
CAVERN AND A UNIFIED APPROACH TO SUPPORT REALTIME

NETWORKING AND PERSISTENCE IN TELEIMMERSION

BY

JASON LEIGH
B.S., Computer Science, University of Utah, 1988

M.S., Computer Science, Wayne State University, 1991

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

and Computer Science
in the Graduate College of the

University of Illinois at Chicago, 1998

Chicago, Illinois

Copyright by

Jason Leigh

1998

To my parents Francis and Betty Leigh,

and my grandfather Lee Tak Hung.

iii

ACKNOWLEDGMENTS

I owe a huge debt of gratitude to my committee, who have also been my mentors over

the years: Tom DeFanti, Dan Sandin, Tom Moher, Bob Grossman, Andy Johnson, and Larry

Smarr.

I would also to like to thank my closest friends Karl Fitzpatrick, Andy Johnson (a second

time) and Christina Vasilakis for being great companions through life.

Finally I would like to thank the sta� members of EVL, in particular Maggie Rawlings,

Dana Plepys, and Maxine Brown who have supported me since I �rst set foot in EVL, N-years

ago.

iv

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION TO TELEIMMERSION 1

1.1 Collaborative Design and Engineering 1

1.1.1 Caterpillar Collaborative Design 1

1.1.2 CALVIN - Collaborative Architectural Layout Via Immersive
Navigation . 3

1.2 Collaborative Training . 6

1.2.1 Military Simulations . 6

1.2.2 NICE - Narrative Immersive Constructionist/Collaborative En-
vironments . 7

1.3 Collaborative Scienti�c Visualization 10

2 THE PARTICULAR REQUIREMENTS OF TELEIMMERSION 12

2.1 Avatars . 12

2.2 Suitable Interfaces for Collaborative Manipulation and Visu-
alization . 13

2.3 Audio/Video Teleconferencing 14

2.4 Synchronous and Asynchronous Collaboration 15

2.5 Persistence in Collaborative Virtual Reality 15

2.5.1 Participatory Persistence . 15

2.5.2 State Persistence . 16

2.5.3 Continuous Persistence . 18

2.6 Flexible Support of Various Data Characteristics 18

2.7 Network Quality of Service . 18

2.7.1 Data Size . 20

2.7.2 Queued/Unqueued Data . 21

2.7.3 Persistent/Transient Data . 21

2.8 Scalable and Flexible Topological Construction 23

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

2.8.1 Replicated Homogeneous . 23

2.8.2 Shared Centralized . 25

2.8.3 Shared Distributed with Peer-to-peer Updates 25

2.8.4 Shared Distributed using Client-server Subgrouping 26

2.9 Application Speci�c Servers . 26

2.10 Interoperability with Heterogeneous Systems 26

3 THE APPROACH . 28

3.1 CAVERNsoft . 29

3.2 The Information Resource Broker 31

3.3 The IRB Interface . 35

3.3.1 Channel Properties . 35

3.3.2 Link Properties . 36

3.3.3 Key Properties . 38

3.3.4 Asynchronous Triggering of Events 38

3.3.5 Direct Connection Interface . 40

3.3.6 Supplementary Concurrent Processing Facilities 40

3.3.7 Recording Keys . 40

4 IMPLEMENTATION OF THE IRB 43

4.1 Overall Structure of the Information Resource Broker 45

4.2 Communication Manager . 48

4.3 Active Key Manager . 50

4.4 Putting it all together . 52

4.4.1 When a user places new data in a key 52

4.4.2 When data arrives from a channel 53

4.5 Keytool: the Persistent Heap . 53

4.6 Multicasting . 55

4.7 Providing Fault Tolerance . 56

4.8 Compatibility between the IRB and the CAVE library 58

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

5 EVALUATION . 61

5.1 Bene�ts of using IRBs for Teleimmersion 61

5.1.1 IRB Network and Database Programming is Easy 61

5.1.2 Topology Building is Easy . 63

5.1.3 Persistence Makes it Easy to Save Downloaded 3D Models . . 67

5.1.4 Concurrency A�ects Graphics Minimally 67

5.1.5 Fault Tolerance Allows Applications to Survive Server Crashes
and Re-route to Backup Servers 68

5.2 Applications of the IRB . 69

5.2.1 NICE . 69

5.2.2 General Motors - Teleimmersive VisualEyes 72

5.3 Areas of Potential Improvement in the Prototype IRB 76

5.3.1 UDP and Multicasting . 76

5.3.2 New Threading Model . 76

5.3.3 Networking Quality of Service Capabilities 77

5.3.4 Further Reducing Redundant Memory Copying 77

5.3.5 Security . 77

5.3.6 Locking Scheme for Keys . 78

5.3.7 Preventing Cycles . 78

5.3.8 Database Quality of Service . 79

5.3.9 Cross-platform Porting . 80

5.4 A Comparison of the IRB and HLA/DIS for Data Distribution 81

5.5 IRB Performance Benchmarks 84

5.5.1 Networking Interface Performance Comparison 84

5.5.1.1 General Experimental Setup . 84

5.5.1.2 Experiment 1 : Comparison of raw TCP, Nexus and CAV-
ERNsoft for small packet sizes below 8192 bytes. 85

5.5.1.3 Interpretation of Results . 85

5.5.1.4 Experiment 2 : Broad comparison between raw TCP, Nexus
and CAVERNsoft. 89

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

5.5.1.5 Interpretation of Results . 89

5.5.2 Database Performance Experiment 93

5.5.2.1 General Experimental Setup . 95

5.5.2.2 Interpretation of Results . 95

5.5.3 Summary of Findings . 97

6 CONCLUSION . 99

APPENDICES . 102

Appendix A . 103

Appendix B . 173

CITED LITERATURE . 181

VITA . 187

viii

LIST OF FIGURES

FIGURE PAGE

1 CALVIN: a collaborative design environment for architectural layout.
The scene shows two avatars (a tall one and a short one) viewing the
space at di�erent perspectives. The top lefthand inset of the top image
is a zoomed-out view of the entire design space. The lower image shows
one of the avatars using CALVIN's Japanese interface. 4

