 12% packet loss does not impact throughput greatly for large payloads.

Finally, our analytical models provide good boundaries for our experimental results for 0%

loss and 12% loss.

 123

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Stotal (Payload size MB)

B
an

dw
id

th
 (M

bp
s)

Theoretical BW when sending rate
is 611 Mbps
Theoretical BW when sending rate
is 682 Mbps
Actual BW when sending rate is
611 Mbps
Actual BW when sending rate is
682 Mbps

Figure 8-4. Throughput vs. Payload Size.

Larger payloads produce better network utilization

8.4.4 Adapting RBUDP for High Speed Data Streaming

Even though the initial motivation of RBUDP is for bulk data transfer over long distance,

some applications require high performance reliable streaming transport. In Section 8.3, I

showed that in order to achieve fairly high throughput, the payload needs to be large. In

streaming applications, if the size of objects to be streamed is small, I combine multiple objects

to form a large payload. However this will cause end-to-end latency to increase because of the

buffering needed to form the large payloads. Based on our analytical model, I can determine

the minimum sending rate needed to ensure a desired object throughput rate, given the

maximum delay the application is able to tolerate.

 124

Let:

Sobj = size of streamed objects.

Nobj = number of objects per payload.

Bobj = required throughput of objects. (number of objects per second)

For example, in the case of graphics streaming, object throughput rate is measured in

frames per second.

D = the maximum extra delay the applcation can tolerate.

Then the size of a payload is:

objobjtotal NSS *= (8-8)

where:

DBN objobj *= (8-9)

The required raw bandwidth is:

objobjbest SBB *= (8-10)

Assuming we are operating over an over-provisioned network, we plug (8-8), (8-9) and

(8-10) back in equation (8-5) to compute the rate at which RBUDP needs to send data to

achieve the application’s requested throughput:

D
RTT

BS
B objobj

Send

−
=

1

*
 (8-11)

 125

Hence, using a graphics streaming application as an example: given that RTT is 100ms,

Sobj is 800*600*3, (assuming image resolution of 800x600 and 3 bytes color information for

each pixel), if I want to achieve a frame rate Bobj of 20 frames/second, the maximum extra

delay introduced will be 0.5 seconds, the sending rate needs to be at least 288 Mbps and each

payload must encapsulate 10 image frames. RBUDP was deployed as an important

component in software Quanta. [He03] During IGrid 2002, Luc Renambot applied Quanta’s

RBUDP to a parallel graphics streaming application called Griz. Using our analytical model

and the parameters from the above example, I was able to predict the number of animation

frames that Griz had to package into a single payload to achieve full utilization of the

Amsterdam-Chicago Starlight link [Renambot02].

8.5 Conclusions

RBUDP is a very aggressive protocol designed for dedicated- or QoS-enabled high

bandwidth networks (such as our aforementioned DiffServ and IP-over-DWDM testbeds). It

eliminates TCP’s slow-start and congestion control mechanisms, and aggregates

acknowledgments so that the full bandwidth of a link is used for pure data delivery. For large

bulk transfers, RBUDP can provide delivery at precise, user-specified sending rates. RBUDP

performs at its best for large payloads rather than smaller ones, because with smaller

payloads the time to deliver the payload approaches the time to acknowledge the payload. The

 126

scatter-gather algorithm to reduce memory copies, provides better performance over the

non-scatter-gather algorithm for slower CPUs when the loss rate is not very high. This benefit

is expected to increase for faster networks.

I have provided an analytical model that provides a good prediction of RBUDP

performance. This prediction can be used as a rule of thumb in a manner similar to the

bandwidth * delay product for TCP. Furthermore this prediction can be used to estimate how

future ideas for improving the algorithm might impact RBUDP performance.

