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SUMMARY

Teleimmersion! (also referred to as Collaborative Virtual Reality) is the unification of tele-
conferencing, and collaborative immersion in virtual environments in order to provide the
“truest” sense of co-presence. That is, the sense that one is present in the same physical
space with one’s collaborators. Collaborators are not only able to see and talk to each other

face-to-face but are able to naturally convey gesture and body language.

Teleimmersion is currently one of the most challenging areas of research in Virtual Re-
ality (VR.) Networking adds a new dimension to many areas of VR research. For example
human-factors research in VR traditionally focuses on the development of more natural means
of manipulating virtual objects and traversing virtual landscapes. However collaborative manip-
ulation forces the consideration of how participants should interact with each other in a shared
space, in addition to how co-manipulated objects should behave. There are also questions of
how participants should be represented in the collaborative environment; how to effectively
transmit non-verbal cues that real-world collaborators so casually use; how to best transmit
video and audio via a channel that allows both public addressing as well as private conversations

to occur; and how to sustain a virtual environment even when all its participants have left.

Naturally Teleimmersion poses new challenges to traditional areas of networking and databases

as well. Teleimmersive environments (TIEs) require an unconventionally broad range of net-

!The term Teleimmersion was coined by Thomas A. DeFanti and Daniel J. Sandin of the Electronic
Visualization Laboratory at the University of Illinois at Chicago

xii



SUMMARY (Continued)

working, database and graphics capabilities to realize and sustain. This vast range makes the
rapid construction of rich TIEs difficult. Past attempts at building networking and database
architectures for Teleimmersion have resulted in ad-hoc solutions that are specifically designed
to solve a small range of problems and hence little reusability was possible. Nevertheless
from these early attempts patterns began to emerge. In particular: the realization that the
application domain can significantly impact the kind of networking topology and protocols
needed to distribute the data; the realization that a tighter integration between networking
and databases is needed to support long term teleimmersive applications; and the realization
that multiple separable software layers are needed to allow application developers to rapidly
create new teleimmersive applications, as well as to integrate teleimmersive capabilities into

existing non-teleimmersive applications.

This dissertation’s main contribution is in a) proposing CAVERNSsoft, a broad conceptual
solution to the problem; and b) proposing and implementing a software foundation for CAV-
ERNsoft called the Information Resource Broker (IRB.) The IRB explores the feasibility and
effectiveness of using a persistent, distributed shared memory, to support data distribution in

Teleimmersion.

In the chapters to follow I will begin by more deeply examing the problems of supporting
Teleimmersion by first illustrating teleimmersive concepts through a number of examples. These
examples will form the basis for determining the set of characteristics that impact teleimmer-
sive environments. Following this a proposed solution will be presented along with a detailed

description of its implementation and its evaluation.
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CHAPTER 1

INTRODUCTION TO TELEIMMERSION

The following scenarios describe representative Teleimmersive Environments (TIEs) in sev-
eral domains. Although these scenarios may not fully represent all possible scenarios that
will arise in the future of Teleimmersion, they are chosen because they are either historically

illustrative- or are currently illustrative- of problems that are actively being researched.

One constraint this dissertation attempts to impose on the scenarios, is that they involve
tasks that would benefit from a solution in Teleimmersion over simply non-collaborative VR, or
3D workstation computer graphics. For example, simple audio/video teleconferencing alone is
not considered a scenario that can significantly benefit from the use of Teleimmersion. However
collaborative work that depends on the spatial qualities of VR (such as collaborative archi-
tectural design) in addition to teleconferencing, as part of its solution, is considered a good

candidate for a Teleimmersive solution.

1.1 Collaborative Design and Engineering

1.1.1  Caterpillar Collaborative Design

Collaborative design work in VR typically involves a small group of users, either syn-
chronously or asynchronously, engaged in the construction, and manipulation of objects in
the virtual world. Since the interfaces for three-dimensional modeling in VR are still relatively

1



imprecise compared to 2.5D CAD packages, most of the collaborative tasks in collaborative
design involve evaluations of the design, and to a lesser degree, redesign or brainstorming for

new design possibilities(1; 2; 3).

The National Center Supercomputing Applications (NCSA) has been working with Cater-
pillar Belgium S.A., to develop a system to allow remotely located engineers to work together
on vehicle design review and redesign(4). Remote collaboration is necessary here because the
eventual system will be used by Caterpillar engineers in the U.S. and Europe who must jointly
design Caterpillar vehicles so that they meet customer demands and safety requirements for
both markets. For example, European safety standards require a roading fender to be added
to the basic vehicle design. The collaborative VR system allows engineers to evaluate rearward
visibility from a viewpoint in the virtual cab of the vehicle. Virtual co-presence allows one

designer to manipulate the fender while another designer watches for its effect on visibility.

To support user-to-user communication, publicly available audio and video teleconferencing
tools (vat and nv respectively) were modified to work with the CAVE virtual environment(5).
Video images from each participant were texture-mapped onto the surface of a rectangular box
to establish their presence in the environment. The 3D models of the Caterpillar vehicles that
are used in the collaboration are first duplicated at every site. Then an unreliable multicast
data stream is used to distribute information about the participants and changes in the models

to all the other participants.



1.1.2 CALVIN - Collaborative Architectural Layout Via Immersive Navigation

CALVIN (2; 1; 3) is a TIE that allows multiple users to synchronously and asynchronously

experiment with architectural room layout designs in the CAVE ( Figure 1.)

Participants are able to move, rotate, and scale architectural design pieces such as walls and
furniture. Participants may work as either “mortals” who see the world life-sized (classically
known as an “inside-out” view), or as “deities” (“outside-in” view) who see the world as if it
were a miniature model. Deities by virtue of their enlarged size relative to the environment,
tend to tower above the scene and are better at performing gross manipulations on objects.
Mortals on the otherhand are at the same scale as the environment, and are hence better able

to perform fine manipulations.

Asynchronous access allows designers to enter the space whenever inspiration strikes them,
rather than requiring them to wait to schedule formal meetings, which can be particularly
difficult if the participants are located at opposite parts of the world with significant timezone
differences. In fact CALVIN already provides interfaces for bilingual (Japanese and English)

interaction.

Participants are able to save versions of the design as the collaboration progresses. When
participants re-enter the environment at a later time, the most recently saved version is auto-
matically loaded. If on the otherhand the participant re-loads a different version of the design,

CALVIN will record successive designs as a new branch in the version tree.



Figure 1. CALVIN: a collaborative design environment for architectural layout. The scene
shows two avatars (a tall one and a short one) viewing the space at different perspectives.
The top lefthand inset of the top image is a zoomed-out view of the entire design space. The
lower image shows one of the avatars using CALVIN’s Japanese interface.



CALVIN employees a shared variable model of a distributed shared memory (DSM) system
to eliminate the need of the programmers to develop specific protocols for network commu-
nication. The DSM itself uses a reliable protocol and a centralized sequencer to guarantee
consistency in all clients. C++ classes representing networked versions of floats, integers and
character arrays are provided so that assignment to variable instantiations of these classes

automatically shares the information with all the remote clients.

These networked variables are used to send data such as the state of objects in the world
and user-tracker information. Tracker information is sent so that avatars can be drawn in the
place of participants in the virtual scenes. Position as well as orientation data from the user’s
hand and head are transmitted so that fundamental gestures such as nodding, pointing, and

waving can be communicated through the avatars.

Although the task of world synchronization is greatly simplified by the centralized sequencer,
the transmission of tracker information over such a reliable channel can introduce latencies-
especially when synchronizing between the participant’s real location and their avatar’s location.
This is acceptable for small relatively closely located working groups where the network traffic
and latency is relatively low but is unsuitable for larger and more distant groups of participants
dispersed over the internet. In fact, to transmit audio/video signals between sites, the shared
memory system is bypassed with point-to-point raw ATM streams which are able to support

teleconferencing at NTSC resolution and at 30 frames per second.