2 NICE: a narrative immersive collaborative environment for education.
The top scene shows an avatar handing a
ower to another avatar in the
NICE garden. Below is an image of a child interacting with an avatar
in the CAVE. 9

3 Mapping the networking and database requirements for three modes of
teleimmersive interaction (realtime interaction, state persistence, contin-
uous persistence) in six categories of Teleimmersion data (raw scienti�c
data, derived data, avatar data, virtual state and meta data, three di-
mensional models, and video conferencing data.) 24

4 Software infrastructure of CAVERNsoft. 29

5 Clients/Servers use the IRB interface to spawn personal IRBs with which
to communicate with other clients/servers or standalone IRBs. 33

6 Use of IRBs to construct all the major classes of Teleimmersion topolo-
gies. (a) Fully replicated databases sharing updates via a multicast
group/cloud. (b) IRB clients connected to a shared centralized database
(also an IRB.) (c) IRB clients in a fully connected con�guration to sup-
port a shared, distributed database with peer-to-peer updates. (d) IRB
clients and servers connected to form a shared, distributed client-server
database. 34

7 Example of two local keys linked to remote keys on remote IRBs. 36

8 Internal Structure of an Information Resource Broker 46

ix

LIST OF FIGURES (Continued)

FIGURE PAGE

9 A Communications Bundle consists of a hailing channel and multiple
Communications Channels. Each channel manages a number of links
that bind local and remote keys together. 49

10 A Multicast Bundle manages multiple multicast channels that subscribe
to independent multicast groups. 57

11 Linking two keys over a channel between two IRB-based programs. . . . 64

12 A variety of schemes for sharing avatar information in CAVERNsoft . . 66

13 NICE Client Connecting to a Garden Server. OUT#ID is a dynamic
key generated by the remote NICE client to allow the garden server to
send it private messages. 70

14 General Motors- VisualEyes. Selecting the CAVE allows the participant
to teleport into the environment where the interior of a GM car is being
designed. 73

15 Comparison of raw TCP, Nexus and CAVERNsoft at packet sizes below
8192 bytes. 86

16 Overhead imposed by CAVERNsoft over Nexus for packet sizes less than
8K bytes. 87

17 Overhead imposed by Nexus over TCP for packet sizes less than 8K bytes. 88

18 A comparison of raw TCP performance against CAVERNsoft and Nexus
using packet size increments of 81920 bytes. 90

19 CAVERNsoft overhead over Nexus using packet size increments of 81920
bytes. 91

20 A comparison of bu�ered TCP performance against CAVERNsoft and
Nexus using packet size increments of 81920 bytes. 92

x

LIST OF FIGURES (Continued)

FIGURE PAGE

21 Comparison of time spent in send calls for raw TCP, CAVERNsoft and
Nexus for packet size increment of 81920 bytes. 94

22 CAVERNsoft database performance vs UNIX fwrite. 96

xi

SUMMARY

Teleimmersion1 (also referred to as Collaborative Virtual Reality) is the uni�cation of tele-

conferencing, and collaborative immersion in virtual environments in order to provide the

\truest" sense of co-presence. That is, the sense that one is present in the same physical

space with one's collaborators. Collaborators are not only able to see and talk to each other

face-to-face but are able to naturally convey gesture and body language.

Teleimmersion is currently one of the most challenging areas of research in Virtual Re-

ality (VR.) Networking adds a new dimension to many areas of VR research. For example

human-factors research in VR traditionally focuses on the development of more natural means

of manipulating virtual objects and traversing virtual landscapes. However collaborative manip-

ulation forces the consideration of how participants should interact with each other in a shared

space, in addition to how co-manipulated objects should behave. There are also questions of

how participants should be represented in the collaborative environment; how to e�ectively

transmit non-verbal cues that real-world collaborators so casually use; how to best transmit

video and audio via a channel that allows both public addressing as well as private conversations

to occur; and how to sustain a virtual environment even when all its participants have left.

Naturally Teleimmersion poses new challenges to traditional areas of networking and databases

as well. Teleimmersive environments (TIEs) require an unconventionally broad range of net-

1The term Teleimmersion was coined by Thomas A. DeFanti and Daniel J. Sandin of the Electronic
Visualization Laboratory at the University of Illinois at Chicago

xii

SUMMARY (Continued)

working, database and graphics capabilities to realize and sustain. This vast range makes the

rapid construction of rich TIEs di�cult. Past attempts at building networking and database

architectures for Teleimmersion have resulted in ad-hoc solutions that are speci�cally designed

to solve a small range of problems and hence little reusability was possible. Nevertheless

from these early attempts patterns began to emerge. In particular: the realization that the

application domain can signi�cantly impact the kind of networking topology and protocols

needed to distribute the data; the realization that a tighter integration between networking

and databases is needed to support long term teleimmersive applications; and the realization

that multiple separable software layers are needed to allow application developers to rapidly

create new teleimmersive applications, as well as to integrate teleimmersive capabilities into

existing non-teleimmersive applications.

