Griz: Experience with Remote Visualization
over an Optical Grid

Luc RENAMBOT ®*, Tom VAN DER SCHAAF?, Henri E. BAL P,
Desmond GERMANS®, Hans J.W. SPOELDER P

3 Division of Mathematics and Computer Science

b Division of Physics and Astronomy
Faculty of Sciences, Vrije Universiteit
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

Abstract

This paper describes the experiments of remote rendering over an intercontinental
optical network during the 1Grid2002 conference in Amsterdam from September 23
to September 26. A rendering cluster in Chicago was used to generate images which
were displayed in real-time on a 4-tile visualization setup in Amsterdam. On average,
one gigabit per second (1Gbps) was consumed to enable remote visualization, at
interactive frame-rate, with a 160021200 pixels configuration.
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1 Introduction

The recent advances in optical networking are deeply changing the networking
landscape, and in general the way we think about networked resources such
as computing, storage, or remote instruments. “Lambda” networking with
technologies such as WDM (wave division multiplexing) are on the verge of
providing the “infinite bandwidth” dreams of the computer scientists. For
instance, in a WDM system, each wavelength in an optic fiber can carry
from 1 to 10 gigabit per second. An example of such an infrastructure is
the StarLight/NetherLight optical network between Chicago and Amsterdam.
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On the other hand, the current trend in hardware for parallel graphics is to use
clusters of off-the-shelf PCs instead of high-end graphic supercomputers. This
trend has emerged since the dramatic change in the price/performance ratio
of today’s PCs, in particular concerning their graphics capability. By apply-
ing similar techniques developed for cluster computing, graphics clusters can
now drive large-scale high-resolution systems, overcoming the limited output
resolution of standard devices such as monitors and video projectors. High
resolution can be achieved by tightly coupling projectors (or TFT monitors),
allowing for detailed scientific visualization with an increased pixel density.

This paper describes the experiments combining parallel rendering and usage
of a very large bandwidth network to achieve remote visualization of interac-
tive applications between Chicago (USA) and Amsterdam (The Netherlands)
during the international ¢:Grid2002 conference in September 2002. A rendering
cluster in Chicago was generating images which were displayed in real-time
on a 4-tile display setup in Amsterdam. On average, one gigabit per second
(1 Gbps) was consumed for visual applications at interactive frame-rate (= 20
frames per second) for a 1600 x 1200 pixel frame-buffer.

The reasons to explore such configurations for remote visualization in a grid
environment are:

e Rendering facilities are still scarce, compared to computing or storage re-
sources, and need specific skills to be used,

e Advanced “consumer” graphics cards combined with fast processors are the
basic blocks to provide large-scale graphic resources,

e Very large bandwidth between sites, provided by optical networks, opens a
wide range of new possibilities to conduct research. It deeply changes the
way we think about remote resources such as storage or visualization, and
the nature of remote collaboration between scientists.

The considered scenarios for remote visualization in such a networking envi-
ronment are:

e Remote rendering: using a remote cluster with a local display. The user
wants to access a high-performance rendering facility not available locally.
This facility can use a high-speed local network within an institution, or an
optical backbone over a large distance, such as the one used during the ¢Grid
conference. The target display can be a single monitor or a high-resolution
tiled display.

e Support for collaborative visualization: two or more sites can visualize the
same application or dataset to support a collaborative session.

In the following sections, we are describing the techniques and tools that
enabled this demonstration. We will focus on the two main points, namely



pixel generation using parallel rendering, and network engineering to achieve
high-speed data transfer over high-latency high-bandwidth network.

2 High-speed Networking

High-speed transfer of large datasets is an critical part of many data-intensive
scientific applications. However, a major problem for the application developer
is to achieve high throughput transfers over high bandwidth, long distance
networks. This relates mostly to the design of the TCP/IP protocol. While
performances are good over a large class of networks, high latency induced
by long distances makes it very hard to get part of the available bandwidth.
Algorithms of the TCP/IP protocol to detect packet loss and to deal with
congestion are too sensitive and take too long to recover for gigabit networks
with round-trip times (RTT) over 100ms (i.e., Chicago-Amsterdam RTT is
around 100ms, Chicago-Japan RTT is round 150ms). For instance, the loss of
a few packets can affect for a long time such a network. To illustrate these
problems, Olivier Martin [6] reported at the Global Grid Forum in September
2001 that:

e The loss of a single packet will affect a 10Gbps stream with 200ms RTT for
5 hours. During that time the average throughput will be 7.5 Gbps. This
loss is perceived as congestion by the aggressive TCP protocol which then
decreases the emission rate. The high latency and the slow progression of
the emission rate makes this loss very long to recover from.

e On a 2.5Gbps link with 100ms RT'T, this translates to 38 minutes recovery
time, during that time the average throughput will be 1.875Gbps.

e On a 2.5 Gbps link, a bit error rate of 10~ translates to one packet loss
every 250 milliseconds.

