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Abstract—In-situ analysis has been proposed as a promising
solution to glean faster insight and to reduce the amount of
data written out to storage. A critical challenge here is that the
reduced dataset needed to visualize a specific region of interest
as the simulation is running is typically held on a subset of
the nodes and needs to be written out to storage. Coupled
multiphysics simulations also produce a sparse data pattern
wherein data movement occurs among a subset of nodes. We
evaluate the performance of these data patterns and propose
several mechanisms for improving performance. Our mech-
anisms introduce intermediate nodes to implement multiple
paths to transfer data on top of default routing algorithms
and utilize topology-aware data aggregation to avoid shared
bottleneck links. The efficacy of our solutions is evaluated
through microbenchmarks and application benchmarks on an
IBM Blue Gene/Q system scaling up to 131,072 compute cores.
The results show that our algorithms achieve up to a 2X
improvement in achievable throughput compared to the default
mechanisms.

Keywords-multiple paths, sparse data movement, topology-
aware aggregation, data-intensive, BG/Q

I. INTRODUCTION

Data-intensive applications generate large volumes of
data. Transferring the data usually burdens the underlying
network and storage system. Storage performance is con-
sidered to be one of the weakest links in extreme-scale
computing. To mitigate this I/O bottleneck, computational
science applications use in-situ analysis and visualization
wherein the analysis computation is done at simulation time,
and a reduced dataset is written out to storage instead of
the entire dataset. Such applications produce either evenly-
distributed data among the compute nodes, called dense
data, or concentrated data among a partial set of compute
nodes, called sparse data. Several in-situ analyses such as
finding regions of turbulence, query-driven analysis, etc.,
produce sparse data, which needs to be written out to
the storage system. Sparse data has a wide distribution
of message sizes for I/O across the compute nodes. In
many cases, a majority of these nodes, due to the analyses
performed, may not have any data to write out to the storage
system.

Sparse data is also generated by multiphysics applications
wherein we have different physics modules running on
disjointed compute partitions. Each module may write out
data at differing frequencies, likely non-overlapping, leading
to a situation where the entire I/O pipeline may not be
utilized to write the data from any single physics module.

Furthermore, sparse data can also be seen in communica-
tion between data coupling modules in multiphysics appli-
cations when two physics modules communicate while other
modules are communication-free. On the IBM Blue Gene/Q
system, the data is transferred between the two modules via a
single path even though multiple paths are available.. In such
cases, the network resources is underutilized and this leads
to an increase in the time-to-solution. As we can see more
sparse data movements in emerging data-intensive scientific
applications, optimizing and improving sparse data transfers
are getting more important for those applications.

In this paper, we investigate the performance of sparse
data movement on Argonne National Laboratory’s IBM
BG/Q supercomputer, Mira. More specifically, our contribu-
tions are two-fold: 1) we identify sparse data transfer prob-
lem in data-intensive applications and develop mechanisms
for aggregating data efficiently, and 2) we propose multi-path
algorithms leveraging intermediate nodes to improve data
transfers among compute nodes. We evaluate the efficacy
of the current data movement mechanisms in multiphysics
and MPI-IO for sparse data patterns on these systems.
We then introduce the intermediate nodes to allow data to
be transferred concurrently on multiple data paths at the
application level.

We developed heuristics to select the number and position
of intermediate nodes to maximize data transfer throughput.
We also developed a data movement mechanism that is
aware of I/O node location to balance the I/O load. Finally,
we evaluate the performance for a set of benchmarks on
Mira scaling to 131,072 compute cores.

The remainder of the paper is organized as follows: in
Section II, we discuss related work in data movement and
I/O performance improvement in high performance systems.
In Section III we briefly describe the supercomputing system



that we used to investigate our approaches. We present our
approaches in Section IV and then demonstrate their efficacy
through microbenchmarks in Section V and application
benchmarks in Section VI, respectively. Finally, we present
our conclusions and future work in Section VII.

II. RELATED WORK

Bandwidth optimization has been studied in great details
in the literature. Many works consider a particular system’s
interconnection information and application’s communica-
tion patterns to optimize throughput. Essentially, these two
characteristics can be used to map an application’s processes
to specific processors so that interprocessor communication
can take advantage of that network.