 127

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In order for data-intensive distributed applications to function efficiently, they need to be

able to reserve enough bandwidth, through the allocation of lightpaths. This dissertation

addresses the problem of efficient scheduling of lightpaths between Grid clusters. Specifically,

this dissertation seeks approaches of application-driven intra-domain and inter-domain layer 1

lightpath provisioning, with the capability of advance reservation. In this dissertation, I

proposed a Flexible Advance Reservation Model (FARM) and described how to apply this

model to inter-domain and intra-domain lightpath reservation problem by incorporating

Routing and Wavelength Assignment algorithms. Through simulations, I found that the

flexibility on time parameters of advance reservation requests can improve the system

performance dramatically. And in order to maintain a well-balanced AR/IR mixed environment,

both ARs and IRs need admission control. AR-PIN/PDC (Advance Reservation enabled

Photonic Inter-domain Negotiator and Photonic Domain Controller) is an implementation of

my design and algorithms. I deployed AR-PIN/PDC in four domains internationally. Over the

testbed, some experiments were performed to measure the components of end-to-end signaling

 128

latency. I found that the parallelism can reduce the latency effectively and the major factor

affecting the computation time is the time slot granularity.

9.1 Contributions

Through the design and implementation of AR-PIN/PDC, I recognized and addressed

numerous research problems in the control plane and data plane of optical networking.

Specifically, this dissertation makes the following contributions.

 I created a Flexible Advance Reservation Model (FARM), applied this model to

Routing and Wavelength Assignment (RWA), and designed algorithms to achieve

interdomain and intradomain lightpath advance reservation. A peer-to-peer based

publish/subscription topology model is used to avoid huge amount of state flooding.

The On-Demand Parallel Probe algorithm renders the periodic dissemination of

time-based resource availability information unnecessary and hence makes the

system more scalable.

 Through simulations, I found that by introducing some flexibility on the time

parameters of advance reservations, the network performance can be improved

dramatically. Also it is confirmed that both Advance Reservation (AR) and Immediate

 129

Reservation (IR) admission control are necessary in order to maintain a well-balanced

AR/IR mixed environment.

 I implemented the fore-mentioned algorithms in the software AR-PIN/PDC. As a set

of services, AR-PIN/PDC can be easily deployed in JBoss application server. Because

it provides standard web service interfaces, writing clients is very easy in most

platforms and environments.

 I deployed AR-PIN/PDC in four domains in US and Europe, making scheduling

cross-continent lightpaths possible. In this testbed, I measured and analyzed the

components in the end-to-end lightpath reservation and claim, and proved the

parallelism of probing and claiming effectively reduces the delay, and the time slot

granularity is the major factor affecting the computation time.

 Reliable Blast UDP (RBUDP) protocol was designed and implemented. This protocol

is a very aggressive protocol designed for dedicated or QoS-enabled high bandwidth

networks such as optical networks. For large bulk transfers, RBUDP can provide

delivery at precise, user-specified sending rates. I provided an analytical model that

provides a good prediction of RBUDP performance.

 130

9.2 Future Work

This dissertation aims to let application reserve and set up layer 1 lightpaths on demand.

However, in layered network model, application is layer 7 and lightpath is layer 1. In order for

applications to utilize the layer 1 ligthpaths smoothly and effectively, a lot of work needs to be

done from layer 2 to 6. For example, typical LambdaGrid applications have hundrends to

thousands of parallel flows with different Quality of Service requirements. These flows

emanate from network interfaces in the endpoints (i.e. the compute clusters) to communicate

with other endpoints over multiple lightpaths. It is a challenging research problem how to

multiplex and optimize m flows into n lightpaths (m>>n).

Based on functionalities, the communication network can be divided into data plane,

control plane and management plane. This dissertation addresses how to set up lightpath in

control plane and how to transmit bulk data over data plane. However, the management plane

is also important, especially the monitoring function. The applications always want to know

when the network resource is ready to use and be notified if fault occurs. The monitoring can

occur in multiple layers. For example, optical layer monitoring detects the health of lightpaths;

IP layer monitoring decides if the end-to-end connections can be established; transport layer

monitoring judges how much bandwidth is available for applications to use.

 131

REFERENCES

[Allcock01] W. Allcock, J. Bester, J. Bresnahan, et al., “Data Management and Transfer in
High-Performance Computational Grid Environments,” Parallel Computing, 2001.

[Ashwood03] P. Ashwood-Smith, L. Berger, “Generalized Multi-Protocol Label Switching
(GMPLS) Signaling Constraint-based Routed Label Distribution Protocol (CR-LDP)
Extensions”, IETF RFC 3472, January 2003.

[Bauer04] Christian Bauer, Gavin King, Hibernate in Action, Manning Publication, 2004.