However, the non-reliable UDP protocol does not suffer from these problems.
Consequently, several projects proposed new protocols ensuring reliable com-
munication based on UDP, without much focus on the congestion aspect. This
last aspect raises the problem of fairness of these protocols since they use all
the available bandwidth. In the extreme case, this could be considered as
a “denial of service” (Dos) attack. However, programs making use of theses
techniques are mainly deployed on research networks where this is not yet a
problem.

These protocols or programs, such as GridF TP, RBUDP, SABUL, and Tsuna-
mi, are generally based on the coupling of a UDP channel for high-speed
transfer and a TCP channel to control the data emission rate and signal the
packet loss.



e GridFTP [1] is an enhanced version of the popular File Transfer Protocol,
targeted for very large transfers between Grid sites around the world. The
feature rich GridF TP includes capabilities such as automatic negotiation of
window sizes between client and server, parallel data streams, security, and
reliability support.

e RBUDP [3] (Reliable Blast UDP) is an aggressive bulk data transfer scheme,
designed for extremely high bandwidth networks. The protocol contains two
phases: a blast of data is sent to destination using a UDP channel at a
specified rate, followed by reliability phase over TCP, where lost packets
are sent again. RBUDP is part of the QUANTA toolkit, described later in
this paper.

e SABUL [8] (Simple Available Bandwidth Utilization Library for High-Speed
Wide Area Networks) is a C++ library for large data transfers over high-
speed wide area networks. It is similar to the RBUDP protocol. However,
SABUL maintains state information and controls data rate to minimize
packet loss over the duration of the transfer.

e Tsunami [9], similar to GridFTP, is an experimental high speed network file
transfer protocol designed to overcome some of the TCP problems for high-
performance transfer over the considered networks. Again, data transport is
carried out using a UDP channel, with limited congestion control. Missing
packets are re-sent to ensure reliability.

For the networking aspects of this demonstration, we choose to use the QUANTA
toolkit, successor of the CAVERNSOoft project [5, 3]. QUANTA, or Quality of
Service and Adaptive Networking Toolkit, provides an easy-to-use environ-
ment to the application programmer to achieve high-speed data transfer. It
also gives the application various metrics to characterize and monitor each
network connection. It becomes easier for the non-expert to understand the
behavior of the application, and to optimize it for a specific network.

The QUANTA toolkit provides a C++ interface containing:

TCP, UDP, and multicast objects (client, server, reflectors),

Socket parameter tuning, with defaults values for wide-area networks,

Various high-speed protocols:

- Parallel TCP, using transparently multiple sockets to achieve higher through-
put by overcoming the window-size and latency shortcomings.

- UDP with Forward Error Correction, where packet loss is resolved by
encoding multiple times the same packets with checksums,

- Reliable Blast UDP, the above described reliable high-speed data transfer
protocol,

Monitoring and logging of each connection, with metrics such as immediate

and average bandwidth, latency, and jitter.

A portable implementation for Linux, Windows, and IRIX operating sys-

tems.



3 Remote Rendering

Our remote rendering infrastructure consists of a parallel rendering infrastruc-
ture which generates the images and a remote visualization technique which
brings the pixels to a remote location.

3.1 Parallel Rendering

The visualization in this work is based on the Aura API developed at the Vrije
Universiteit in Amsterdam. Aura is designed as a portable 3D graphics scene
graph layer [2]. Aura allows the user to apply modifications to any object at-
tributes in the graph. For a complete description of Aura and some case study
applications, we refer to [2].

In our parallel approach [10], the applications are executed only on the master.
All graphics commands from the API are marshaled and sent to all slaves,
instead of being executed locally. This approach has the advantage that all
cluster-related issues can be hidden in the implementation of the interface.
However, it requires graphic commands to be sent over the network, and it
potentially needs a high bandwidth. High-speed networks such as Myrinet or
Gigabit Ethernet solve this problem only partially.

We use a per-frame sort-first strategy to distribute the graphic updates [7], in
a comparable approach to WireGL [4]. Whenever something changes in the
scene graph, it is sent to the appropriate slaves (i.e. those that are affected by
the change). The correct destination slave is computed using bounding boxes,
defined by clipping planes for each sub-frustum. This strategy is simple to
implement but can induce load imbalance. The protocol to keep the scene
graph consistent on all slaves, distinguishes two types of operations:

Scene Graph operations The master sends separate update messages to
create nodes, add nodes, and remove nodes from the scene. These types of
operations are broadcast to every slave to maintain a consistent graph on
each node.