In an MPI-enabled environment, bandwidth optimization
can be done via MPI processes mapping. In [1], the authors
provide a tool for performing a wide variety of mappings
for structured communication patterns. The tool provided
mappings that were able to increase bandwidth and reduce
latency and congestion. The tool did not take unstructured
communication patterns into account, thus, did not realize
that multiple paths could be made available for data move-
ment.

Multiple path data movement was realized in the work
of Khanna et al. [2] by using intermediate nodes when an
explicit path setup was not provided. This work focused
on wide-area networks (WANs) where the exact network
topology is hidden from users. Accordingly, shared links are
identified through real experimental network throughputs.
Our work is applied to the interconnection network and
the I/O subsystem of supercomputers where the network
topology and associated routing policies are known a priori
and the size of the network is much larger than WANs. Our
ideas come from the observation that compute nodes in the
BG/Q system have 10 links for communication but usually
only a single path is used for transferring data between nodes
or between nodes and I/O nodes.

Kumar and Faraj [3] proposed using multiple incoming
and outgoing links per node for communication on the
BG/Q. The work was focused on MPI Allreduce collective
communication while our work targets sparse data move-
ment among a subset of nodes.

Adaptive routing for network balancing has also been
studied in [4], [5]. In addition, there are works on adaptive
routing for current supercomputers such as the BG/Q [6]
and the Cray Cascade [7]. However, these works are for
low-level networking, where any packet can be routed to
any path. In contrast, our study leverages underlying routing
policies to implement multipath data movement in the user
space, where we have more detailed knowledge about the
data flows and patterns.

I/O forwarding and staging is routinely used for improv-
ing I/O performance to storage. A scalable I/O forward-
ing framework for high-performance computing systems

is presented in [8]. The authors in [9], [10] proposed an
augmentation for I/O forwarding and asynchronous data
staging for BG/P and /Q systems. However, those studies
assumed that the data is dense and uniformly distributed.
Our work in this paper extends on our previous work [10]
to deal with sparse data movement patterns.

III. SUPERCOMPUTING SYSTEMS

In this section, we describe the BG/Q resources at the
Argonne Leadership Computing Facility (ALCF) on which
we developed and tested our multipath sparse data movement
algorithms.

ACLF maintains several compute analysis systems that
are used by the scientific community. Figure 1 depicts
the architecture of ALCFs primary resource, Mira, its data
analysis cluster, Tukey, and the file server nodes.

Figure 1. The ALCF maintains the 768K core Blue Gene/Q supercomputer
(Mira), data analysis cluster (Tukey), and file server nodes.

Mira has 48K nodes and has a peak performance of 10
petaflops. Each node has 16 application cores and 16 GB
of memory. Miras I/O and interprocessor communications
(both point-to-point and collectives) travel on a 5D torus
network. This 5D torus interconnects each compute node
with its 10 neighbors at 2 GB/s theoretical peak over each
link in each direction, making a total of 40 GB/s bandwidth
in both directions for one single compute node. However,
due to packet and protocol overheads, up to 90% of the raw
data rate (1.8GB/s) is available for user data. The machine
can be partitioned into non-overlapping rectangular sub-
machines for certain applications upon request. These sub-
machines do not interfere with each other except for I/O
nodes and the corresponding storage system.

An overview of the network is also given in [11]. Each
compute node has 11 send units and 11 receive units (10 for
the links of the torus and one for the I/O link). All packets
are injected in and pulled out of network injection/reception
FIFOs by Messaging Unit (MU). The number of FIFOs is
enough to saturate all links. Outgoing packets can be put in
any injection FIFOs and may go out to any link. However,
incoming packets at a receiver is placed only in its reception
FIFO.