Finally, in CALVIN when two or more participants simultaneously modify an object, a
“tug-of-war” occurs where the object appears to jump back and forth between two positions,
eventually remaining at the position given to it by the last person holding onto it. This problem
can be alleviated by using a locking scheme, but this was intentionally not done. In VR, where
emphasis is placed on natural interaction, it would be unnatural if the user had to lock an
object before picking it. The presence of avatars in combination with audio communication
(the most important of the communication channels to provide) compensated for the lack of
strict floor control and database locking. For example, the declaration: “I’m going to move this
chair” combined with the visual cue of an avatar standing next to a chair and pointing at it,

alerts other users that this user is about to grab that chair.

1.2 Collaborative Training

1.2.1  Military Simulations

The earliest teleimmersive systems were military-based applications such as SIMNET and
NPSNET (6; 7; 8). SIMNET is a standard for distributed interactive simulations developed by
DARPA beginning in 1985. The purpose of SIMNET was to facilitate early phases of training
at a cost far below the expense of conducting real battlefield exercises. A SIMNET participant
may be wearing a head-mounted display and standing on a tread-mill to train as a foot-soldier.
Alternatively another SIMNET participant may be sitting in a tank simulator. Typically,
SIMNET expects hundreds of participants to be engaged in the simulation at the same time.

To reduce the bandwidth and the effects of latency needed to sustain this degree of scalability



SIMNET uses a technique called dead-reckoning to predict the location of participants at any

instant in time based on their previous reported position, velocity and acceleration.

As SIMNET was designed primarily for military simulation, its underlying unit of data
transmission (called a Protocol Data Unit- PDU for short) specifically contains encodings for
military entities (such as tanks and airplanes.) DIS (Distributed Interactive Simulation) is a
newer and more ambitious simulation standard (IEEE 1278) that is based on SIMNET but
allows for greater complexity and realism. For example: SIMNET uses a flat terrain whereas
DIS accounts for the curvature of the Earth. SIMNET is oriented towards terrain and the sky
above it whereas DIS encompasses all areas of potential military activity including below the

ocean and in space.

1.2.2 NICE - Narrative Immersive Constructionist/Collaborative Environments

The NICE group is building a collaborative environment in the form of a virtual island for
young children (approximately 6-8 years of age)(9; 10). In the center of this island the children
can tend a virtual garden. The children, represented by avatars, collaboratively plant, grow,
and pick vegetables and flowers. They ensure that the plants have sufficient water, sunlight,
and space to grow, and need to keep a look out for hungry animals which may sneak in and eat
the plants. The children can shrink down to the size of a mouse and crawl under the garden to

see the root system, and can talk with the other remotely located children or other characters



in the scene. The children are able to modify the parameters of this small ecosystem to see how

it affects the health of the garden ( Figure 2.)

NICE’s architecture is based on the techniques derived from CALVIN in that a central server
is used to maintain consistency across all the participating virtual environments. Whereas
CALVIN solely used a reliable connection to synchronize state information, NICE used an
unreliable protocol (either multicasting or UDP) to share avatar information from magnetic
trackers; and a reliable socket connection to share world state information and to dynamically

download models from WWW servers using the HTTP 1.0 protocol.

Both multicasting and UDP were provided to deliver tracker data, as it was not always
possible to acquire the administrative privileges to conveniently erect multicast tunnels between
distant remote sites. Hence a number of interconnected NICE “smart-repeaters” were deployed
at various remote sites that allowed the use of multicasting amongst clients at localized sites
but UDP for repeating packets between remote locations. In addition, to prevent faster clients
from overwhelming slower clients with data, the smart-repeaters performed dynamic filtering
of data based on the throughput capabilities of the clients. Using this scheme participants
running on high speed networks, have been able to collaborate with participants running on

slower 33Kbps modem lines.

NICE’s virtual environment is persistent. That is, even when all the participants have

left the environment and the virtual display devices have been switched off, the environment



Figure 2. NICE: a narrative immersive collaborative environment for education. The top
scene shows an avatar handing a flower to another avatar in the NICE garden. Below is an
image of a child interacting with an avatar in the CAVE.
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continues to evolve; the plants in the garden keep growing and the autonomous creatures that

inhabit the island remain active.

Interactions with the NICE garden are not limited to users with VR hardware. The garden in
NICE can be experienced either by entering VR, a basic WWW browser (http://www.ice.eecs.uic.edu/nice),
a VRML2 browser, or in a Java applet. Participants using a mouse can interact with partici-
pants using VR hardware where the desktop user’s mouse position is used to position an avatar
in the 3D virtual world, and the bodies of the VR users are used to position 2D icons on the
desktop screen. This kind of scalability will be important for increasing the breadth of possible

collaborations.

1.3 Collaborative Scientific Visualization

A typical scenario in collaborative scientific visualization is for a small group of scientists
that are remotely located, to enter a virtual environment to discuss a data set that is being
visualized. This data set may originate from a database or may be computing simultaneously
on a supercomputer, in which case the virtual environment can be used to steer the compu-
tation(11). The importance of collaboration in this environment is not so much in allowing
the remote participants to perform different tasks simultaneously as it is to allow them to offer
their different opinions over what is observed in the visualization. The default assumption is
that all the participants should share a homogeneous view. However for a complex data set
that spans numerous dimensions, it may be more useful to partition the dimensions so that

different virtual environments observe different dimensions during the simulation.
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Argonne National Laboratory (ANL) in collaboration with Nalco Fuel Tech have built an
immersive interactive engineering tool for designing pollution control systems for commercial
boilers and incinerators(12). Using ANL’s CAVEcomm library multiple CAVEs could syn-
chronously connect with an IBM SP supercomputer to steer the interactive simulation of flue
gas flow in the boiler. Control of the simulation was strictly via turn-taking. One participant
could initiate the flow from one viewing location while another participant could simultaneously
view the flow in a different chamber of the boiler. Participants could communicate with one

another via a conference telephone call.

As with most teleimmersive applications, this system is only in a prototypical phase. Ad-

ditional capabilities that may be useful in enhancing work in the environment include:

1. Discovery Recording - the ability to annotate (perhaps using voice recording) to mark
points of interest in the data set- storing the annotation, and the state of the environment
when the “snapshot” was taken. This will allow the engineers to return to the time of the

event and re-observe it.

2. Storing Computed or Raw Data Sets - typically the data generated by a simulation or
gathered from data-gathering devises are too large to fit into the physical memory of the
computer performing the visualization. In this case some scheme of hierarchically storing

this data is needed to allow querying for smaller subsets of the data for visualization.



CHAPTER 2

THE PARTICULAR REQUIREMENTS OF TELEIMMERSION

The scenarios described in the previous chapter illustrate the broad spectrum of human-
factors, graphics, networking, and database requirements that are needed to support teleim-

mersion. These requirements are elaborated in this chapter.

2.1 Avatars

When collaborating in VR, virtual representations are needed to uniquely identify each
participant. The popular default assumption for representing avatars in VR is to place texture-
mapped, live video images on the head of a three-dimensional model of a human. The problems
with this scheme are manifold: the bandwidth required to transmit video may be too high to
“waste” on sending facial images; most VR experiences require the participant to wear some
form of head gear which will typically occlude most of the participant’s face making video
images of faces impractical; attaching a video camera and light source, however small, in an
optimal position to capture images significantly increases the encumberances already inherent

in the VR gear.