This dissertation's main contribution is in a) proposing CAVERNsoft, a broad conceptual

solution to the problem; and b) proposing and implementing a software foundation for CAV-

ERNsoft called the Information Resource Broker (IRB.) The IRB explores the feasibility and

e�ectiveness of using a persistent, distributed shared memory, to support data distribution in

Teleimmersion.

In the chapters to follow I will begin by more deeply examing the problems of supporting

Teleimmersion by �rst illustrating teleimmersive concepts through a number of examples. These

examples will form the basis for determining the set of characteristics that impact teleimmer-

sive environments. Following this a proposed solution will be presented along with a detailed

description of its implementation and its evaluation.

xiii

CHAPTER 1

INTRODUCTION TO TELEIMMERSION

The following scenarios describe representative Teleimmersive Environments (TIEs) in sev-

eral domains. Although these scenarios may not fully represent all possible scenarios that

will arise in the future of Teleimmersion, they are chosen because they are either historically

illustrative- or are currently illustrative- of problems that are actively being researched.

One constraint this dissertation attempts to impose on the scenarios, is that they involve

tasks that would bene�t from a solution in Teleimmersion over simply non-collaborative VR or

3D workstation computer graphics. For example, simple audio/video teleconferencing alone is

not considered a scenario that can signi�cantly bene�t from the use of Teleimmersion. However

collaborative work that depends on the spatial qualities of VR (such as collaborative archi-

tectural design) in addition to teleconferencing, as part of its solution, is considered a good

candidate for a Teleimmersive solution.

1.1 Collaborative Design and Engineering

1.1.1 Caterpillar Collaborative Design

Collaborative design work in VR typically involves a small group of users, either syn-

chronously or asynchronously, engaged in the construction, and manipulation of objects in

the virtual world. Since the interfaces for three-dimensional modeling in VR are still relatively

1

2

imprecise compared to 2.5D CAD packages, most of the collaborative tasks in collaborative

design involve evaluations of the design, and to a lesser degree, redesign or brainstorming for

new design possibilities(1; 2; 3).

The National Center Supercomputing Applications (NCSA) has been working with Cater-

pillar Belgium S.A., to develop a system to allow remotely located engineers to work together

on vehicle design review and redesign(4). Remote collaboration is necessary here because the

eventual system will be used by Caterpillar engineers in the U.S. and Europe who must jointly

design Caterpillar vehicles so that they meet customer demands and safety requirements for

both markets. For example, European safety standards require a roading fender to be added

to the basic vehicle design. The collaborative VR system allows engineers to evaluate rearward

visibility from a viewpoint in the virtual cab of the vehicle. Virtual co-presence allows one

designer to manipulate the fender while another designer watches for its e�ect on visibility.

To support user-to-user communication, publicly available audio and video teleconferencing

tools (vat and nv respectively) were modi�ed to work with the CAVE virtual environment(5).

Video images from each participant were texture-mapped onto the surface of a rectangular box

to establish their presence in the environment. The 3D models of the Caterpillar vehicles that

are used in the collaboration are �rst duplicated at every site. Then an unreliable multicast

data stream is used to distribute information about the participants and changes in the models

to all the other participants.

3

1.1.2 CALVIN - Collaborative Architectural Layout Via Immersive Navigation

CALVIN (2; 1; 3) is a TIE that allows multiple users to synchronously and asynchronously

experiment with architectural room layout designs in the CAVE (Figure 1.)

Participants are able to move, rotate, and scale architectural design pieces such as walls and

furniture. Participants may work as either \mortals" who see the world life-sized (classically

known as an \inside-out" view), or as \deities" (\outside-in" view) who see the world as if it

were a miniature model. Deities by virtue of their enlarged size relative to the environment,

tend to tower above the scene and are better at performing gross manipulations on objects.

Mortals on the otherhand are at the same scale as the environment, and are hence better able

to perform �ne manipulations.

Asynchronous access allows designers to enter the space whenever inspiration strikes them,

rather than requiring them to wait to schedule formal meetings, which can be particularly

di�cult if the participants are located at opposite parts of the world with signi�cant timezone

di�erences. In fact CALVIN already provides interfaces for bilingual (Japanese and English)

interaction.

Participants are able to save versions of the design as the collaboration progresses. When

participants re-enter the environment at a later time, the most recently saved version is auto-

matically loaded. If on the otherhand the participant re-loads a di�erent version of the design,

CALVIN will record successive designs as a new branch in the version tree.

4

Figure 1. CALVIN: a collaborative design environment for architectural layout. The scene
shows two avatars (a tall one and a short one) viewing the space at di�erent perspectives.

The top lefthand inset of the top image is a zoomed-out view of the entire design space. The
lower image shows one of the avatars using CALVIN's Japanese interface.

5

CALVIN employees a shared variable model of a distributed shared memory (DSM) system

to eliminate the need of the programmers to develop speci�c protocols for network commu-

nication. The DSM itself uses a reliable protocol and a centralized sequencer to guarantee

consistency in all clients. C++ classes representing networked versions of
oats, integers and

character arrays are provided so that assignment to variable instantiations of these classes

automatically shares the information with all the remote clients.