[Berger03] L. Berger, “Generalized Multi-Protocol Label Switching (GMPLS) Signaling
Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions”, IETF RFC 3473,
January 2003.

[Boutaba04] Raouf Boutaba, Wojciech Golab, Youssef Iraqi, and Bill St. Arnaud, “Lightpaths
on Demand: A Web-Services-Based Management System”, IEEE Communications magazine,
July 2004, pp 2-9.

[Burchard03] Lars-Olof Burchard, Hans-Ulrich Heiss, Cesar A. F. De Rose, “Performance
Issues of Bandwidth Reservations for Grid Computing”, Proc. Of the 15th Sym. On Computer
Architecture and High Performance Computing (SBAC-PAD’03), 2003.

[Calient] http://www.calient.net

[Chu04] Xiaowen Chu, Jiangchuan Liu, Zhensheng Zhang, “Analysis of Sparse-Partial
Wavelength Conversion in Wavelength-Routed WDM Networks”, IEEE INFOCOM 04,
Hongkong, March, 2004.

[Clark87] D. Clark, M. Lambert, L., Zhang, “NETBLT: A High Throughput Transport
Protocol,” ACM SIGCOMM, 1987.

[Cormen01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
“Introduction to Algorithms,” Second Edition, The MIT Press, 2001.

 132

[Curti05] C Curti, T Ferrari, L Gommans, S Van Oudenaarde, et al, “On advance reservation
of heterogeneous network paths”, Future Generation Computer Systems, Vol. 21, No. 4, Page
525-538, Apr. 2005.

[DeFanti03] T. DeFanti, M. Brown, J. Leigh, O. Yu, E. He, J. Mambretti, D. Lillethun, J.
Weinberger, “Optical Switching Middleware for the OptIPuter,” IEICE Transactions on
Communications, invited paper in special issue on Photonic IP Network Technologies for Next
Generation Broadband Access. Vol. E86-B, No. 8, pp. 2263.

[DeLaat03] Cees de Laat, E. Radius, and S. Wallace, “The Rationale of the Current Optical
Networking Initiatives,” Future Generation Computer Systems, Special Issue: iGrid 2002, Vol.
19, Page 999-1008.

[Foster99] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, A. Roy, “A Distributed
Resource Management Architecture that Supports Advance Reservations and Co-Allocation”,
International Workshop on Quality of Service, 1999.

[Foster01] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” International J. Supercomputer Applications, 15(3), 2001.

[Francisco01] M. Francisco, S. Simpson, L. Pezoulas, C. Huang, I. Lambadaris, and B. St.
Arnaud, “Interdomain Routing In Optical Networks,” Proceedings of SPIE Opticomm 2001,
Denver, Aug. 2001.

[GLIF] http://www.glif.is.

[Glimmerglass] http://www.glimmerglass.com

[Gommans06] Leon Gommans, Freek Dijkstra, Cees de Laat, Arie Taal, Alfred Wan,
Universiteit van Amsterdam, Bas van Oudenaarde, Tal Lavian, Inder Monga, Franco
Travostino, “Applications Drive Secure Lightpath Creation across Heterogeneous Domains”,
IEEE Communications Magazine, vol. 44, no. 3, March 2006.

 133

[Greenberg99] AG Greenberg, R Srikant, W Whitt, “Resource sharing for book-ahead and
instantaneous-request calls”, IEEE/ACM Transactions on Networking, Vol. 7, No. 1, Feb 1999.

[Guerin00] R Guerin, A Orda, “Networks with Advance Reservations: The Routing
Perspective”, IEEE INFOCOM 2000, Tel-Aviv, Israel, March 26-30, 2000.

[He02] Eric He, Jason Leigh, Oliver Yu, Thomas A. DeFanti, “Reliable Blast UDP: Predictable
High Performance Bulk Data Transfer,” Proceedings of IEEE Cluster Computing 2002,
Chicago, September 24-26, 2002.

[He03] Eric He, Javid Alimohideen, Joshua Eliason, Naveen Krishnaprasad, Jason Leigh,
Oliver Yu, Thomas A. DeFanti, “Quanta: A Toolkit for High Performance Data Delivery over
Photonic Networks,” Journal of Future Generation Computer Systems (FGCS), Elsevier
Science Press, Volume 19, Issue 6, August 2003, pp. 919-934.