The elaborateness of the avatar should vary with the task being performed. Hence it is
important to identify the minimum elements of representation needed to afford recognizability

and to convey non-verbal information such as body language and gesture. In our experience

12
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we have found a minimum of head position and orientation, body direction, and hand position
and orientation to be adequate for many teleimmersive tasks. To afford recognizability, we have
found it easier to distinguish avatars based on geometry rather than color. Hence the commonly
used, homogeneously shaped avatars with varying colors and overlaid name tags, do not make

good avatars.

To support the minimal avatar, a bandwidth of approximately 12Kbits/sec! (at 30 frames
per second) is needed. Theoretically this implies that 10 avatars can be supported over a
128Kbits/sec ISDN connection. In practice however, experience has shown that it is able
to support a maximum of four avatars with an average latency of 60ms using UDP as the
transmission protocol. Although this is not a scalable solution, it is a cost effective means of

transmitting VR avatar data with the quality of service of a dedicated connection.

2.2  Suitable Interfaces for Collaborative Manipulation and Visualization

High-level virtual interfaces must be developed to allow collaborative manipulation of shared
objects. In addition, these manipulation tools require some form of transparent locking to occur
so that consistency is maintained across all the virtual environments sharing the virtual space.
The goal is to provide mechanisms for acquiring distributed locks (possibly through predictive
means) so that the user does not realize that locks have had to be acquired before objects could

be manipulated. This is particularly important over high latency networks where there might be

'This includes the avatar’s head and one hand’s position (x,y,z), orientation (6,0,,0.), and body
angle about the Y axis represented each as 4-byte floating pointer numbers.
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noticeable delay between the time when a user physically picks up an object (and hence attempts
a lock on it,) to the time when the VR system confirms the lock on the object. Lag similar
to this has been shown to significantly degrade human performance in a VR environment(13).
Previous work in this area has shown that for coordinated VR tasks involving two expert VR
users, performance begins to degrade when network latency increases above 200ms(14). Other
research has found acceptable latencies to be much lower (100ms)(7). The acceptable latency
is expected to be lower for inexperienced users and for coordinated tasks involving very fine
manipulation of shared objects. In the latter situation tracker inaccuracy will also begin to

affect human performance.

2.3 Audio/Video Teleconferencing

Audio (voice telephony) is one of the most important channels to provide in a collaborative
experience(15; 16). It has been shown that latencies of greater than 200ms will result in
degradations in conversion(17). As the latencies continue to increase the amount of time spent
in confirming conversion increases, and the amount of useful information being conveyed in
the conversation decreases. Video conferencing is useful in instances where it is important for
the participants to see each other face to face for negotiation tasks(18; 19; 20). In traditional
conference-room-style video conferencing, video provides a means to convey a sense of co-
presence(21). In VR however co-presence is directly created through the use of avatars and

hence video may play a less significant role in the collaboration.
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2.4 Synchronous and Asynchronous Collaboration

The main focus of most teleimmersive applications has previously been on synchronous
collaboration. That is, all participants are working together in the environment at the same
time. However in trans-global collaborations the timezone differences make routine synchronous
collaboration highly inconvenient. In this case it is important to also provide a means for
distributed groups to work asynchronously in a shared virtual space. The support of asynchrony

will require the use of distributed databases to maintain the states between the remote sites.

2.5 Persistence in Collaborative Virtual Reality

Persistence in Collaborative Virtual Reality describes the extent to which the virtual envi-
ronment exists after all participants have left the environment. Persistence can be divided into

three major classes: participatory persistence, state persistence, and continuous persistence.

2.5.1 Participatory Persistence

This is persistence in which the VE only exists in the brief amount of time that participants
are in it. When all participants leave, the environment is extinguished with no record of the
state of the environment before it was extinguished. When the environment is started at a later
time, it always begins at the beginning. Most virtual environments are still only participatory

persistent.
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2.5.2 State Persistence

This is where the state of the virtual environment may be saved at any given time to be
recalled later. Either intermittent snapshots can be created or entire collaborative experiences

can be recorded for later review.

In a scientific visualization environment that involves simulations that are running on su-
percomputers a recording should include either the entire state of the virtual environment as
well as the state and output of the simulation, or the state of the virtual environment and only
the geometric representation of the simulation. The advantage of the latter is that it simplifies
the mechanism for re-play. Re-play will only require a rendering of the geometry which can
easily be encapsulated to work even in external viewers such as VRML2 browsers. However the
disadvantage is that the geometry data itself cannot be re-used to further query the output of

the simulation.

On the otherhand the advantage of saving the state of the environment and the simulation
is that during re-play the participant can choose to dynamically re-involve the supercomputer.

This is motivated by the following:

To ensure accuracy in computational science simulations, the simulation steps are kept
relatively small. However the computed results are collected at every n time steps due to, sur-
prisingly, disk space limitations (the output can occupy between several hundred megabytes to
many gigabytes)(11). If by viewing the results a feature of interest is found, the scientist would

normally re-execute the simulation from the beginning but only begin recording the output in
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the region of the feature and at each time step rather than at every n time steps. In this scenario
persistence may be used to offer some assistance in reducing the amount of re-computation time.
State Persistence may be invoked during the initial course-grained recording where, instead of
simply recording the output, the states of the computation are also recorded. When the region
of interest has been isolated, rather than returning computation to the beginning as is typical,
the state of the computation can be retrieved from the persistent database and computation

can be resumed from that point. Recording can then resume at a finer granularity.

In general, as part of the recording of persistent experiences it may be useful to also record
the actions of the avatars so that on re-play they may be re-positioned in the scene to serve
as reminders of which particular area of the visualization was being observed or manipulated
at the time of the recording. In fact it may actually seem rather unnatural to watch an event
transpire without being able to see the effector of the event. One could also imagine that the re-
play procedure may also be recursively recorded so that a participant could observe him/herself
observing him/herself. It is not entirely clear if this capability is of any value but the idea is at

least somewhat intriguing.

Finally, one important component of being able to record a virtual experience is to be able
to perform (temporal) queries on the recording. Examples of queries might be: “Show me when
this part was modified,” “Show me when Max walked by here,” “Show me when this data set

exceeded this threshold,” “Show me all the objects Max modified.”
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2.5.3 Continuous Persistence

This is where the state of the virtual environment remains extant even when all the partic-
ipants have left. Hence when participants re-enter the environment the state of the world may
have changed. Such environments are liken to MUDs (Multiuser Domains/Dungeons) which by

their popularity, have shown to encourage the spontaneous use of collaborative environments.

Although this may seem to be an extravagant use of computing power, it is anticipated
that in future generations of teleimmersive environments the notion of persistence is merely
an extension of the existing idea of the operating system or the WWW server. These are

essentially, already continuously persistent environments.

2.6 Flexible Support of Various Data Characteristics

The design of Teleimmersion systems is affected by two interrelated factors: the character-
istics of the data being distributed and the distribution scheme employed. The four attributes
that characterize teleimmersion data that most greatly affect the mode of transmission, man-
agement and storage of teleimmersion data, are: quality of service, data size, persistence and

queueing.

2.7 Network Quality of Service

For closely coordinated work in teleimmersion, minimum levels of network bandwidth, la-
tency and jitter are desirable. In addition, both reliable and unreliable protocols of unicast,

broadcast and multicast transmission are needed to optimally transport different classes of
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teleimmersion data (3D tracker data, state information, streamed audio/video feeds, geometric

models, large scientific data sets.)

Unreliable protocols are suitable for the transmission of tracker data because: 1. the loss of
a packet of tracker data is usually followed shortly afterwards by newer ones, and 2. unreliable

protocols have a lower latency and utilize lower bandwidth than reliable protocols.