These networked variables are used to send data such as the state of objects in the world

and user-tracker information. Tracker information is sent so that avatars can be drawn in the

place of participants in the virtual scenes. Position as well as orientation data from the user's

hand and head are transmitted so that fundamental gestures such as nodding, pointing, and

waving can be communicated through the avatars.

Although the task of world synchronization is greatly simpli�ed by the centralized sequencer,

the transmission of tracker information over such a reliable channel can introduce latencies-

especially when synchronizing between the participant's real location and their avatar's location.

This is acceptable for small relatively closely located working groups where the network tra�c

and latency is relatively low but is unsuitable for larger and more distant groups of participants

dispersed over the internet. In fact, to transmit audio/video signals between sites, the shared

memory system is bypassed with point-to-point raw ATM streams which are able to support

teleconferencing at NTSC resolution and at 30 frames per second.

6

Finally, in CALVIN when two or more participants simultaneously modify an object, a

\tug-of-war" occurs where the object appears to jump back and forth between two positions,

eventually remaining at the position given to it by the last person holding onto it. This problem

can be alleviated by using a locking scheme, but this was intentionally not done. In VR, where

emphasis is placed on natural interaction, it would be unnatural if the user had to lock an

object before picking it. The presence of avatars in combination with audio communication

(the most important of the communication channels to provide) compensated for the lack of

strict
oor control and database locking. For example, the declaration: \I'm going to move this

chair" combined with the visual cue of an avatar standing next to a chair and pointing at it,

alerts other users that this user is about to grab that chair.

1.2 Collaborative Training

1.2.1 Military Simulations

The earliest teleimmersive systems were military-based applications such as SIMNET and

NPSNET (6; 7; 8). SIMNET is a standard for distributed interactive simulations developed by

DARPA beginning in 1985. The purpose of SIMNET was to facilitate early phases of training

at a cost far below the expense of conducting real battle�eld exercises. A SIMNET participant

may be wearing a head-mounted display and standing on a tread-mill to train as a foot-soldier.

Alternatively another SIMNET participant may be sitting in a tank simulator. Typically,

SIMNET expects hundreds of participants to be engaged in the simulation at the same time.

To reduce the bandwidth and the e�ects of latency needed to sustain this degree of scalability

7

SIMNET uses a technique called dead-reckoning to predict the location of participants at any

instant in time based on their previous reported position, velocity and acceleration.

As SIMNET was designed primarily for military simulation, its underlying unit of data

transmission (called a Protocol Data Unit- PDU for short) speci�cally contains encodings for

military entities (such as tanks and airplanes.) DIS (Distributed Interactive Simulation) is a

newer and more ambitious simulation standard (IEEE 1278) that is based on SIMNET but

allows for greater complexity and realism. For example: SIMNET uses a
at terrain whereas

DIS accounts for the curvature of the Earth. SIMNET is oriented towards terrain and the sky

above it whereas DIS encompasses all areas of potential military activity including below the

ocean and in space.

1.2.2 NICE - Narrative Immersive Constructionist/Collaborative Environments

The NICE group is building a collaborative environment in the form of a virtual island for

young children (approximately 6-8 years of age)(9; 10). In the center of this island the children

can tend a virtual garden. The children, represented by avatars, collaboratively plant, grow,

and pick vegetables and
owers. They ensure that the plants have su�cient water, sunlight,

and space to grow, and need to keep a look out for hungry animals which may sneak in and eat

the plants. The children can shrink down to the size of a mouse and crawl under the garden to

see the root system, and can talk with the other remotely located children or other characters

8

in the scene. The children are able to modify the parameters of this small ecosystem to see how

it a�ects the health of the garden (Figure 2.)

NICE's architecture is based on the techniques derived from CALVIN in that a central server

is used to maintain consistency across all the participating virtual environments. Whereas

CALVIN solely used a reliable connection to synchronize state information, NICE used an

unreliable protocol (either multicasting or UDP) to share avatar information from magnetic

trackers; and a reliable socket connection to share world state information and to dynamically

download models from WWW servers using the HTTP 1.0 protocol.

Both multicasting and UDP were provided to deliver tracker data, as it was not always

possible to acquire the administrative privileges to conveniently erect multicast tunnels between

distant remote sites. Hence a number of interconnected NICE \smart-repeaters" were deployed

at various remote sites that allowed the use of multicasting amongst clients at localized sites

but UDP for repeating packets between remote locations. In addition, to prevent faster clients

from overwhelming slower clients with data, the smart-repeaters performed dynamic �ltering

of data based on the throughput capabilities of the clients. Using this scheme participants

running on high speed networks, have been able to collaborate with participants running on

slower 33Kbps modem lines.

NICE's virtual environment is persistent. That is, even when all the participants have

left the environment and the virtual display devices have been switched o�, the environment

9

Figure 2. NICE: a narrative immersive collaborative environment for education. The top
scene shows an avatar handing a
ower to another avatar in the NICE garden. Below is an

image of a child interacting with an avatar in the CAVE.

10

continues to evolve; the plants in the garden keep growing and the autonomous creatures that

inhabit the island remain active.