[Henning06] Michi Henning, “The Rise and Fall of CORBA,” ACM Queue, Vol. 4, No. 5, June
2006.

[Iperf] http://dast.nlanr.net/Projects/Iperf/

[Jukan04] Admela Jukan and Gerald Franzl, “Path Selection Methods With Multiple
Constraints in Service-Guaranteed WDM Networks,” IEEE/ACM Transactions on
Networking, Vol. 12, No. 1, Feb. 2004.

[Kompella05] K. Kompella, Y. Rekhter, “Routing Extensions in Support of Generalized
Multi-Protocol Label Switching (GMPLS)”, IETF RFC 4202, October 2005.

[Lang05] J. Lang, “Link Management Protocol (LMP)”, IETF RFC 4204, October 2005.

[Lehman06] Thomas Lehman, Jerry Sobieski, Bijan Jabbari, “RAGON: A Framework for
Service Provision in Heterogeneous Grid Networks,”IEEE Communications Magazine, vol. 44,
no. 3, March 2006.

[Leigh01] J. Leigh, O. Yu, D. Schonfeld, R. Ansari, et al., “Adaptive Networking for
Tele-Immersion,” Proc. Immersive Projection Technology/Eurographics Virtual Environments
Workshop (IPT/EGVE), May 16-18, Stuttgart, Germany, 2001.

 134

[Mambretti03] Mambretti, J., Weinberger, J., Chen, J., Bacon, E., Yeh, F., Lillethun, D.,
Grossman, B., Gu, Y., and Mazzucco, “The Photonic TeraStream: enabling next generation
applications through intelligent optical networking at iGRID2002”, Future Gener. Comput.
Syst. 19, 6 (Aug. 2003), 897-908.

[Manbretti06] Joe Mambretti, David Lillethun, John Lange, Jeremy Weinberger, “Optical
Dynamic Intelligent Network Services (ODIN): An Experimental Control-Plane Architecture
for High-Performance Distributed Environments Based on Dynamic Lightpath Provision,”
IEEE Communications Magazine, vol. 44, no. 3, March 2006

[Messina04] P. Messina, “Challenges of the LHC: The computing challenge,” The European
Physical Journal C – Particles and Fields, Springer Berlin/Heidelberg, Vol. 34, No. 1, May,
2004, Page 67-75.

[Mokhtar98] Ahmed Mokhtar, Murat Azizoglu, “Adaptive Wavelength Routing in All-Optical
Networks”, IEEE/ACM Trans. Networking, Vol. 6, No. 2, pp. 197-206, April, 1998.

[Netperf] http://netperf.org/netperf/NetperfPage.html

[Newman03] Harvey B. Newman, Mark H. Ellison, John A. Orcutt, “Data-Intensive E-Science
Frontier Research,” Communications of the ACM, Special Issue: Blueprint for the future of
high-performance networking, Vol. 46, No. 11, 2003, Page 68-77.

[Oudenaarde05] S Van Oudenaarde, Z Hendrikse, F Dijkstra, L. Gommans, C. de Laat, R.
Meijer, “Dynamic paths in multi-domain optical networks for grids,” Future Generation
Computer Systems, Vol. 21, No. 4, Page 539-548, Apr. 2005.

[Park00] K. Park, Y. Cho, N. Krishnaprasad, C. Scharver, M. Lewis, J. Leigh, A. Johnson,
“CAVERNsoft G2: A Toolkit for High Performance Tele-Immersive Collaboration,”
Proceedings of the ACM Symposium on Virtual Reality Software and Technology 2000,
October 22-25, 2000, Seoul, Korea, pp. 8-15

[Renambot02] L. Renambot, T. V. D. Schaaf, H. E. Bal, D. Germans, H. J. W. Spoelder, “Griz:
Experience with Remote Visualization Over Optical Grids,” Proc. IGrid 2002, Oct, 2002.

 135

[Renambot04] L. Renambot, et al., “SAGE: the Scalable Adaptive Graphics Environment,”
Proceeding of WACE 2004, Sep. 23-24, 2004.

[Smarr03] Larry L. Smarr, Andrew A. Chien, Tom DeFanti, Jason Leigh, Philip M.
Papadopoulos, “The OptIPuter”, Communications of the ACM, Volume 46, Number 11 (2003),
Pages 58-67.