Multicasting has the additional benefit that clients that subscribe to a multicast group need
only send one message to the group, rather than having to send the same message individually to
each participant in the collaboration. The multicast protocol will automatically propagate the
single message to all the other subscribers. The main disadvantage however is that multicast is
based on unreliable UDP. Work however, is currently underway in developing reliable multicast
protocols (22). Reliable transmission is important in teleimmersion for the delivery of accurate
state information as well as models and scientific data sets. Here the loss of a packet could
produce an unwanted artifact in the visualization that is not representative of the original data

set.

A flexible solution to networking for teleimmersion should include both reliable and un-
reliable forms of transmission. However it is interesting to note that only a few provide both
capabilities simultaneously(23; 9). This is perhaps due to the following reasons: First, the main
concentration of VR libraries in the past has been in providing tools to allow programmers to
quickly build interactive non-collaborative VR environments (e.g MRToolkit(24)). Support for

collaboration was generally an after-thought and hence reliable TCP is used as the default,
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safe and generic solution. Secondly, most teleimmersion implementations are still experimental
technologies undergoing significant change. For example DIVE(25) initially used a transaction-
oriented, object-oriented database called ISIS and a reliable TCP connection to synchronize all
state information in the TIE. They are now using a peer-to-peer connection with a replicated
database that synchronizes data via a reliable multicast connection. Finally, the implementa-
tions may be highly customized for specific problem domains. For example NPSNET(7) uses
multicasting to deliver information for military simulations. Other researchers have attempted
to extend the underlying DIS protocol to allow the delivery of “non-ballistic” information. But
because it uses an unreliable protocol additional mechanisms for retransmitting packets had
to be devised. In addition, since the notion of military weapons are directly embedded in the
specification of the protocol it does not serve as a generic protocol for non-military simulations

such as collaborative engineering or scientific visualization.

2.7.1 Data Size

There are essentially three categories of teleimmersion data sizes: small-event, medium-
atomic, and large-segmented. These divisions are created because they affect the manner in

which they are optimally transmitted and manipulated.

e Small-Event data are data such as unreliable tracker data, and reliable state and event

data. These typically require priority transmission with low latency.
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e Medium-Atomic data are data that are small enough to fit in the physical memory of
the client because it must be processed as one atomic “chunk.” Examples of these are 3D

geometries representing individual objects in the VR scene.

e Large-Segmented data are data that are too large to fit in the physical memory of
the client and hence can only be accessed in smaller segments. Large scientific data sets
and long pre-digitized video streams fit this category. These data sets usually need to
be “abstracted-down” first before they can be visualized, as the amount of data that can
potentially be visualized can easily exceed the graphics rendering capabilities of the VR

system.

2.7.2 Queued/Unqueued Data

Data that are sent to clients or servers, regardless of whether they are stored in a database
or not, need to be either queued or unqueued. For example, world state information may be
unqueued since only the latest information is necessary. Queued data are data which must all
arrive at a client or server in order. This implies the use of a reliable protocol. There are
however instances where a queued, unreliable protocol may still be useful- specifically for audio

conferencing, long, unreliable data streams are transmitted to all participating clients.

2.7.3 Persistent/Transient Data

Persistent data characterizes data that needs to be stored in a database or file system for later

use. This data remains in the database after all the clients leave the TIE. All state data that is
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crucial to the resumption of a client in a teleimmersive session must be persistent. Models and

scientific datasets that will be loaded into TIE are also prime candidates for database storage.

Transient data are data that are not stored in a database. An example of this kind of data
are command messages that might be sent between clients to effect events or audio/video data
streams. An exception to this definition is when transient data is stored in a database to allow
re-play of events at a later time. In this case the data is more accurately characterized as

persistent rather than transient.

However there is more to persistence than simply the storage of data. The storage require-
ments of various types of Teleimmersion data are illustrated in Figure 3. This table maps the
networking and database requirements for three modes of teleimmersive interaction (unrecorded
interaction, periodic snapshots, continuous recording) and six categories of Teleimmersion data
(raw scientific data, derived data, avatar data, virtual state and meta data, three dimensional

models, and video conferencing data.)

Note for example that the database requirements for recording avatar data is different for
periodic snapshots as it is for continuous recording. For continuous recording, database integrity
can be sacrificed for throughput to ensure that all realtime changes to the environment are
captured. For periodic snapshots it may be important that the snapshots are made reliably
so that on recall they represent the entire environment consistently. These and other differing
database requirements suggest that no single database system will support all the needs of

teleimmersive applications. Instead a number of databases with varying capabilities should
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be gathered and unified under a single consistent interface which will allow the teleimmersive

application to negotiate the kind of “database quality of service” needed by the application.

2.8 Scalable and Flexible Topological Construction

No single interconnection of distributed resources will perform optimally for all teleimmer-
sive applications. The number of participants expected to work in the environment, the amount
and form of the data being shared, the geographic distance, and the intervening networks con-
necting participants, have profound effects on the design of a suitable distributed topology.
Systems that are designed to scale well with respect to connectivity (connection scalability)
typically must sacrifice strong data consistency. Most currently existing systems prioritize con-

nection scalability over data scalability (ability of TIEs to handle enormous amounts of data.)

Data scalability is of greater importance to the development of engineering and scientific
applications than connection scalability. Data sets in these problem domains are typically
enormous in size however the number of people simultaneously collaborating is unlikely to

exceed 6 or 7.

The three main classes of distributed topologies used in teleimmersion include: replicated

homogeneous, shared centralized, and shared distributed(7). These are described below.

2.8.1 Replicated Homogeneous

Replicated Homogeneous topologies are classical of military VR simulations (as in SIMNET,
NPSNET, DIS)(7). In such topologies each client holds a completely replicated database of the

shared environment and state information is shared by broadcasting messages to all participat-
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Volume Rate of Change Persistent| Complexity of Data Database integrity Type of DB Transactign Network QoS Requiremenis
No Recording
Raw scientific data set L SD Y C R WO,SA,SU R
Derived data MA - L ISCD Y &N 2 R SA,SU R
Avatar data S RCD N S - - u,.LJ
Virtual world state & meta data |S SCD/RCD N \ - - R,L,J
3D models MA-L SD Y v R SU R
Video conferencing data MA RCD N V - - U,B,L,J
Continuous Recording
Raw scientfic data set R SD Y C - - R
Derived Data MA SCD Y i R SA R
Avatar data S RCD Y S D RA u,.LJ
Virtual world state & meta data |S IRCD Y \ D-R RA - SA R,L,J
3D models R SD Y \ - - R
Video conferencing data MA RCD Y \Y D RA U,B,L,J
Intermittent Snapshots
Raw scientfic data set R SD Y C - - R
Derived Data MA SCD Y i R SuU R
Avatar data S SCD Y S R SU u,.LJ
Virtual world state & meta data |S SCD Y \ - SU R,L,J
3D models R SD Y \ - - R
Video conferencing data MA ISCD Y V R SU U,B,L,J
Derived = data derived from L=Large SD=Static Data C=Complex R=Required SA=Safe Appends B=Bandwidth guaran. desired
raw data sets. MA= Medium Atomic SCD=Slow Changing Data V=Varies D=Desired SU=Safe Updates R=Reliable
Meta data = miscellaneous dat: Small RCD=Rapid Changing Data S=Simple RU=Rapid Updates U=Unreliable

coordinating all the other data

R=Referenced

IRCD=Intermittent RCD

WO=Write Once
RA=Rapid Appends

L=Latency guarantee desired

J=Jitter guarantee desired

Figure 3. Mapping the networking and database requirements for three modes of
teleimmersive interaction (realtime interaction, state persistence, continuous persistence) in
six categories of Teleimmersion data (raw scientific data, derived data, avatar data, virtual

state and meta data, three dimensional models, and video conferencing data.)
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ing clients. This system has no centralized control whatsoever, hence any new client joining
a session must wait and gather state information about the world that is broadcasted by the

other clients.