Interactions with the NICE garden are not limited to users with VR hardware. The garden in

NICE can be experienced either by entering VR, a basic WWW browser (http://www.ice.eecs.uic.edu/~nice),

a VRML2 browser, or in a Java applet. Participants using a mouse can interact with partici-

pants using VR hardware where the desktop user's mouse position is used to position an avatar

in the 3D virtual world, and the bodies of the VR users are used to position 2D icons on the

desktop screen. This kind of scalability will be important for increasing the breadth of possible

collaborations.

1.3 Collaborative Scienti�c Visualization

A typical scenario in collaborative scienti�c visualization is for a small group of scientists

that are remotely located, to enter a virtual environment to discuss a data set that is being

visualized. This data set may originate from a database or may be computing simultaneously

on a supercomputer, in which case the virtual environment can be used to steer the compu-

tation(11). The importance of collaboration in this environment is not so much in allowing

the remote participants to perform di�erent tasks simultaneously as it is to allow them to o�er

their di�erent opinions over what is observed in the visualization. The default assumption is

that all the participants should share a homogeneous view. However for a complex data set

that spans numerous dimensions, it may be more useful to partition the dimensions so that

di�erent virtual environments observe di�erent dimensions during the simulation.

11

Argonne National Laboratory (ANL) in collaboration with Nalco Fuel Tech have built an

immersive interactive engineering tool for designing pollution control systems for commercial

boilers and incinerators(12). Using ANL's CAVEcomm library multiple CAVEs could syn-

chronously connect with an IBM SP supercomputer to steer the interactive simulation of
ue

gas
ow in the boiler. Control of the simulation was strictly via turn-taking. One participant

could initiate the
ow from one viewing location while another participant could simultaneously

view the
ow in a di�erent chamber of the boiler. Participants could communicate with one

another via a conference telephone call.

As with most teleimmersive applications, this system is only in a prototypical phase. Ad-

ditional capabilities that may be useful in enhancing work in the environment include:

1. Discovery Recording - the ability to annotate (perhaps using voice recording) to mark

points of interest in the data set- storing the annotation, and the state of the environment

when the \snapshot" was taken. This will allow the engineers to return to the time of the

event and re-observe it.

2. Storing Computed or Raw Data Sets - typically the data generated by a simulation or

gathered from data-gathering devises are too large to �t into the physical memory of the

computer performing the visualization. In this case some scheme of hierarchically storing

this data is needed to allow querying for smaller subsets of the data for visualization.

CHAPTER 2

THE PARTICULAR REQUIREMENTS OF TELEIMMERSION

The scenarios described in the previous chapter illustrate the broad spectrum of human-

factors, graphics, networking, and database requirements that are needed to support teleim-

mersion. These requirements are elaborated in this chapter.

2.1 Avatars

When collaborating in VR, virtual representations are needed to uniquely identify each

participant. The popular default assumption for representing avatars in VR is to place texture-

mapped, live video images on the head of a three-dimensional model of a human. The problems

with this scheme are manifold: the bandwidth required to transmit video may be too high to

\waste" on sending facial images; most VR experiences require the participant to wear some

form of head gear which will typically occlude most of the participant's face making video

images of faces impractical; attaching a video camera and light source, however small, in an

optimal position to capture images signi�cantly increases the encumberances already inherent

in the VR gear.

The elaborateness of the avatar should vary with the task being performed. Hence it is

important to identify the minimum elements of representation needed to a�ord recognizability

and to convey non-verbal information such as body language and gesture. In our experience

12

13

we have found a minimum of head position and orientation, body direction, and hand position

and orientation to be adequate for many teleimmersive tasks. To a�ord recognizability, we have

found it easier to distinguish avatars based on geometry rather than color. Hence the commonly

used, homogeneously shaped avatars with varying colors and overlaid name tags, do not make

good avatars.

To support the minimal avatar, a bandwidth of approximately 12Kbits/sec1 (at 30 frames

per second) is needed. Theoretically this implies that 10 avatars can be supported over a

128Kbits/sec ISDN connection. In practice however, experience has shown that it is able

to support a maximum of four avatars with an average latency of 60ms using UDP as the

transmission protocol. Although this is not a scalable solution, it is a cost e�ective means of

transmitting VR avatar data with the quality of service of a dedicated connection.

2.2 Suitable Interfaces for Collaborative Manipulation and Visualization

High-level virtual interfaces must be developed to allow collaborative manipulation of shared

objects. In addition, these manipulation tools require some form of transparent locking to occur

so that consistency is maintained across all the virtual environments sharing the virtual space.

The goal is to provide mechanisms for acquiring distributed locks (possibly through predictive

means) so that the user does not realize that locks have had to be acquired before objects could

be manipulated. This is particularly important over high latency networks where there might be

1This includes the avatar's head and one hand's position (x,y,z), orientation (�x,�y,�z), and body
angle about the Y axis represented each as 4-byte
oating pointer numbers.

14

noticeable delay between the time when a user physically picks up an object (and hence attempts

a lock on it,) to the time when the VR system con�rms the lock on the object. Lag similar

to this has been shown to signi�cantly degrade human performance in a VR environment(13).

Previous work in this area has shown that for coordinated VR tasks involving two expert VR

users, performance begins to degrade when network latency increases above 200ms(14). Other

research has found acceptable latencies to be much lower (100ms)(7). The acceptable latency

is expected to be lower for inexperienced users and for coordinated tasks involving very �ne

manipulation of shared objects. In the latter situation tracker inaccuracy will also begin to

a�ect human performance.