For interconnect network traffic, the BG/Q supports both
deterministic and dynamic routing [6]. Deterministic routing



uses only one path to route packets from a source to a
destination and packets are routed longest to shortest using
a commonly used dimension-order routing algorithm. In
dynamic routing, routing is still dimension ordered, but the
packet routes are programmable, enabling different routing
algorithms to be used. This is called “zone routing”. There
are four zone IDs from 0 to 3. The routing algorithm selects
a zone ID based on a flexibility metric and the message size.
The flexibility value is computed based on the torus size and
hop distance between the two communicating nodes. The
selection of zone ID based on these values is experiment-
based and is hard coded in low-level libraries [12]. Among
the four routing zones, routing zone ID 1 is unrestricted,
and packets route in a random order. Routing zone ID 0
is longest-to-shortest. However, dimensions with the same
lengths can be chosen randomly. Routing zone IDs 2 and
3 are deterministic. For these two routing zone IDs, given
a certain message size, routing is always the same and its
path is known before it is routed. These are default routing
algorithms and are not changeable. However, we can set a
routing zone ID by using a PAMI ROUTING environment
variable. As BG/Q uses single path data routing, only one
of ten available links are used for message sending and
receiving a message, so one reception FIFO is used at
receiver.

With respect to I/O traffic, the compute nodes connect to
an analysis cluster and the file servers through I/O nodes
and a QDR IB Switch Complex. Every 128 compute nodes
(forming a pset) has two bridge nodes, which are among
the compute nodes. Each bridge node has an 11th 2GB/s-
bandwidth link connecting to an I/O node, making total 4
GB/s bandwidth for I/O per pset at most. I/O traffic is routed
from compute nodes to bridge nodes over the torus network
deterministically, and then traverses over the 11th links from
bridge nodes to the I/O nodes [13]. In the next section, we
describe novel multipath routing mechanisms that leverage
default routings on the BG/Q to improve data movement
performance.

IV. SPARSE DATA MOVEMENT OPTIMIZATION

We start this section by presenting inefficiencies in current
systems in the support of sparse data movement. We propose
novel approaches for multipath data movement to overcome
these inefficiencies.

A. Inefficiency in current data movements

For data transfers between compute nodes on the BG/Q,
a message from a source to a destination traverses a single
path. In the absence of congestion and network failures,
default routing algorithms are used, causing the message to
traverse a deterministic and single path. Figure 2(a) depicts
the single path data movement, in which one path is used
other paths are idle. With dense, uniform data movement
patterns where a majority of nodes and network links

are involved in communications, the utilization of system
resources is high. Whereas with sparse data movement
patterns, only specific regions of the system are involved
in communications, resulting in a low utilization of the
resources.

Similarly, I/O messages such as writes as shown in
Figure 2(b) travel along a default path to default I/O
nodes. When the writes have a uniform distribution on data
size and location, I/O nodes allocated for applications are
used efficiently. However in sparse data movements, due to
uneven distribution of data movement requests, I/O nodes
and the interconnect networks suffer from an unbalanced
load. The current MPI-IO implementation aggregates data
to intermediate nodes, but these nodes are neither uniformly
distributed nor balanced to connect to all I/O nodes.

We next present a general approach to improve resource
utilization for data movement. We then present two sub-
algorithms for sparse data movements, one for among com-
pute nodes and the other for between compute nodes and
I/O nodes.

B. Data movement using multiple paths

One way to improve the utilization is to employ multiple
paths. We can assign non-overlapping multiple paths for
multiple messages going out from a node. Theoretically,
each message would concurrently follow a non-overlapping
path and the data movement therefore promises to achieve
improvement. However, at programming level, the current
BG/Q system has no ability to set up paths for messages
explicitly. However, we can still leverage disclosed default
routing algorithms to implement concurrent data movement
via multiple paths in the user-space. Thus, we can greatly
simplify the deployment of our heuristics.
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In order to route data along multiple paths on a single-
path-allowed system, we introduce intermediate nodes which
are compute nodes where the application runs to serve an
additional purpose of routing data. Leveraging the default
routing, we first route data from sources to the intermediate
nodes and then from intermediate nodes to destinations.
As shown in Figure 2(c), by adding intermediate nodes
we increase the number of paths to move data between
nodes, overcoming the system limitation of a determinis-
tic single path for data movement. The routing function
on the intermediate nodes does introduce little additional
overheads, and we assume that future systems might provide
such functionality at the node level for a multipath routing.
Knowing the routing policy a priori, we choose the locations
of intermediate nodes to minimize the shared links and
therefore maximize the data movement throughput. In Figure
2(d), by adding the intermediate nodes we increase the
number of I/O nodes and accordingly balance I/O workload.
We also propose a mechanism that leverages interconnect
topology and distributes intermediate nodes dynamically
among all I/O nodes to achieve significant improvement in
I/O.