2.8.2 Shared Centralized

In this approach all shared data is stored at a central server. The main advantage of this
scheme is that it greatly simplifies the management of multiple clients, especially in situations
requiring strict concurrency control. However, its role as an intermediary for the delivery of data
can impose an additional lag in the system. Another disadvantage is that if the central server
fails none of the connected clients can interact with each other. Despite these disadvantages,

this architecture is still useful for supporting small groups of collaborators.

2.8.3 Shared Distributed with Peer-to-peer Updates

This approach simulates a wide-area shared memory structure (25; 24; 23; 26) in which
objects that are instantiated at one site are automatically replicated at all the remote sites. This
logical abstraction simplifies the application development at the cost of performance. Typically
in these implementations, a newly connected client must form point-to-point connections with
all the participating clients. Hence for n participants the number of connections required is
n(n—1)/2. In addition if the environment involves the sharing of enormous scientific data sets,
the data set will be fully replicated at every site. Unless the data sharing policy is modified to

account for large datasets this scheme will not be scalable.
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2.8.4 Shared Distributed using Client-server Subgrouping

This topology distributes the database amongst multiple servers. Clients connect to the
appropriate server as needed. A classic approach is to bind the servers to unique multicast
addresses. Clients then subscribe to different multicast addresses to listen to broadcasts from
the servers(27; 28). This is a particularly effective way to handle large numbers of connected
clients distributed over a wide virtual space. Each geographic region of the virtual space can
be maintained by a separate server. The servers share the load of sustaining the state of the
virtual world by handling only the subset of the connected clients that are in their geographic

region.

2.9 Application Specific Servers

These are unlike traditional networking and database servers in that they do not simply store
and forward data. Application specific servers in VR also possess semi-graphical capabilities
as they may need a local representation of the virtual space for their operation. For example,
an application specific server simulating the movement of autonomous agents through a virtual
landscape may also use the same graphical routines that model and visualize the terrain to

perform operations such as collision detection.

2.10 Interoperability with Heterogeneous Systems

The varying domains in which teleimmersion is applied requires connectivity between het-
erogeneous resources such as external databases, supercomputers, desktop workstations, and

miscellaneous VR systems. For example, Argonne’s incinerator simulator connects the CAVE
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VR system to an IBM SP supercomputer. The supercomputer performs the computation while
the CAVE visualizes the results. In NICE, the system allows CAVEs, ImmersaDesks, desktop

workstations, WWW browsers and Java programs to all collaborate simultaneously.



CHAPTER 3

THE APPROACH

In light of all the complex, interacting aspects of computer graphics, networking, databases,
and human-factors that come into play in teleimmersion, developing teleimmersive applications
can be a daunting task. The temptation and common mistake, made by application developers
that are building teleimmersive applications for the first time, is that they will first build a non-
collaborative application and then attempt to retro-fit it for teleimmersive capabilities. It is
in fact more difficult to retro-fit an application for teleimmersive capabilities than to introduce
them early in the design phases of the application. Hence it is important to provide tools
that will encourage application developers to envision teleimmersive scenarios at a high-level so
that they can determine how such capabilities would be most useful in their own applications.
However a high-level set of tools does not offer much help for those trying to retro-fit existing
applications. A high level library of well integrated tools often assumes a specific software-design
methodology. This methodology may be incompatible with the software that is being retro-
fitted. For example a high-level library such as DIVE is a good system for rapidly constructing
new teleimmersive applications, but it cannot be used for adding teleimmersive capabilities to
an existing Performer CAVE application. The mechanisms for graphics rendering in DIVE and
Performer are incompatible and DIVE is not modularized enough to allow arbitrary use of its

individual components.

28
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Non-graphical .- Graphical Templates

Templates

LIMBO /
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Figure 4. Software infrastructure of CAVERNsoft.

To address this issue this dissertation proposes a software infrastructure (called CAVERN-
soft) that will support both the rapid creation of new teleimmersive applications, and the

retro-fitting of previously non-collaborative VR applications with teleimmersive capabilities.

3.1 CAVERNSsoft

CAVERNSsoft, shown in Figure 4, consists of a central structure called the Information Re-
source Broker (or IRB) surrounded by layers of support software. Although these layers appear
to increasingly hide the lower layers from the main application they are in fact accessible at
every level. The lower-levels facilitate the construction of new components, and the retro-fitting
of existing applications. The higher-levels facilitate the rapid development of new teleimmersive

applications.
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The IRB is a relatively low-level merging of networking and database capabilities that
is completely separate from graphics. Hence the basic IRB core can be placed in any soft-
ware application regardless of whether it possesses graphics capabilities. This allows graphical
applications to communicate with non-graphical applications and it also allows existing non-
collaborative applications to possess networking capabilities with minimal disturbance to their

existing mechanisms for rendering graphics.

At a layer above the IRB are still non-graphical template libraries that support such things
as: base classes for the coordination of avatars, and audio and video data compression algo-
rithms. On top of this layer is a higher level layer that consists of graphical versions of the
previous layer. For example OpenGL, Performer, and Video avatar templates. These higher
level templates can then be gathered into even higher level fully functional teleimmersion spaces

called LIMBO spaces.

LIMBO spaces will provide varying degrees of avatar rendering and recording; model import-
ing, distribution, manipulation and version control; and audio/video teleconferencing. These
individual elements will be integrated in a manner that is guided by research in human-factors
in cooperative work situations. Using a basic LIMBO space collaborators can begin working in
the virtual space immediately. They may enter the space with an avatar of their choosing and
import 3D models (perhaps of car designs, or scientific data-sets, etc) into the space. The space
will ensure proper distribution of the model to all the other remote participants. Once the

objects are distributed the participants may collectively modify them. In addition, application
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developers may use the well documented source code of the LIMBO space to jumpstart the

development of their own domain-specific teleimmersive applications.

As more domain-specific applications are developed a growing library of CAVERNSsoft-
based reusable components (such as collaborative visualization tools) will emerge. These can
be added to the library of existing templates and may be gathered to build DOMAIN spaces
that are specializations of LIMBO spaces. This will allow, for example a designer, to build a
teleimmersive design application by starting with an existing DOMAIN space that is equipped
with collaborative tools specifically for collaborative design, rather than starting from the basic

LIMBO space.

3.2 The Information Resource Broker

The full development of CAVERNSsoft is beyond the scope of this dissertation. This dis-
sertation will focus on only one aspect of CAVERNSsoft- the central core that will support
data distribution between CAVERNSsoft applications. That is, this dissertation proposes and

implements a subset of the IRB.

The Information Resource Broker (IRB) is the nucleus of all CAVERN-based client and
server applications. The ultimate goal of the IRB is to place powerful networking and database
tools, that embody the expertise of networking and database researchers, at the finger tips of
application developers. These tools should be presented with a unified interface so that the
programmer does not have to learn separate networking and database models of operation.

This problem however is not solved by simply employing an existing distributed shared mem-
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ory system or distributed database. The realtime requirements of teleimmersion make these
more-reliable, and consequently, constraining, solutions unsuitable. A suitable architecture
for Teleimmersion should: facilitate the rapid construction of arbitrary distributed topologies;
provide support for various networking protocols (including reliable and unreliable, unicast,
broadcast and multicast) and quality of service capabilities; provide facilities for supporting
concurrent programming (both a message-passing and a distributed shared memory model);
and provide support for persistence- where small-event, medium-atomic and large-segmented

data can be seamlessly managed.