Object Modifications Whenever the user-program modifies an Aura ob-
ject, the master marks it as dirty. Before the rendering loop, it transmits an
update containing the new data for each dirty object. Each type of object
owns its own set of update types and state bits. For example, each vertex
of a geometric object has a dirty bit and only dirty vertices are sent over
the network. The same approach is used for normals, vertex colors, etc. The
key idea is that a minimum of data is sent if an object is modified.



For the 1Grid2002 demonstration, this parallel rendering was implemented
using standard MPI library over the Gigabit Ethernet network linking the
rendering nodes. The rendering itself was managed by an OpenGL graphics
card available on each node.

Pixel Generation Instead of connecting the output of the graphics card of
each node to an display device (TFT panel, plasma TV, video projector) like
in a regular tiled display, we read back the pixels at the end of the graphics
pipeline (RGB values). This is a standard operation of the OpenGL API (i.e.
glReadPizels).

Pixel reading is often considered as a slow process on most graphics cards.
However, the situation is improving to the point where one can achieve in-
teractive frame-rates while reading back the pixels generated by the graphic
engine. We conduct experiments on two systems to validate our approach:

e During iGrid2002, on GeForceMX2 cards with P4 1.8 GHz processor:

Resolution | Pixel Transfer | Frequency

640 x 480 | 18.5Mpixels/sec 60Hz
800 x 600 | 17.5Mpixels/sec 36Hz
1024 x 768 | 16.0Mpixels/sec 20Hz

On such a system, interactive frame-rates are possible for a configuration
above 800 x 600.

e On the Vrije Universiteit cluster, with GeForce4 cards and Athlon 1.3MHz
Processors:

Resolution | Pixel Transfer | Frequency

640 x 480 | 35.1Mpixels/sec 114Hz
800 x 600 | 38.5Mpixels/sec 80Hz
1024 x 768 | 40.5Mpixels/sec 51Hz

On this more advanced system, even 1024 x 768 configuration can be used
interactively.

Since we were using a very high-bandwidth and high-latency network during
the ¢1Grid2002 demonstration, compression of the pixel data was not consid-
ered. However, early tests show that a simple run length encoding (RLE) or
a YUV (raw video) conversion allows significant gains at interactive speed on
a Pentium4 processor (without optimizations or multimedia instructions): it



is possible to compress 1024x768 images in RLE format at more than 60Hz,
for a compression ratio varying between 2.3 and 25, and to compress the same
images in YUV format at more than 80Hz for a compression ratio of 2.

3.2 Remote Visualization

Sl Rendering
 Node Cluster Pixels

N,

Scene updates 0 E

A

Simulation

Fig. 1. Application Setup

The demonstration shown during iGrid2002 consists of three components, as
shown in Figure 1:

The application generating scene-graph updates. This is a non-graphical
process that can be run on a single host. The application program and the
interaction events (mouse, keyboard) modify the scene graph. The updates
are sent to the rendering cluster for pixel generation. The application can
receive its data from an external simulation, in a grid interactive steering
scenario.

The rendering facility implements the parallel rendering system described
in the previous section. It can consist of a single graphics workstation or
rendering cluster. From the scene graph updates, the rendering generates
images accordingly. The pixels are then streamed to the display infrastruc-
ture.

The display infrastructure receives the pixels generated by the rendering
facility, and schedules the images for a smooth animation. It can consist of
a single display (monitor or projector) or a tiled display (video wall, TFT
tiling).

The technologies used in this application are started as follows. First, a render-
ing cluster is set up with an empty scene to be rendered. Then an application
using the Aura API is started on another machine and transmits scene graph
updates to the rendering cluster. From the received scene each node of the
cluster renders a part of the whole picture and send the pixels to a display
facility. Finally, the generated images are visualized on the display machines.



The communication between these three software components (application,
rendering, display) was carried out using the QUANTA toolkit, as described
in Figure 2: between the application and the rendering cluster we used TCP
connections to ensure the needed reliability. Large TCP windows were set to
optimize these transfers. Between the rendering nodes and the the display
setup, we used the RBUDP protocol to achieve the highest possible through-
put for pixel data. The only parameter we controlled was the data emission
rate, which was generally set around 500Mbps. This parameter was controlled
by a configuration file, which value was set by experimentation before an ac-
tual run of the demo. In a ideal case, this value should be dynamic, like in the
TCP protocol or the SABUL library, in order not to overload the routers or
the destination machine. For optimal data transfer, the emission rate should
be below the capacity of the whole link (physical links, routers, source and
destination machines).