Implementing multipath data movement using intermedi-
ate nodes requires several steps.
• Calculate the message sizes to see if using intermediate

nodes benefits performance and how to use them.
• Determine the number and location of intermediate

nodes.
• Transfer data using multipaths from sources to destina-

tions via intermediate nodes.
In the next sections, we realize the above steps for

sparse data movement among compute nodes and sparse data
movement to I/O.

C. Sparse data movement between groups of compute nodes

In this subsection, we present an algorithm to select the
number and the locations of intermediate nodes together
with multipath data movement between two groups of com-
pute nodes. This is critical for data coupling in multiphysics
codes. Intermediate nodes will be referred to as proxies for
the rest of the paper.

We start with selecting number of proxies. Each proxy
adds an additional non-overlapping data movement path,.
Adding more paths reduces congestion and improves the
transfer time. However, as we introduce proxies, additional
overhead, and hence time, is also introduced due to the
additional processing and buffering at the proxy. Therefore
performance gained by introducing proxies needs to be
at least enough to compensate the extra time caused by
introducing them. We model the time for data movement
from one node’s memory to another node’s memory using
remote direct memory access (RDMA) as follows.

For data transfer, communication delay is composed of
processing delay, transmission delay, queueing delay and
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Figure 3. Time to transfer in case of with and w/o proxies

propagation delay. To make it simple, we model the delays
into 3 variables: time for processing, queueing and injecting
at sender node ts, time to transfer data tt and time for
processing, queueing and storing at receiver node tr. The
time is depicted in Figure 3. The total time to transfer a
message of size d from sender u to receiver v therefore is:

t = ts + tt + tr (1)

In which:
• t: Total time to transfer.
• ts: Time to process, queue and inject a message of size

d into the network at sender
• tt: Time to actually transfer a message of size d

from sender’ network interface to receiver’s network
interface.

• tr: Time to process, queue and store a message of size
d from network to memory at receiver.

In the case of using k paths with k proxies, the data
size each path carries would be d

k , assuming equal split.
Data is transferred in two steps from the sender to proxies,
completely stored at the proxies, and then moved from the
proxies to the receiver. Each proxy becomes an extra sender
and receiver. Thus, we need to account for this additional
processing and buffering at proxy endpoints. The time for
transfer in each hop can be considered approximately the
same. Hence, total time to transfer data is:

t′ = 2(t′s + t′t + t′r) (2)

In which:
• t′: Total time to transfer.
• t′s: Time to process, queue and inject a message of size

d/k into the network at sender
• t′t: Time to actually transfer a message of size d/k

from sender’s network interface to receiver’s network
interface.

• t′r: Time to process, queue and store a message of size
d/k from network to memory at receiver.

The ratio of total time for two data transfer methods is:

t′

t
=

2(t′s + t′t + t′r)

ts + tt + tr
(3)



As we split a message into k messages, time to transfer
data is reduced linearly. However, the time to inject and to
store do not. Actually the total time to inject or store k
messages of size d/k each is at least the time for one single
message size d. This is due to overheads to process and
buffer the data. Therefore:

t′s ≥
ts
k
; t′t =

tt
k
; t′r ≥

tr
k

(4)

The equalities happen only when message size is greater
than a threshold. For the message size greater than the
threshold, we have:

t′

t
=

2(t′s + t′t + t′r)

ts + tt + tr
=

2( tsk + tt
k + tr

k )

ts + tt + tr
=

2

k
(5)

Thus, to get benefit from setting up proxies, we need to
have at least 3 proxies per data transfer, and we can improve
k/2 times throughput.

For small messages, as t′s � ts/k and t′rtr/k, we need
a much greater value of k to get benefit from setting up
proxies, which is usually not feasible. In Section V, we
show threshold values computed based on experiments at
which for smaller messages, direct transfer is better than
proxy-based transfer, and for bigger messages, proxy-based
transfer is better. Therefore, proxy-based techniques should
be used for intensive sparse data movements when the size
of message is greater than a threshold.