[Snell00] Quinn Snell, Mark Clement, David Jackson, Chad Gragory, “The Performance
Impact of Advance Reservation Meta-Scheduling”, IPDPS 2000 Workshop, JSSPP 2000,
Cancun, Mexico, May 2000.

[Stevens94] W. R. Stevens, “TCP/IP Illustrated,” vol. 1: Addison Wesley, 1994, pp. 344-350.

[Wang06] X. Wang, V. Vishwanath, B. Jeong, R. Jagodic, E. He, L. Renambot, A. Johnson, J.
Leigh, “LambdaBridge: A Scable Architecture for Future Generation Terabit Applications,”
Broadnets 2006 – Third International Conference on Broadband Communications, Networks,
and Systems, San Jose, CA, Oct. 2006.

[Yang04] Xi Yang, Byrav Ramamurthy, “Interdomain Dynamic Wavelength Routing in the
Next-Generation Translucent Optical Internet”, OSA Journal of Optical Networking, Vol. 3,
No. 3, Mar. 2004.

[Yang05] X. Yang and B. Ramamurthy, “Sparse Regeneration in Translucent
Wavelength-Routed Optical Networks: Architecture, Network Design and Wavelength
Routing,” Springer Journal of Photonic Network Communications, pp. 39-53, July 2005.

[Yang06] Xi Yang, Tom Lehman, Chris Tracy, Jerry Sobieski, Payam Torab, Shujia Gong,
Bijan Jabbari, “Policy-Based Resource Management and Service Provision in GMPLS
Networks”, Adaptive Policy-Based Management workshop, Barcelona, Spain, April 28, 2006.

[Yu04] O. T. Yu, T. A. DeFanti, “Collaborative User-Centric Lambda-Grid over
Wavelength-Routed Network,” In Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing, Nov 06 - 12, 2004, Washington, DC.

 136

[Veeraraghavan03] M Veeraraghavan, X Zheng, H Lee, M Gardner, W Feng, “CHEETAH:
Circuit-switched High-speed End-to-End Transport ArcHitecture”, Proc. of Opticomm 2003,
2003.

[Veeraraghavan06] Malathi Veeraraghavan, Xuan Zheng, Zhanxiang Huang, "On the Use of
Connection-Oriented Networks to Support Grid Computing", IEEE Communications Magazine,
vol. 44, no. 3, March 2006.

[Web100] http://www.web100.org

[Weissman98] J.B. Weissman, “Metascheduling: A Scheduling Model for Metacomputing
Systems,” page 348, Seventh IEEE International Symposium on High Performance
Distributed Computing (HPDC-7 '98), 1998.

[Wu05] Jing Wu, Michel Savoie, Scott Campbell, Hanxi Zhang, Gregor V. Bochmann, Bill St.
Arnaud, “Customer-managed end-to-end lightpath provision”, International Journal of
Network Management, Vol. 15, No. 5, September 2005.

[Zang00] Hui Zang, Jason P. Jue, and Biswanath Mukherjee, “A review of routing and
wavelength assignment approaches for wavelength-routed optical WDM networks,” SPIE
Optical Networks Magazine, vol. 1, no. 1, Jan. 2000.

[Zheng02] Jun Zheng and Hussein T. Mouftah, “Routing and Wavelength Assignment for
Advance Reservation in Wavelength-Routed WDM Optical Networks”, IEEE International
Conference on Communications (ICC), 2002.

 137

APPENDIX A

AR/PIN-PDC WSDL FILE

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="PDCService" targetNamespace="http://localhost:8080/pdc-ws"

xmlns:tns="http://localhost:8080/pdc-ws" xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:ns2="http://localhost:8080/pdc-ws/types" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

 <types>

 <schema targetNamespace="http://localhost:8080/pdc-ws/types" xmlns:tns="http://localhost:8080/pdc-ws/types"

xmlns:soap11-enc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns="http://www.w3.org/2001/XMLSchema">