2.3 Audio/Video Teleconferencing

Audio (voice telephony) is one of the most important channels to provide in a collaborative

experience(15; 16). It has been shown that latencies of greater than 200ms will result in

degradations in conversion(17). As the latencies continue to increase the amount of time spent

in con�rming conversion increases, and the amount of useful information being conveyed in

the conversation decreases. Video conferencing is useful in instances where it is important for

the participants to see each other face to face for negotiation tasks(18; 19; 20). In traditional

conference-room-style video conferencing, video provides a means to convey a sense of co-

presence(21). In VR however co-presence is directly created through the use of avatars and

hence video may play a less signi�cant role in the collaboration.

15

2.4 Synchronous and Asynchronous Collaboration

The main focus of most teleimmersive applications has previously been on synchronous

collaboration. That is, all participants are working together in the environment at the same

time. However in trans-global collaborations the timezone di�erences make routine synchronous

collaboration highly inconvenient. In this case it is important to also provide a means for

distributed groups to work asynchronously in a shared virtual space. The support of asynchrony

will require the use of distributed databases to maintain the states between the remote sites.

2.5 Persistence in Collaborative Virtual Reality

Persistence in Collaborative Virtual Reality describes the extent to which the virtual envi-

ronment exists after all participants have left the environment. Persistence can be divided into

three major classes: participatory persistence, state persistence, and continuous persistence.

2.5.1 Participatory Persistence

This is persistence in which the VE only exists in the brief amount of time that participants

are in it. When all participants leave, the environment is extinguished with no record of the

state of the environment before it was extinguished. When the environment is started at a later

time, it always begins at the beginning. Most virtual environments are still only participatory

persistent.

16

2.5.2 State Persistence

This is where the state of the virtual environment may be saved at any given time to be

recalled later. Either intermittent snapshots can be created or entire collaborative experiences

can be recorded for later review.

In a scienti�c visualization environment that involves simulations that are running on su-

percomputers a recording should include either the entire state of the virtual environment as

well as the state and output of the simulation, or the state of the virtual environment and only

the geometric representation of the simulation. The advantage of the latter is that it simpli�es

the mechanism for re-play. Re-play will only require a rendering of the geometry which can

easily be encapsulated to work even in external viewers such as VRML2 browsers. However the

disadvantage is that the geometry data itself cannot be re-used to further query the output of

the simulation.

On the otherhand the advantage of saving the state of the environment and the simulation

is that during re-play the participant can choose to dynamically re-involve the supercomputer.

This is motivated by the following:

To ensure accuracy in computational science simulations, the simulation steps are kept

relatively small. However the computed results are collected at every n time steps due to, sur-

prisingly, disk space limitations (the output can occupy between several hundred megabytes to

many gigabytes)(11). If by viewing the results a feature of interest is found, the scientist would

normally re-execute the simulation from the beginning but only begin recording the output in

17

the region of the feature and at each time step rather than at every n time steps. In this scenario

persistence may be used to o�er some assistance in reducing the amount of re-computation time.

State Persistence may be invoked during the initial course-grained recording where, instead of

simply recording the output, the states of the computation are also recorded. When the region

of interest has been isolated, rather than returning computation to the beginning as is typical,

the state of the computation can be retrieved from the persistent database and computation

can be resumed from that point. Recording can then resume at a �ner granularity.

In general, as part of the recording of persistent experiences it may be useful to also record

the actions of the avatars so that on re-play they may be re-positioned in the scene to serve

as reminders of which particular area of the visualization was being observed or manipulated

at the time of the recording. In fact it may actually seem rather unnatural to watch an event

transpire without being able to see the e�ector of the event. One could also imagine that the re-

play procedure may also be recursively recorded so that a participant could observe him/herself

observing him/herself. It is not entirely clear if this capability is of any value but the idea is at

least somewhat intriguing.

Finally, one important component of being able to record a virtual experience is to be able

to perform (temporal) queries on the recording. Examples of queries might be: \Show me when

this part was modi�ed," \Show me when Max walked by here," \Show me when this data set

exceeded this threshold," \Show me all the objects Max modi�ed."

18

2.5.3 Continuous Persistence

This is where the state of the virtual environment remains extant even when all the partic-

ipants have left. Hence when participants re-enter the environment the state of the world may

have changed. Such environments are liken to MUDs (Multiuser Domains/Dungeons) which by

their popularity, have shown to encourage the spontaneous use of collaborative environments.

Although this may seem to be an extravagant use of computing power, it is anticipated

that in future generations of teleimmersive environments the notion of persistence is merely

an extension of the existing idea of the operating system or the WWW server. These are

essentially, already continuously persistent environments.

2.6 Flexible Support of Various Data Characteristics

The design of Teleimmersion systems is a�ected by two interrelated factors: the character-

istics of the data being distributed and the distribution scheme employed. The four attributes

that characterize teleimmersion data that most greatly a�ect the mode of transmission, man-

agement and storage of teleimmersion data, are: quality of service, data size, persistence and

queueing.

2.7 Network Quality of Service

For closely coordinated work in teleimmersion, minimum levels of network bandwidth, la-

tency and jitter are desirable. In addition, both reliable and unreliable protocols of unicast,

broadcast and multicast transmission are needed to optimally transport di�erent classes of

19

teleimmersion data (3D tracker data, state information, streamed audio/video feeds, geometric

models, large scienti�c data sets.)