With respect to the placement of the proxies, we need
to choose positions of the proxies to minimize link sharing
since we know routing paths in advance. It is difficult and
sometimes impossible to choose proxies as the number of
nodes involved in data movement increases. We develop an
heuristic algorithm to check if it is feasible to implement
proxies and to find the number and position of these proxies.
The BG/Q is connected via 5D torus, however to simplify
the algorithm illustration and description, we depict the data
movement of the algorithm for 2D mesh as in Figure 4. The
5D torus or any k-D torus would work in the same way. In
our work, we assume that regions of a cluster that need to
communicate data are contiguous. This assumption is valid
under many multi-physics applications such as Community
Earth System Model [14] as processes of an application are
usually mapped contiguously to improve intra-group com-
munication. We also assume that the network is dedicated
with no background communication from other applications.

The Figure 4 depicts a 2D allocation of a x b mesh
topology for multi-physics application. In the 2D mesh, data
is routed horizontally (A direction) first and then vertically
(B direction). Two physics codes S and T running at 2
regions of the cluster are data coupled (i.e., T needs data
from S to complete a computation.) Region S has the size
m x n, while T has the size g x h. We assume that each
node has approximately the same amount of data and each
destination receives approximately the same amount of data.
• S: Set of source nodes, size |S| = m*n = M
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• T: Set of destination nodes, size |T | = g*h = N
• Pi: Proxies nodes of source node si.
• L: Number of dimensions of the network.
• coordil: Coordinate of a node i, dimension l
• Each si ∈ S:

– Has targets Ti and proxies Pi.
– Data size di at si is sent to set of ti in Ti. si sends

di to ti through pi

Here we develop a heuristic algorithm for data movement
between multiple sources and multiple destinations using
multiple paths leveraging known data routing algorithms.
Note that the default routing algorithms here is order-based
and given the torus size of the allocation, message size and
coordinates of source and destination are known a priori.
The algorithm is described in Algorithm 1.

Our algorithm includes 3 parts: In the Init part, we
exchange the coordinates of all sources and destinations.
After that, each node si initializes its empty sets of proxies
Pi and destinations Ti. The destinations of si are then
added to the Ti. If the set of sources and destinations are
known a priori, an application only needs to run Init once.
In the Find Proxies part, each source node checks 2*L
possible candidates along L destinations. In the 2-dimension
mesh, each node has 4 directions of +A, -A, +B and -B to
send/receive data. There are 4 regions marked from I to IV



Algorithm 1 Algorithm for data movement between 2
groups of nodes

I. Init
Exchange coordinations of the sources and destinations.
for each node si in S with i = 1..M do

Pi = ∅, Ti = ∅.
Adding its destination nodes tj into Ti.

end for
II. Find Proxies
for each source node si({coordil}) in S do

for each its destination node tj(coordjl) in Ti do
Sort the dimensions by routing order.
for each dimension l with l = 1..L in the sorted order
do

Check 2 candidates: cp and cn on the + and - on
the l direction of the si.
If a candidate is available, add it into Pi.

end for
end for
if |Pi| < 3 then

Exit.
end if

end for
III. Multipath Data Movement
Phase 1: At each node si in S:
for each pij in Pi do

Send data to pij with size dij .
end for
Phase 2: At each proxy pij :
Send data to the destination.

in Figure 4(a) to search for possible proxies that guarantee
non-overlapping concurrent data movements. We can search
for 4 proxies in the 4 regions with offsets from the source
and the destination represented by values of ε, δ, θ, σ. This
is to make sure that 4 proxies are in the 4 distinct directions
for both outgoing and incoming transfers. Due to small torus
size, searching for these values are not time consuming. If
those values exist, we then add the proxies into the list Pi.
If each source node can have at least 3 proxies then we
continue the next part. Otherwise, we discard since there is
no benefit to setup proxies. In the last part, Multipath Data
Movement, we first move data from source nodes to proxies
and then from proxies to destination nodes. To extend for
L dimensions, we need to search for 2L directions (both
negative and positive directions per each dimension) to find
at most 2L proxies.