 <complexType name="PDCReserveReturn">

 <sequence>

 <element name="destAddr" type="string" nillable="true"/>

 <element name="finish" type="long"/>

 <element name="message" type="string" nillable="true"/>

 <element name="reservationId" type="string" nillable="true"/>

 <element name="srcAddr" type="string" nillable="true"/>

 <element name="start" type="long"/></sequence></complexType></schema></types>

 <message name="PDCEndpoint_advancereserveHH">

 <part name="String_1" type="xsd:string"/>

 <part name="String_2" type="xsd:string"/>

 <part name="String_3" type="xsd:string"/>

 <part name="String_4" type="xsd:string"/>

 <part name="String_5" type="xsd:string"/>

 <part name="String_6" type="xsd:string"/>

 <part name="long_7" type="xsd:long"/>

 <part name="long_8" type="xsd:long"/>

 <part name="long_9" type="xsd:long"/>

 <part name="int_10" type="xsd:int"/></message>

 <message name="PDCEndpoint_advancereserveHHResponse">

 138

 <part name="result" type="ns2:PDCReserveReturn"/></message>

 <message name="PDCEndpoint_breakPorts">

 <part name="int_1" type="xsd:int"/>

 <part name="int_2" type="xsd:int"/>

 <part name="int_3" type="xsd:int"/></message>

 <message name="PDCEndpoint_breakPortsResponse"/>

 <message name="PDCEndpoint_claim">

 <part name="String_1" type="xsd:string"/></message>

 <message name="PDCEndpoint_claimResponse">

 <part name="result" type="xsd:int"/></message>

 <message name="PDCEndpoint_connectPorts">

 <part name="int_1" type="xsd:int"/>

 <part name="int_2" type="xsd:int"/>

 <part name="int_3" type="xsd:int"/></message>

 <message name="PDCEndpoint_connectPortsResponse"/>

 <message name="PDCEndpoint_getHostName"/>

 <message name="PDCEndpoint_getHostNameResponse">

 <part name="result" type="xsd:string"/></message>

 <message name="PDCEndpoint_getNumberOfPorts">

 <part name="String_1" type="xsd:string"/></message>

 <message name="PDCEndpoint_getNumberOfPortsResponse">

 <part name="result" type="xsd:int"/></message>

 <message name="PDCEndpoint_getSwitchOutPort">

 <part name="int_1" type="xsd:int"/>

 <part name="int_2" type="xsd:int"/></message>

 <message name="PDCEndpoint_getSwitchOutPortResponse">

 <part name="result" type="xsd:int"/></message>

 <message name="PDCEndpoint_init"/>

 <message name="PDCEndpoint_initResponse"/>

 <message name="PDCEndpoint_terminate">

 <part name="String_1" type="xsd:string"/></message>

 <message name="PDCEndpoint_terminateResponse">

 <part name="result" type="xsd:int"/></message>

 <message name="PDCEndpoint_unbind">

 <part name="String_1" type="xsd:string"/></message>

 <message name="PDCEndpoint_unbindResponse">

 <part name="result" type="xsd:int"/></message>

 <portType name="PDCEndpoint">

 <operation name="advancereserveHH" parameterOrder="String_1 String_2 String_3 String_4 String_5 String_6