Unreliable protocols are suitable for the transmission of tracker data because: 1. the loss of

a packet of tracker data is usually followed shortly afterwards by newer ones, and 2. unreliable

protocols have a lower latency and utilize lower bandwidth than reliable protocols.

Multicasting has the additional bene�t that clients that subscribe to a multicast group need

only send one message to the group, rather than having to send the same message individually to

each participant in the collaboration. The multicast protocol will automatically propagate the

single message to all the other subscribers. The main disadvantage however is that multicast is

based on unreliable UDP. Work however, is currently underway in developing reliable multicast

protocols (22). Reliable transmission is important in teleimmersion for the delivery of accurate

state information as well as models and scienti�c data sets. Here the loss of a packet could

produce an unwanted artifact in the visualization that is not representative of the original data

set.

A
exible solution to networking for teleimmersion should include both reliable and un-

reliable forms of transmission. However it is interesting to note that only a few provide both

capabilities simultaneously(23; 9). This is perhaps due to the following reasons: First, the main

concentration of VR libraries in the past has been in providing tools to allow programmers to

quickly build interactive non-collaborative VR environments (e.g MRToolkit(24)). Support for

collaboration was generally an after-thought and hence reliable TCP is used as the default,

20

safe and generic solution. Secondly, most teleimmersion implementations are still experimental

technologies undergoing signi�cant change. For example DIVE(25) initially used a transaction-

oriented, object-oriented database called ISIS and a reliable TCP connection to synchronize all

state information in the TIE. They are now using a peer-to-peer connection with a replicated

database that synchronizes data via a reliable multicast connection. Finally, the implementa-

tions may be highly customized for speci�c problem domains. For example NPSNET(7) uses

multicasting to deliver information for military simulations. Other researchers have attempted

to extend the underlying DIS protocol to allow the delivery of \non-ballistic" information. But

because it uses an unreliable protocol additional mechanisms for retransmitting packets had

to be devised. In addition, since the notion of military weapons are directly embedded in the

speci�cation of the protocol it does not serve as a generic protocol for non-military simulations

such as collaborative engineering or scienti�c visualization.

2.7.1 Data Size

There are essentially three categories of teleimmersion data sizes: small-event, medium-

atomic, and large-segmented. These divisions are created because they a�ect the manner in

which they are optimally transmitted and manipulated.

� Small-Event data are data such as unreliable tracker data, and reliable state and event

data. These typically require priority transmission with low latency.

21

� Medium-Atomic data are data that are small enough to �t in the physical memory of

the client because it must be processed as one atomic \chunk." Examples of these are 3D

geometries representing individual objects in the VR scene.

� Large-Segmented data are data that are too large to �t in the physical memory of

the client and hence can only be accessed in smaller segments. Large scienti�c data sets

and long pre-digitized video streams �t this category. These data sets usually need to

be \abstracted-down" �rst before they can be visualized, as the amount of data that can

potentially be visualized can easily exceed the graphics rendering capabilities of the VR

system.

2.7.2 Queued/Unqueued Data

Data that are sent to clients or servers, regardless of whether they are stored in a database

or not, need to be either queued or unqueued. For example, world state information may be

unqueued since only the latest information is necessary. Queued data are data which must all

arrive at a client or server in order. This implies the use of a reliable protocol. There are

however instances where a queued, unreliable protocol may still be useful- speci�cally for audio

conferencing, long, unreliable data streams are transmitted to all participating clients.

2.7.3 Persistent/Transient Data

Persistent data characterizes data that needs to be stored in a database or �le system for later

use. This data remains in the database after all the clients leave the TIE. All state data that is

22

crucial to the resumption of a client in a teleimmersive session must be persistent. Models and

scienti�c datasets that will be loaded into TIE are also prime candidates for database storage.

Transient data are data that are not stored in a database. An example of this kind of data

are command messages that might be sent between clients to e�ect events or audio/video data

streams. An exception to this de�nition is when transient data is stored in a database to allow

re-play of events at a later time. In this case the data is more accurately characterized as

persistent rather than transient.

However there is more to persistence than simply the storage of data. The storage require-

ments of various types of Teleimmersion data are illustrated in Figure 3. This table maps the

networking and database requirements for three modes of teleimmersive interaction (unrecorded

interaction, periodic snapshots, continuous recording) and six categories of Teleimmersion data

(raw scienti�c data, derived data, avatar data, virtual state and meta data, three dimensional

models, and video conferencing data.)

Note for example that the database requirements for recording avatar data is di�erent for

periodic snapshots as it is for continuous recording. For continuous recording, database integrity

can be sacri�ced for throughput to ensure that all realtime changes to the environment are

captured. For periodic snapshots it may be important that the snapshots are made reliably

so that on recall they represent the entire environment consistently. These and other di�ering

database requirements suggest that no single database system will support all the needs of

teleimmersive applications. Instead a number of databases with varying capabilities should

23

be gathered and uni�ed under a single consistent interface which will allow the teleimmersive

application to negotiate the kind of \database quality of service" needed by the application.

2.8 Scalable and Flexible Topological Construction

No single interconnection of distributed resources will perform optimally for all teleimmer-

sive applications. The number of participants expected to work in the environment, the amount

and form of the data being shared, the geographic distance, and the intervening networks con-

necting participants, have profound e�ects on the design of a suitable distributed topology.