Even if the application can be run on any site, two places should be considered.
First, the application can be run close to the display facility, in a scenario
where the user uses the remote rendering cluster as graphics resource. In a
second scenario, the application can be run close to the rendering facility for
a collaborative session where two sites (the local rendering, and the remote
display) share the views of the visualization. The second approach (application
close to the rendering facility) was used during iGrid2002 to overcome the
large latency between the two sites (around 100ms). Remote interaction, using
mouse and keyboard events, was still possible using a X11 remote display.

Rendering

Simulation

Fig. 2. Networking Setup

Multi-threaded communication To achieve high-throughput at the ap-
plication level between the two end points, we had to carefully design the
data path between the software components. We used a multi-threaded im-
plementation to obtain the best network throughput without slowing down
the rendering process, as shown in Figure 3.



Since the workload was small (frame size between 1 and 2 MByte) and the
network latency was high (100ms), we decided to pack several frames into a
single RBUDP message. The rendering thread pushes frames (pixel buffers)
into a work queue, in a producer-consumer fashion. This allows the rendering
process to work without delay, and allows the network thread to send a large
amount of data at once. Experimental tests gave good results while combining
8 frames in a message (in general, between 5 and 10 frames). Small messages
under-utilize the network and slow down the rendering process, while large
messages can achieve the largest throughput possible. However, large messages
introduce a lag in the system, where the display process receives the images,
in a pipeline fashion, delayed by the size of the message (5 or 10 frames). This
can be a drawback for interactive application. We noticed that around 1/3sec
delay is bearable on such high-latency network, and offers the best compromise
between throughput and latency.

1 Frame 1 Message NETWORK
i ' Hninnnmn
Frame queue Frame queue
| RBUDPEmessageS

|

Frames Rendering Communication ' Communication Display
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Thread Thread ! Thread Thread

Fig. 3. Multi-threaded communication

Similarly, we implemented a network queue at the display side, managed with
a producer-consumer scheme: a network thread reads the frame packets from
the network and inserts them in a queue, while a display thread visualizes
these images at a fixed frame rate. The network queue and the re-scheduling
of the frames locally produce a fluid animation, and smooth out the jittery
network transfers.

Algorithms Figure 4 gives an overview of the several programs involved in
the remote rendering system: the application processing events and sending
scene updates to the rendering master which controls the rendering nodes, the
nodes send pixel buffers to the display node for visualization.

// Application // Master // Rendering // Display
Setup(application); Setup(cluster); Setup(graphics); Setup(display);
while ( ! done ) while ( ! done ) while ( ! done ) while ( ! done )
{ { { {
ApplicationStep(); Draw();
EventProcessing(); ReadPixels();
PackSceneUpdates() ; ReceiveUpdates() ; SendPixels(); ReceivePixels();
SendUpdates() ; Synchronize() Synchronize() ; ConvertPixels();
BroadcastUpdates(); ReceiveUpdates(); WriteFramebuffer();
UpdateScene() ; SwapBuffers();
} T T }

Fig. 4. Algorithms: application, master, rendering, and display



4 Experiments

During the ¢Grid2002, the Griz demonstration was run successfully numerous
times. In the current section, we show the setup we used and some statistics
collected during the last day of the conference.

4.1 Setup

The hardware architecture, as sketched in Figure 2, was mostly provided by the
Electronic Visualization Laboratory from the University of Illinois at Chicago.
For the rendering, we used a 5-node graphics cluster set up at the StarLight
facility in Chicago. Each node was using a dual-Pentium4 system with a
GeForceMX graphics cards (consumer cards), and equipped with a gigabit
interface linked to the 10Gigabit backbone to Amsterdam.

Display
Cluster

StarLight

Fig. 5. Display Infrastructure

In Amsterdam, we used a tiled display made of four TF'T 18” panels arranged
in 2x2 configuration for an overall resolution of 2560x2048 pixels, as shown
in Figure 5. This display, located on the demonstration site in Amsterdam,
is itself driven by a cluster similar to the one used for rendering at Chicago.
Moreover, it is also equipped with gigabit interfaces onto the StarLight net-
work. Little graphics resources are used on this cluster. The received images
are just drawn into the frame-buffer with some additional information (frame
rate, network utilization, etc.). The portable SDL graphics library was used
for its pixel blitting, scaling, and overlays capabilities.