 139

long_7 long_8 long_9 int_10">

 <input message="tns:PDCEndpoint_advancereserveHH"/>

 <output message="tns:PDCEndpoint_advancereserveHHResponse"/></operation>

 <operation name="breakPorts" parameterOrder="int_1 int_2 int_3">

 <input message="tns:PDCEndpoint_breakPorts"/>

 <output message="tns:PDCEndpoint_breakPortsResponse"/></operation>

 <operation name="claim" parameterOrder="String_1">

 <input message="tns:PDCEndpoint_claim"/>

 <output message="tns:PDCEndpoint_claimResponse"/></operation>

 <operation name="connectPorts" parameterOrder="int_1 int_2 int_3">

 <input message="tns:PDCEndpoint_connectPorts"/>

 <output message="tns:PDCEndpoint_connectPortsResponse"/></operation>

 <operation name="getHostName">

 <input message="tns:PDCEndpoint_getHostName"/>

 <output message="tns:PDCEndpoint_getHostNameResponse"/></operation>

 <operation name="getNumberOfPorts" parameterOrder="String_1">

 <input message="tns:PDCEndpoint_getNumberOfPorts"/>

 <output message="tns:PDCEndpoint_getNumberOfPortsResponse"/></operation>

 <operation name="getSwitchOutPort" parameterOrder="int_1 int_2">

 <input message="tns:PDCEndpoint_getSwitchOutPort"/>

 <output message="tns:PDCEndpoint_getSwitchOutPortResponse"/></operation>

 <operation name="init">

 <input message="tns:PDCEndpoint_init"/>

 <output message="tns:PDCEndpoint_initResponse"/></operation>

 <operation name="terminate" parameterOrder="String_1">

 <input message="tns:PDCEndpoint_terminate"/>

 <output message="tns:PDCEndpoint_terminateResponse"/></operation>

 <operation name="unbind" parameterOrder="String_1">

 <input message="tns:PDCEndpoint_unbind"/>

 <output message="tns:PDCEndpoint_unbindResponse"/></operation></portType>

 <binding name="PDCEndpointBinding" type="tns:PDCEndpoint">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>

 <operation name="advancereserveHH">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input>

 <output>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation>

 <operation name="breakPorts">

 140

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input>

 <output>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation>

 <operation name="claim">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input>

 <output>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation>

 <operation name="connectPorts">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input>

 <output>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation>

 <operation name="getHostName">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input>

 <output>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation>

 <operation name="getNumberOfPorts">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input>

 <output>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation>

 <operation name="getSwitchOutPort">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input>

 <output>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation>

 <operation name="init">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input>

 141

 <output>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation>

 <operation name="terminate">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input>

 <output>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation>

 <operation name="unbind">

 <soap:operation soapAction=""/>

 <input>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></input>

 <output>

 <soap:body use="literal" namespace="http://localhost:8080/pdc-ws"/></output></operation></binding>

 <service name="PDCService">

 <port name="PDCEndpointPort" binding="tns:PDCEndpointBinding">

 <soap:address location="http://localhost:8080/pdc-ws/PDCService"/></port></service></definitions>

 142

APPENDIX B

AR/PIN-PDC JAVA CLIENT EXAMPLES

Because AR-PIN/PDC provides web services, the client could be Java-based, C-based or

Python-based. In this Appendix, I will show two Java client examples The first example

reserves a lightpath, and the second one claims a lightpath.

Reserve client:

package edu.uic.evl.pdc.client;

import java.util.*;

public class reserve {

 public static void main(String [] args) {

 String resvID, srcIP, destIP, error;

 Date now = new Date();

 long start = now.getTime() + 0;

 // Reservation window end time is 10 minutes later.

 long period = 10*60*1000;

 // The mininum duration is also 10 minutes.

 long md = 10*60*1000;

 long realStart;

 long realFinish;

 Date startDate;

 Date finishDate;

 // Source endpoint information.

 String c1 = "yorda.evl.uic.edu";

 String n1 = "node11";

 143

 String i1 = "nic1";

 // Destination endpoint information.

 String c2 = "yorda.evl.uic.edu";

 String n2 = "node12";

 String i2 = "nic1";

 PDCReserveReturn ret = null;

 try {

 PDCService service = new PDCServiceLocator();

 PDCEndpoint endpoint = service.getPDCEndpointPort();

 ret = endpoint.advancereserveHH(c1, n1, i1,

 c2, n2, i2,

 start, period, md, 1);

 resvID = ret.getReservationId();

 srcIP = ret.getSrcAddr();

 destIP = ret.getDestAddr();

 realStart = ret.getStart();

 realFinish = ret.getFinish();

 error = ret.getMessage();

 System.out.println("Reservation ID: " + resvID);

 System.out.println("Source IP address: " + srcIP);

 System.out.println("Destination IP address: " + destIP);

 System.out.println("Error Message: " + error);

 startDate = new Date(realStart);

 finishDate = new Date(realFinish);

 System.out.println("Reservation Start Time: " + startDate.toString());

 System.out.println("Reservation Finish Time: " + finishDate.toString());

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

}

 144

Claim client:

package edu.uic.evl.pdc.client;

import java.util.*;

public class claim {

 public static void main(String [] args) {

 try {

 PDCService service = new PDCServiceLocator();

 PDCEndpoint endpoint = service.getPDCEndpointPort();

 System.out.println(endpoint.claim(args[0]));

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

}