The algorithm is distributed and runs at every node.
Except for gathering all coordinates at the beginning, the
remainder of the algorithm executes without waiting (syn-
chronizing) for all other nodes. The running time of the
algorithm is O(M*N*L). However, due to small sizes of
most networks, the actual time to compute the routes is

small. Overall, the overhead for searching for proxies is
negligible.

D. Sparse data movement between compute nodes and I/O
nodes

Each compute node is associated with a default I/O node.
Therefore, we need to have at least one intermediate node
for each I/O node available in the allocated partition to
use the I/O node. Depending on the data size, we may
need more than one intermediate node per I/O node. Also,
these intermediate nodes need to be uniformly distributed
to avoid data congestion when sending data from compute
nodes to intermediate nodes. Thus, to calculate the number
of intermediate nodes needed, we need to know total size
of data, available I/O nodes, location of compute nodes
and their default I/O node. We uniformly distribute these
intermediate nodes to the I/O nodes. Data is then aggregated
from compute nodes to these intermediate nodes. In this way,
an I/O node for which all of its compute nodes do not have
data or have small size of data still receives I/O requests with
approximately equal amount of data as intermediate nodes
are chosen among its compute nodes. As these intermediate
nodes aggregate data from a large number of nodes, we call
them aggregators. The approach is presented in Algorithm
2.

Algorithm 2 Algorithm for I/O data movement
I. Init
Define the smallest size of data aggregated at each aggre-
gator S.
Each node queries its coordinates and its default I/O node.
Calculate total number of IO nodes for the partition: nio.
List number of aggregators may be needed per I/O nodes:
P = {1,2,4..., 128}.
for each value num agg in the list P do

Calculate the positions of aggregators based on the
number of aggregators (num agg):
Divide the pset along 5 dimensions by factors nA, nB,
nC, nD, nE such as nA*nB*nC*nD*nE = num agg to
create blocks.
For each block, choose the first one as the aggregator.
Save the aggregators for later use.

end for
II. Redistribute data
Reduce and broadcast the total size of data need to be
written: T =

∑n
i=1 di.

Calculate the number of aggregators needed per pset:
num agg = T/S/nio.
Based on num agg select the list of the aggregators from
pre-created list and broadcast it to nodes having data.
Each nodes having data sends its data to its chosen
aggregator(s).
Selected aggregators send data out through I/O nodes.



In the first part of the algorithm, Init, the algorithm
queries all the information of I/O nodes, coordinates of
compute nodes and its default I/O node. It then precomputes
all possible aggregators and their location at all processes.
The data is stored in list P, used later for redistributing data.
To compute P, it divides the partition into equal blocks. It
can create a subcomm using MPI Comm create for each
sub-network and select the MPI rank 0 of the subcomm
as the aggregator of the subnetwork. In the second part,
Redistribute data, depending on total size of data for
each I/O request, it selects appropriate aggregators and then
carries multipath data movement.

Since all the necessary information is queried and com-
puted once at the beginning, we save time at each I/O
request. At each I/O request, the only information needed
to gather is total size of data. The aggregators are chosen
dynamically and distributed uniformly to balance the load
among I/O nodes. In the following sections, we present our
study on Mira Blue Gene/Q to show the efficacy of our
solutions.

V. MICROBENCHMARKS

In this section, we show the efficacy of our solutions
through a set of microbenchmarks for 2 cases: data move-
ment for data coupling nodes and data movement between
compute nodes and I/O.

A. Data movement for data coupling nodes

In this benchmark, we show feasibility of the approach
using proxies to increase transfer throughput between 2
compute nodes. We choose the first and the last node of
a partition of 128 compute nodes with 2x2x4x4x2 torus. As
the partition is large enough we are able to choose 4 proxies
to transfer data in 4 directions +B, +C, +D, +E . In each
node, only one MPI rank is used (when we use multiple
MPI ranks per node to send data to the same destination,
they all take the same output link, thus using one MPI rank
is still valid and making the experiment easier). The data
is transferred in increasing size from 1KB up to 128MB of
data, with the size doubled each time. We use MPI Put to
transfer data from source node to proxy nodes and then from
proxy nodes to destination node. Each transfer is repeated
multiple times with different data to eliminate any cache
effect and achieve stable performance. The average transfer
throughput between 2 nodes is reported in Figure 5.