We used several resolutions on this setup, ranging from 640 x 480 to 1024 x 768
pixels per node. However, the images were up-scaled to fill each screen (native
resolution of 1280 x 1024). This trick was hardly noticeable since we used high-
quality settings during the rendering phase, with techniques such as “full-scene
anti-aliasing” and “anisotropic texture filtering”.
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(a) “Skeleton” application (b) “Crayoland” application

Fig. 6. Images of the 4Tile setup

We demonstrated various applications during the event, such as a Powerpoint-
like presentation tool, a 3D model viewer (Figure 6(a)) for the visible human
dataset, or a interactive 3D world (“EVL Crayoland”, Figure 6(b)). Figure 6
shows two photographs of the visualization setup with the four TF'T panels,
during the ¢Grid2002 event.

4.2  Results

Figure 7 shows the throughput and the visualization frame rate obtained for
a 640 x 480 configuration per tile (1280 x 960 overall resolution), during the
approximate 2 minutes of a demonstration run. As noted in a previous section,
the maximum pixel read back performance on the iGrid2002 hardware is
around 60Hz (or frame per second), excluding any rendering. We managed to
achieve an average frame rate between 16fps and 23fps, for an average overall
throughput of 621Mbps. This performance is sufficient to enable interactive
application and collaboration. While each of the four rendering nodes consume
around 150Mbps, the overall system manage to peak at a 924Mbps. However,
we can notice a significant jitter in the throughput, which directly influences
the effective frame rate, as described in “zoom-in” Figure 8 where bandwidth
usage is depicted on the left axis and frame rate on the right axis. This jitter
is probably due to some buffering and contention on the various routers (10
Gigabit router of the rendering cluster in Chicago, and the 10 Gigabit router
on the demonstration site). Also, other demonstrations were scheduled at the
same time. More details on the low levels of the networking setup are discussed
in various papers in the proceedings.

Figures 9 and 10 report similar results for a 800 x 600 pixel configuration.
Notably, the frame rate remains similar (between 16fps and 23 fps), but the
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Fig. 7. A “640 x 480 configuration” run
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Fig. 8. Zoom on a “640 x 480 configuration” run

larger frame buffers consume more bandwidth with an average of 1.0Gbps to
a maximum of 1.5Gbps during the 5 minutes of the run. Each of the four
rendering nodes is able to push around 250Mbps. This specific run transfered
approximatively 300Gbit (37.5GB) of data between Chicago and Amsterdam.

While the frame rate matches the obtained throughput (800*600*RGB with
8 frames per message at 20fps is roughly 250Mbps), the throughput is lower
than expected (500Mbps per node). The overhead includes the rendering it-
self (application dependent) and the pixel read back from the graphics cards
(constant). The whole system seems bound to the round trip time of 100ms
observed during the event (1000ms / 0.5 RTT = 20fps). This behavior needs
further investigation to achieve higher performance. Some severe performance
loss can be noticed on Figure 9 and on the zoom Figure 10. This can be ex-
plained by some network contention that the buffering mechanism can not
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hide, or by some load imbalance on the rendering cluster. The latter can be
produced when a rendering node has to render the whole scene (for instance
the whole skeleton in the Visible Human application) while the other nodes
are idle. This view-dependent behavior should be solved by a more efficient
parallel rendering technique.

Rendering from Chicago to Amsterdam -- Thursday 16:10:42 to Thursday 16:15:29 Rendering from Chicago to Amsterdam -- Thursday 16:10:42 to Thursday 16:15:29
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Fig. 9. A “800 x 600 configuration” run
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Fig. 10. Zoom on a “800 x 600 configuration” run

In Figure 11, it is possible to pin-point these specifics runs of the Griz demon-
stration on the network statistics collected during the iGrid2002 event. This
figure reports the incoming traffic (solid curve) and the outgoing traffic (line
curve) for the Thursday 26 of September. Our runs, between 16.00 and 17.00,
clearly generates an additional traffic, up to 1.5Gbps.
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Fig. 11. Griz demonstration network usage on the statistics graph

5 Conclusion

We demonstrated in this event and publication that remote rendering over
intercontinental optical networks was possible at interactive frame rate. Using
a 4-node rendering cluster in Chicago and a 4-node display setup in Amster-
dam, one gigabit per second (1Gbps) was used on average to enable remote
visualization with a 160021200 pixels configuration. Various visualization ap-
plication were shown.

Future enhancements include various compression techniques to cope with
the bandwidth requirements on more limited networks. One can think of al-
gorithms such as simple run-length encoding or more complex motion JPEG.
This will lead to an approach similar to video delivery to one or more users, and
could be integrated into the AccessGrid environment. The dynamic adapta-
tion to match the requirements of various display environments (PDA, laptop,
or large tiled display) will be also considered. Finally, an important issue to
be investigated is the latency of the overall system to support collaborative
work.
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