The IRB supports these requirements with an architecture that is a hybrid of a realtime
networking library, a distributed shared memory system and a distributed database. It offers
a unified high-level interface to these capabilities while still providing the necessary low-level

control necessary to manage realtime data.

A client application is built by using an IRB interface (IRBi) which, on invocation, will
spawn the client’s “personal” IRB. This IRB is used to cache data retrieved from other IRBs
during the operation of the client. An application-specific server is similarly built using the
IRBi. Hence there is little differentiation between a client and a server ( Figure 5.) Using
the IRBI a client can arbitrarily form a connection, after having acquired the proper permis-
sions, with any other client or server to access its resources. The IRBi will communicate the
request to the client’s personal IRB which will then communicate with the remote client’s or
server’s IRB. It is the IRBs’ responsibility to negotiate the networking and database services

requested by the client/server applications. This form of flexibility and symmetry will allow all
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Figure 5. Clients/Servers use the IRB interface to spawn personal IRBs with which to
communicate with other clients/servers or standalone IRBs.

of the main teleimmersive topologies to be quickly constructed. Figure 6a. shows IRB-based
clients with possibly fully replicated databases sharing updates via a multicast group (as in
DIS/NPSNET(7).) Figure 6b. shows the use of IRBs in a shared, centralized database (as in
CALVIN and NICE.) Figure 6¢c. shows IRB-based clients in a fully connected configuration
to support a shared, distributed database with peer-to-peer updates (as in MRToolkit(24).)
Finally Figure 6d. shows IRB-based clients and servers that are connected to form a shared,
distributed client-server database (as in SPLINE(27).) The clients may arbitrarily connect to

any of the servers using any desired communications protocol to retrieve information. Since
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Figure 6. Use of IRBs to construct all the major classes of Teleimmersion topologies. (a) Fully
replicated databases sharing updates via a multicast group/cloud. (b) IRB clients connected
to a shared centralized database (also an IRB.) (c) IRB clients in a fully connected
configuration to support a shared, distributed database with peer-to-peer updates. (d) IRB
clients and servers connected to form a shared, distributed client-server database.

there is no distinction between a client or a server, an IRB-based program may be a client

running on a supercomputer, or a server interfacing with a large database of scientific data.
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3.3 The IRB Interface

The IRB interface (IRBI) is the client and server’s interface to the IRB. The IRBIi provides
the application with a handle to a personal IRB that the application can use to activate dynamic
connections with remote IRBs. A client wishing to share information between its personal
IRB and a remote IRB begins by first creating a communication channel and declaring its
communication properties. Then any number of local and remote keys may be linked over the
channel ( Figure 7.) A key is a handle to an arena of memory that can be committed to the
IRB’s persistent store. Keys are uniquely identified across all IRBs and can be hierarchically
organized much like a UNIX directory structure. Each local key may be linked only once to a
remote key on a remote IRB. That is the same key cannot be linked twice to the same IRB.
However each local key can initiate or accept multiple linkages to and from other remote keys on
different IRBs. The application is generally unaware of these additional linkages as the personal
IRB transparently manages data sharing with the remote subscribers. The application is only
aware of the linkages that it has explicitly made. When keys are linked, any modifications made
to one key will automatically be propagated to all the other linked keys based on the individual

link properties.

3.3.1 Channel Properties

Channel properties allow clients to specify the networking service desired for data delivery.

Clients may specify reliable TCP, or unreliable UDP and multicast. Large packets delivered
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Figure 7. Example of two local keys linked to remote keys on remote IRBs.

over unreliable channels will automatically be fragmented at the source and reconstructed at

the destination. If any fragment is lost while in transit the entire packet is rejected.

In addition to connection reliability clients may specify Quality of Service (QoS) require-
ments. Hence they are able to declare the desired bandwidth, latency, and jitter of the data
stream. The personal IRB will attempt to obtain the desired level of QoS from the remote
IRB, but if it fails, the client may at any time negotiate for a lower QoS. As in RSVP(29)
client-initiated QoS is used so that the client can specify the amount of data it can handle from

the remote IRB.

3.3.2 Link Properties

Link properties allow clients to specify the actions taken when local and remote keys are

linked. This includes being able to choose between active and passive updates and being able to
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select the initial and subsequent synchronization behavior. Hence it allows the IRB to support

both write-update and write-invalidate coherence protocols as in a distributed shared memory.

In most teleimmersive applications, world state information consisting of a few tens of bytes
are actively distributed. That is, the moment a new value is generated it is automatically prop-
agated to all the subscribers of the data. Passive updates occur only on subscriber request and
usually involves a comparison of local and remote timestamps before transmission. For exam-
ple, passive updates are typically used to download large volumes of 3D model data. Caching
data and comparing their timestamps helps to reduce the need to redundantly download the

same data set.

The initial synchronization behavior determines how the local and remote keys should be
synchronized when the links are first formed. That is, clients are able to choose to synchronize
automatically based on the keys’ timestamps. That is the older key will be updated with
information from the newer key. However the client may also choose to force synchronization
from the local key to the remote key, and vice versa, regardless of timestamp. Of course clients

may choose to perform no initial synchronization at all.

Subsequent synchronization behavior specifies the manner in which data is synchronized
when local or remote updates to keys occur. The same options as for initial synchronization
apply.

The default link property is to use active updates with automatic initial and subsequent

synchronization.



38

3.3.3 Key Properties

Keys may be defined at a client’s personal IRB or at a remote IRB provided the client
has the necessary permissions. Keys may either be transient or persistent. Persistent keys are
keys that will be stored in the IRB’s datastore so that when a client or server re-launches, the
data will still be retrievable by specifying the same key identifier. Clients determine whether
a key is to persist by asking the IRB to perform a commit operation on the data. In addition
simple locking functions should be provided to allow clients to lock local or remote keys (hence
permitting entry consistency.) Locking calls are non-blocking to prevent realtime applications
from stalling when attempting to acquire locks on keys. Instead the locking call accepts a
user-specified callback function that will be called when a lock has been acquired or when any

relevant event pertaining to the lock occurs.

3.3.4 Asynchronous Triggering of Events

Although distributed shared memory (DSM) systems have historically been shown to be
easier to program than message passing systems(30), Teleimmersion requires that the DSM
model be enhanced with some message passing capabilities. Specifically it should be enhanced
with the ability to asynchronously generate events in the application. Many events may arise
during the course of distributing data between clients and servers. The client/server may need
to be notified so that appropriate actions may be taken in response to these events. It is

inefficient for realtime VR applications to continuously poll for such conditions. IRB-based
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programs provide the IRBi with callback functions that the IRBi may call when the event

arises.

Examples of events include:

e New Incoming Data Event

This event occurs when a key receives a new piece of data. For example a key could be
subscribing to avatar state information (position and orientation of the avatar’s head).
When this information changes, a callback can be invoked to make the corresponding

changes to the graphical representations of the avatars in the virtual world.
e IRB Connection Broken Event

When a connection to an IRB has been broken (possibly due to a crash) clients will
continue to function by accessing local versions of the subscribed data. The personal IRB
may then periodically attempt to re-establish connection with the remote IRB or choose
another client or server to take the place of the “broken” IRB. It is the responsibility of

the application-specific IRBs to determine the policies for such situations.
e QoS Deviation Event

This event occurs when the negotiated QoS falls below contracted levels. For example,
if the latency negotiated for a stream of tracker data falls below acceptable limits, the
VR client can be warned so that perhaps interpolative techniques such as dead-reckoning

can be activated to reduce the impact of the increased latency. Alternatively the client
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can re-negotiate a different QoS, perhaps one involving a lowering of the bandwidth (by

compression of data) in order to maintain the desired latency.