As the figure shows, for the small messages, direct transfer
yields better performance. With large message, proxy-based
transfers outruns direct transfer with 2× better performance.
This is foreseen with the reasons we mentioned before: with
small messages, extra time caused by injecting and copying
messages is significantly larger than the transferring time.
It happens in the opposite way with large messages. The
message size threshold to switch from direction transfer
to proxy-based transfer is 256KB, yielding 1.4GB/s per
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Figure 5. Using 4 proxies to improve data transfer throughput between 2
nodes

link. After the threshold, direct transfer slowly reaches to
maximum 1.6BG/s while proxy-based transfer continue
to thrive until 3.2GB/s. Thus, the benchmark shows that
proxy-based approach is feasible and can result significant
improvement.

As data movement in multiphysics applications is done by
more than 2 single nodes, the second benchmark elucidates
the feasibility and achievable throughput for data movement
between two groups of nodes. In this experiment, we transfer
data between two groups of nodes, wherein each group has
256 nodes in a 4x4x4x16x2 torus of a 2K nodes partition.
One group is at one corner of the partition, the other one is
at the other end of the partition. The data size is also from
1KB to 128MB with doubled size each step. The experiment
is repeated for a number of times. We are able to choose
3 proxies for each node. The Figure 6 shows the average
throughput measured.
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Figure 6. Using 3 group of proxies to improve data transfer bandwidth
between 2 group of nodes

In the figure, we once again see that with small mes-
sages, direct transfer is better than proxy-based transfer.
The threshold for this case increases to 512KB. At that



message size, direct transfer also reaches to its maximum
throughput, while the proxy-based transfer still has big room
to increase up to 2.4GB/s. The performance increases 1.5×
as predicted since 3 proxies are used for each nodes. This
benchmark shows that proxy-based data transfer is feasible
for data transfer between groups of nodes. And we can
achieve significant improvement in certain cases.

As we have mentioned in Section IV, we need at least k
> 2 proxies per each data transfer to benefit from proxies.
The more proxies we can use the better performance we
can gain. However, as the size of communicating groups
increases, the number of proxies we can set up decreases. If
we add more proxies beyond the maximum possible proxies,
data movements by extra proxies intervene existing ones
and eventually degrade overall performance. The Figure 7
demonstrates the situation.
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Figure 7. Performance variance with number of proxies

With the torus 4x4x4x4x2 and 2 groups of 32 nodes each,
we can set up at most 4 groups of proxies along A+, A-,
B+, B- dimensions. The 5th proxy is the source node itself.
As Figure 7 shows, when we increases the number groups
of proxies from 2 to 3 and to 4, the throughput increases
from no-improvement, to 1.5× and to 2×. Thus, with large
message sizes, we can gain k/2 times performance with k
being the number of proxies. However, when we increase
number of proxies to 5, the performance starts to drop due to
intervention among concurrent data movements. Therefore,
choosing number of proxies together with their locations is
important to maximize throughput.

The above three benchmarks demonstrate the efficaty of
our solutions for data movement between compute nodes. In
the next subsection, we evaluate our approaches in the case
of data movement between compute nodes and I/O nodes.

B. Data Movement to I/O nodes

We perform a weak scaling study with two sparse data
patterns, and scale the number of cores from 2,048 to
131,072 cores on the Mira BG/Q system.

• Pattern 1: Uniform distribution data where data size of a
MPI rank is uniformly distributed between 0 and 8MB.
Data is generated by using srand() and rand() functions
in C/C++ and using time(NULL) as a seed. Total data
size is about 50% of the dense data. The distribution
of the data size is shown in Figure 8.

• Pattern 2: Pareto distribution data where many of MPI
ranks have data size of 0 bytes or very low size, and a
few of MPI ranks have data size of 8MB or close by.
The total data size is about 20% of the dense pattern.
The distribution of the data is shown in Figure 9

In the data pattern 1, data sizes are uniformly distributed
among nodes. This data pattern can be seen when we
want to analyze data from different regions with different
resolutions. Depending on the resolution, data sizes may
vary accordingly.
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Figure 8. Pattern 1: Histogram of data sizes for 1,024 processes using
time(NULL) function with size from 0 to 8MB

On the other hand, the data pattern 2 represents the case
where data are sparse but not uniformly distributed. There
are many nodes with almost no data while some nodes have
large volume of data. This data pattern happens where we
want to write out data from a region of contiguous MPI
ranks while ignoring other regions.