3.3.5 Direct Connection Interface

In addition to the many automatic networking capabilities provided by IRBs the IRBi must
still support direct access to low-level socket TCP, UDP, multicast interfaces so that connectivity
with legacy systems (such as WWW servers) can be supported. However CAVERNSsoft adds
value to the basic socket-level interfaces by providing automatic mechanisms for accepting new

connections, and making asynchronous data-driven calls to user-defined callbacks.

3.3.6 Supplementary Concurrent Processing Facilities

Most of the networking and database operations performed in the IRB are executed con-
currently and, if a multiprocessor system is available, in parallel with the VR system. It
is therefore necessary to provide basic concurrency control primitives such as mutual exclu-
sion and condition variables, that are compatible with the IRB. These may be implemented as
macro definitions on top of the underlying threads library used by the IRB (for example POSIX

threads.)

3.3.7 Recording Keys

The IRBi should allow the clients to declare keys that hold recordings of groups of keys.

This facility is necessary to support State Persistence in VR.
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In these recordings close synchronization of remote system clocks is not absolutely necessary
as recording is always made from one point of view (i.e. from a virtual camera) and hence it is

the point of view’s time reference that all relevant information is recorded.

Recordings may consist of time stamping and storing every change in value that occurs at
a key and recording the state of all the keys at wide intervals. The former is needed to track
the gradual changes in the virtual environment over time. The latter is needed to establish
checkpoints so that the recordings may be fast-forwarded or rewound without having to compute

every successive state that led to the fast-forwarded/rewound location.

On playback the recordings will populate the appropriate keys and, if desired, trigger client
callbacks. In some instances it is useful to be able to playback only a subset of the recorded keys.
This will allow the user to observe smaller subsets of events that occur in the VR environment.
For example the Virtual Director(31) (a VR application that allows users to record the path
of a virtual camera through a virtual environment) allows playback of recordings of camera
positions in each of the three X,Y,Z axes so that each of the paths in the axes can be edited

independently.

Finally to synchronize the playback of experiences across multiple virtual environments each
environment must constantly broadcast their frame-rate. This ensures that faster VR systems

do not overtake slower systems while rendering the virtual imagery.

In order to support these and many other recording capabilities in Teleimmersion, the

IRB must adopt a notion similar to quality of service for networks. That is, the IRB needs
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a mechanism for the client/server program to be able to negotiate the kinds of data storage

throughput and integrity needed for its particular application (as indicated in section 2.7.3.)



CHAPTER 4

IMPLEMENTATION OF THE IRB

In this chapter a detailed description of the implementation of a prototype IRB will be
presented. This prototype does not implement all the capabilities of the IRB, it only implements

the main capabilities that define the IRB. Specifically the features include:

1. The ability to arbitrarily define local and remote keys on networked IRBs.

2. The ability to create multiple communications channels between arbitrary IRBs using

both reliable (TCP) and unreliable (UDP, multicast) protocols.

3. The ability to link keys across communication channels and have them automatically
propagate data. Clients are able to select different initial and subsequent synchronization

mechanisms as well as active and passive updates.

4. The ability to trigger on key events and connection events so that the IRBs can inform

client-applications of new data or broken connections.

5. A prototype persistent key datastore has been implemented. This preliminary implemen-
tation caches all accessed persistent data in main memory and maps the key hierarchy to
a UNIX directory and file system, and hence it supports small-event and medium-atomic

data.

43
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The initial prototype was implemented to run on any O2, Octane and Onyx2 generation of
Silicon Graphics computers. This was chosen primarily because they are currently the main
platforms for the development of high-end teleimmersive applications. However, a port to other

UNIX-based platforms should not be difficult as the IRB contains no graphics capabilities.

The IRB’s underlying networking is supported by Nexus(32). Nexus is an efficient multi-
threaded communications library developed by Argonne National Laboratory to connect client

applications with remote supercomputing resources.

Nexus supports five basic abstractions: Nodes, Contexts, Threads, Communication Start-
points and Endpoints, and Remote Service Requests. Nodes refer to computational resources
such as workstations and processors on supercomputers. Contexts are Nexus-based programs
or forked processes that run on nodes. Threads are concurrent, light-weight “sub-processes”
that share the same address space as a UNIX forked process. Communication Startpoints and
Endpoints are created between communicating contexts. Remote service requests are essen-
tially remote procedure calls (without a synchronous reply mechanism) that are initiated from
a startpoint to call a remote function at an endpoint. When a request arrives at the endpoint
a thread is created to process the remote function. Many startpoints may be bound to a single
endpoint and hence an endpoint may handle requests for many remote contexts. This model of
threaded remote procedure call without a reply facility was chosen by the designers of Nexus to
maximize asynchronous communication and parallelism so that programs do not have to block

while waiting for replies from remote calls.
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Future releases of Nexus will also provide networking quality of service capabilities. The
CAVERNGSsoft programmer can then access these capabilities through the IRB’s API. Hence
as new networking capabilities are provided by Nexus, these same capabilities will be made

available to the IRB.

4.1 Overall Structure of the Information Resource Broker

The IRB consists mainly of three components: the Communication Manager, the Active
Key Manager and the Persistent Heap (please refer to Figure 8 frequently while reading the

remainder of this chapter.)

e Communication Manager: The Communication Manager (labeled cvrnCommunication-
Manager_c after the C++ class used to implement it) maintains the networking connec-

tions that are created and removed by Nexus.

e Active Key Manager: The Active Key manager (activeKeyManager_c) manages the cre-
ation and removal of keys; the loading of possibly persistent keys into memory; and

contains information on which remote IRB links subscribe to the data.

e Persistent Heap: The Persistent Heap dynamically allocates memory for the active key
manager and performs reads and writes to persistent store. It basically provides the

database capabilities of the IRB.

In addition to these three main components are three supporting components: the Incoming

Hailing Channel, the Channel Buffer, and the Garbage Collector.



46

IRB _
CAVERN_irbKey_c
cvrnCommunication  activeKey
Manager C Manager_c [md5] [ activekeyld ]
3
1 |
8 active key- Active key entry
— entry
\i v channel buffer list [int, ie bundleld]
each bundle holds the I (170" 2" 0 b oo o
™ connections to 1 remote IRB. Gﬂgnnelbuﬁe& _channelbuffet
- - = Simultaneous
mcast bundle I incoming hailing channell

SwapMutex

CAVERN _irbLink_c \there is only 1 mcast bundle containing -Iocalshadowbufferkey g1l:,|?el§(ey
finkOperationMute channels to several mcast groups

reference
bundleld bundle Count mutex

channelld
channelBufferld

hailing channel to remote IR

channel buffet : channel buffe

associatedChannellg
associatedBundlel

CAVERN_irbChannel_c mcast bundle

mcastChannelDB

- -aj(;t-i\-lé-lzé)-l-éﬁt-r& [mcast addr & port]

channel buffer

- parent channel pt

remoteRequest: '
PendingMutex

buffer key

| meta data (active/passive updafte)

channelBuffer ,-=—--—-m-wmoo o
Mutex i mcast parent channel pti'

v

mcastChannel_c

T

links present if this channel is used for mcast, K
""""""""""""""""""""" ! channel buffer Iist[md5]

Figure 8. Internal Structure of an Information Resource Broker



47

e Incoming Hailing Channel: The incoming hailing channel is always opened when the IRB
is first initiated. This channel listens on a pre-specified port (10000) for incoming hails
from other remote IRBs. This is implemented by opening a Nexus Endpoint to which
other IRBs may attach. These hails are command messages to coordinate the remote IRBs
on a variety of future tasks that fulfill the CAVERNsoft API. That is, they coordinate
the creation and removal of communications channels of varying networking protocols
and they coordinate the creation and removal of remote resources needed to sustain links

between local and remote keys.

e Channel Buffers: Whereas the active key manager accesses the persistent heap directly
through its API, the communication manager communicates with the active key manager
through a series of channel buffers. These channel buffers are created whenever a link of
two keys are requested by the user. They are the primary means by which active keys
can determine which networking interface must be used to send outgoing data destined
for a remote key. They are also the primary means by which incoming data determines

which active key should receive the data.

e Garbage Collector: When connections and, hence links, are broken they are not immedi-
ately removed from the IRB. Instead they are marked by the system as defunct. The
garbage collector is a concurrent thread launched by the IRB to monitor itself from time

to time (every 10 seconds) to search for defunct resources and remove them.