On data pattern 1, we write roughly 8GB at 2,048 cores
and 274GB of data at 131,072 cores. On data pattern
2, we write 3.4GB at 2,048 cores to 119GB of data at
131,072 cores. We compare the performance of performing
aggregation for 2 data patterns using our approach and
default MPI Collective I/O.

Figure 10 depicts the performance of our topology-aware
multipath data movement approach in comparison to the
default MPI-I/O for the two sparse data patterns as we scale
from 2,048 cores to 131,072 cores on the Mira BG/Q system.
On the data pattern 1 (uniformly distributed data), we
observe 2× improvement at 2,048 cores. The performance
increases as we scale and we achieve up to 3× at 131,072
cores. On the data pattern 2 (pareto distributed data), we gain
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Figure 10. Aggregation throughputs on Mira

1.5× improvement at 2,048 cores and 2× improvement at
131,072 cores. Thus, we observe that leveraging network
interconnect topology and multipaths plays an important
role at small scale and is critical at large scale. With the
increased use of in-situ analysis for supercomputing, sparse
data patterns for I/O are becoming increasingly important
and our approaches help provide more insights for improved
performance.

VI. APPLICATION I/O BENCHMARK

In this section, we demonstrate our solution on HACC I/O
representing data movement between compute nodes and I/O
nodes.

A. HACC I/O

HACC (Hardware/Hybrid Accelerated Cosmology Code)
[15] is a large-scale cosmology code suite that simulates the
evolution of the universe through the first 13 billion years
after the Big Bang. The simulation tracks the movement
of trillions of particles as they collide and interact with
each other, forming structure that transform into galaxies.

During the runtime, HACC writes data periodically to stor-
age system. The data can also be transferred from Mira to
Tukey for data analysis and visualization. In both ways, data
needs to go from compute nodes to I/O nodes first. In this
benchmark, we use HACC I/O, an I/O benchmark written to
evaluate performance of the I/O system for HACC, to show
the data transfer performance from compute nodes to I/O
nodes by writing to /dev/null. We compare the throughput
of our mechanism to default MPI collective write on HACC
I/O.

B. Transferring data to I/O nodes

In this experiments, we scale our experiments from 8,192
up to 131,072 compute cores to simulate the collision
of 7683 to 2, 8163 particles. We write only 10% of the
generated data with the amount of 2GB to 85GB of data.
The data is written from processes with MPI ranks within
the range [4*num processes/10, 5*num processes/10] with
the num processes being the total number of MPI ranks in
our application. We collect the bandwidth information and
report the average. The results are shown in Figure 11
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Figure 11. Write throughput of HACC application to I/O nodes /dev/null

The results show that in both cases, the number of I/O
nodes employed is more than default I/O nodes. However, in
our case, the position and location of aggregators are chosen
dynamically and are distributed uniformly brought in better
performance. Overall we can get up to 50% throughput
improvement. Thus, dynamic selection of number of and
location of aggregators based on size of data and intercon-
nect topology is of paramount importance for sparse data
movement.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we present a scalable mechanism for im-
proving sparse data movement, which often takes place in
scientific applications such as in-situ analysis and multi-
physics applications, by utilizing underlying resources. Our
approaches introduce intermediate nodes to increase data



transfer throughput. Our solutions work for both sparse
data movement between data coupling groups of nodes
and sparse data movement between compute nodes and I/O
nodes. We demonstrate the efficacy of our solutions through
microbenchmarks and application benchmarks showing up
to 2× data movement throughput improvement. Our work
shows that network topology aware data movement utilizing
all available network resources helps improve the perfor-
mance of data-intensive applications. In the future, we plan
to employ pipeline technique in which data will be split into
small messages to be transferred. Thus, we will need only
2 proxies at least to get benefit from proxies-based method.
We will come up with an analytical model for the achievable
throughput and explore graph models for data movement in
different network topologies and with different shapes of
partitions given for physics modules.
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