The IRB does not remove a resource the moment it is labeled as defunct, because there are

many possible concurrent threads also attempting to access the same resource. Removing
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the resource while it is being used will very likely crash the IRB. Instead the concurrent
threads are allowed to also determine for themselves that the resource is defunct and
cleanly abort their current operation. Marking the resource defunct prevents further

access from any new threads of control.

As part of the garbage collector’s normal operation, it will send out periodic “health
pulses,” which consist of small packets of data, to other connected IRBs. This is necessary

because Nexus can only determine that a connection is broken by sending data over it.

4.2 Communication Manager

The communication manager consists of a dictionary (hash table) of communication bun-
dles to support point-to-point connections, and a single multicast bundle to handle multicast

connections.

When two IRBs communicate with one another through a point-to-point connection, they
must each hold a communication bundle ( Figure 9.) This bundle will maintain all the net-
working connections that will be created between the IRBs. For example a bundle will hold
one connection via a reliable protocol, and another connection via an unreliable protocol. Each
communication bundle contains a Nexus Startpoint that is attached to the remote IRB’s In-
coming Hailing Channel Endpoint. Using this Startpoint the local IRB may send command

messages to the remote IRB.

Each of the separate networking connections that are created between two IRBs are encap-

sulated in a communications channel (labeled cvrnChannel_c). This channel contains Nexus
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Startpoint and Endpoint pairs that connect to a corresponding communications channel and
bundle on a remote IRB. These communication channels are maintained in a channel dictionary

(hash table labeled channelDB).

In addition to the channel dictionary, the bundle also has a single channel buffer list (again
a hash table) which holds pointers to the channel buffers. The channel buffer is used to link the
communications channel to the key containing the data (more on this later). One channel buffer
is created per CAVERN link created. Each channel buffer in the bundle is uniquely identified
by the key it is associated, and hence a key cannot be redundantly linked to the remote IRB.
A key may however be linked more than once to completely separate IRBs since each of these
links (and hence channel buffers) will reside in separate communications bundles, each with

their own channel buffer lists.

4.3 Active Key Manager

The active key manager is a dictionary of all the keys that are currently active in the IRB.
Whenever the user defines a key locally, or whenever a remote IRB requests a link to a local
key, an entry is made in the active key manager. A reference count is maintained in the entry
so that the IRB will know when the key is no longer being used and hence may be purged to
free valuable memory. Each active key entry consists mainly of a channel buffer list (much like
the one in the bundle), a trueKey pointer and a local shadow buffer key pointer. Auxiliary
items include a pointer to a user-defined callback which can be triggered whenever new key

data arrives; a number of mutual exclusion variables to guarantee atomicity in data transfer.
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The channel buffer list is a dictionary of pointers pointing to the same channel buffers in the
bundle’s channel buffer list. As mentioned earlier the channel buffers are the interface between

the communication manager and the active key manager.

When the user requests that a key be linked to a remote key over a specific communications
channel the IRB first identifies the bundle that contains the channel and creates a channel
buffer. An entry in the bundle’s channel buffer list is created to point to this channel buffer.
In the bundle’s channel buffer list the entry is uniquely identified by the name of the key. The
active key manager locates the active key that is being linked and adds a similar pointer to
the channel buffer, to its channel buffer list. In this case the channel buffer entry is uniquely

identified by the communications bundle’s ID rather than the name of the key.

As mentioned earlier the active key entry also contains a trueKey pointer and a local shadow
buffer key pointer. These pointers point to arenas of memory allocated by the persistent heap.
The trueKey’s arena contains the actual current data stored in a user-defined key. The local
shadow buffer key’s arena is used as a cache for any locally initiated user requests to fill the
key with new data. When the user initiates a put() call to the key, the shadow buffer is first
filled with the new data. When the data has been deposited, the trueKey is locked and a
pointer-switch occurs to swap the contents of the trueKey and the shadow buffer key. The
trueKey, now holding the new data, can be unlocked for general access. The shadow buffer on
the otherhand now holds an arena that can be re-used for the next put()- hence the same

memory is efficiently recycled reducing the need for dynamic memory reallocation.
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The channel buffer also contains a similar buffer key with its corresponding pointer to an
arena of memory in the persistent heap. Any incoming data from the network is first collected
into the channel buffer’s key buffer. Then, as in the case with the local put() call, a pointer-
switch occurs to swap the contents of the channel buffer’s buffer key and the trueKey. This
scheme allows the IRB to minimize the number of redundant memory copies that are needed to
move data from the network to the user and vice versa. In addition it also guarantees that
all data accessed by the user and transmitted to remote IRBs are atomic. Finally,
since one channel buffer is allocated for each remote subscriber to the key, the IRB

is able to parallelize the download of incoming data streams.

4.4 Putting it all together

4.4.1 When a user places new data in a key

When a user invokes the put() call to place new data into a key the key is first located in the
active key manager. The data is deposited in the local shadow buffer and then pointer-switched
with the trueKey. Finally the IRB iterates through the list of channel buffers in the active key’s
channel buffer list and sends the data out to any IRBs that may be linked (subscribing) to the
key. This is done by examining each channel buffer, and following the channel buffer’s parent
channel pointer to the channel responsible for delivering the data to the external IRB. Data
transfer can then occur by accessing the Nexus startpoint stored in the channel. This process
currently occurs sequentially. In principle this process can be done concurrently via multiple

threads.
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4.4.2 When data arrives from a channel

When new key-data arrives from a channel the message usually contains the name of the
key and the ID of the bundle that holds the communication channel. With this information
the bundle can be retrieved from the bundle database. With the bundle at hand, the key can
be looked up in the channel buffer list. If found the channel buffer is retrieved and the data is
deposited in the channel buffer’s buffer key. Recall that by depositing the data in the buffer
key, the IRB is able to parallelize the receipt of incoming data destined for the same key, as

each channel has its own channel buffer.

When the data has been completely transferred, a pointer-switch occurs to swap the data
in this buffer with that in the active key entry’s trueKey. If the user has specified a callback in
the active key it will fire so that the client application can be alerted. Then the IRB must scan
the active key’s channel buffer list and iterate through each of the channel buffers and send the
data out to all their associated channels. Hence local user notification is prioritized over

data retransmission to the external subscribers.

4.5 Keytool: the Persistent Heap

The Persistent Heap is implemented as a prototype to determine the kind of API needed to
support the IRB. As a result the implementation is not optimal. In the future the persistent

heap will be implemented with more efficient and robust database technology.

The heap identifies the individual storage arenas by a path name and a final leaf (key) name,

that corresponds directly with a UNIX local path and a filename. Hence when a key is made
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persistent, a sequence of UNIX sub-directories (corresponding to the path specification of the
key,) is created before the final data is stored at a filename with the same name as the key. In
addition a meta-data file is created that is used to store any auxiliary data about the key (such

as time stamps).

When a key is first requested the persistent heap searches the file system for the same
pre-existing key. If it exists the persistent heap will load it into main memory as an arena.
This arena is turned over to the active key manager to be used as needed. When new data