Systems that are designed to scale well with respect to connectivity (connection scalability)

typically must sacri�ce strong data consistency. Most currently existing systems prioritize con-

nection scalability over data scalability (ability of TIEs to handle enormous amounts of data.)

Data scalability is of greater importance to the development of engineering and scienti�c

applications than connection scalability. Data sets in these problem domains are typically

enormous in size however the number of people simultaneously collaborating is unlikely to

exceed 6 or 7.

The three main classes of distributed topologies used in teleimmersion include: replicated

homogeneous, shared centralized, and shared distributed(7). These are described below.

2.8.1 Replicated Homogeneous

Replicated Homogeneous topologies are classical of military VR simulations (as in SIMNET,

NPSNET, DIS)(7). In such topologies each client holds a completely replicated database of the

shared environment and state information is shared by broadcasting messages to all participat-

24

Volume Rate of Change Persistent Complexity of Data Database integrity Type of DB Transaction Network QoS Requirements

No Recording
Raw scientific data set L SD Y C R WO,SA,SU R
Derived data MA - L SCD Y & N V R SA,SU R
Avatar data S RCD N S - - U,L,J
Virtual world state & meta data S SCD/RCD N V - - R,L,J
3D models MA - L SD Y V R SU R
Video conferencing data MA RCD N V - - U,B,L,J

Continuous Recording
Raw scientfic data set R SD Y C - - R
Derived Data MA SCD Y V R SA R
Avatar data S RCD Y S D RA U,L,J
Virtual world state & meta data S IRCD Y V D - R RA - SA R,L,J
3D models R SD Y V - - R
Video conferencing data MA RCD Y V D RA U,B,L,J

Intermittent Snapshots
Raw scientfic data set R SD Y C - - R
Derived Data MA SCD Y V R SU R
Avatar data S SCD Y S R SU U,L,J
Virtual world state & meta data S SCD Y V - SU R,L,J
3D models R SD Y V - - R
Video conferencing data MA SCD Y V R SU U,B,L,J

Derived = data derived from L=Large SD=Static Data C=Complex R=Required SA=Safe Appends B=Bandwidth guaran. desired
raw data sets. MA= Medium Atomic SCD=Slow Changing Data V=Varies D=Desired SU=Safe Updates R=Reliable
Meta data = miscellaneous data S = Small RCD=Rapid Changing Data S=Simple RU=Rapid Updates U=Unreliable
coordinating all the other data R=Referenced IRCD=Intermittent RCD WO=Write Once L=Latency guarantee desired

RA=Rapid Appends J=Jitter guarantee desired

Figure 3. Mapping the networking and database requirements for three modes of
teleimmersive interaction (realtime interaction, state persistence, continuous persistence) in
six categories of Teleimmersion data (raw scienti�c data, derived data, avatar data, virtual

state and meta data, three dimensional models, and video conferencing data.)

25

ing clients. This system has no centralized control whatsoever, hence any new client joining

a session must wait and gather state information about the world that is broadcasted by the

other clients.

2.8.2 Shared Centralized

In this approach all shared data is stored at a central server. The main advantage of this

scheme is that it greatly simpli�es the management of multiple clients, especially in situations

requiring strict concurrency control. However, its role as an intermediary for the delivery of data

can impose an additional lag in the system. Another disadvantage is that if the central server

fails none of the connected clients can interact with each other. Despite these disadvantages,

this architecture is still useful for supporting small groups of collaborators.

2.8.3 Shared Distributed with Peer-to-peer Updates

This approach simulates a wide-area shared memory structure (25; 24; 23; 26) in which

objects that are instantiated at one site are automatically replicated at all the remote sites. This

logical abstraction simpli�es the application development at the cost of performance. Typically

in these implementations, a newly connected client must form point-to-point connections with

all the participating clients. Hence for n participants the number of connections required is

n(n�1)=2. In addition if the environment involves the sharing of enormous scienti�c data sets,

the data set will be fully replicated at every site. Unless the data sharing policy is modi�ed to

account for large datasets this scheme will not be scalable.

26

2.8.4 Shared Distributed using Client-server Subgrouping

This topology distributes the database amongst multiple servers. Clients connect to the

appropriate server as needed. A classic approach is to bind the servers to unique multicast

addresses. Clients then subscribe to di�erent multicast addresses to listen to broadcasts from

the servers(27; 28). This is a particularly e�ective way to handle large numbers of connected

clients distributed over a wide virtual space. Each geographic region of the virtual space can

be maintained by a separate server. The servers share the load of sustaining the state of the

virtual world by handling only the subset of the connected clients that are in their geographic

region.

2.9 Application Speci�c Servers

These are unlike traditional networking and database servers in that they do not simply store

and forward data. Application speci�c servers in VR also possess semi-graphical capabilities

as they may need a local representation of the virtual space for their operation. For example,

an application speci�c server simulating the movement of autonomous agents through a virtual

landscape may also use the same graphical routines that model and visualize the terrain to

perform operations such as collision detection.

2.10 Interoperability with Heterogeneous Systems

The varying domains in which teleimmersion is applied requires connectivity between het-

erogeneous resources such as external databases, supercomputers, desktop workstations, and

miscellaneous VR systems. For example, Argonne's incinerator simulator connects the CAVE

27

VR system to an IBM SP supercomputer. The supercomputer performs the computation while

the CAVE visualizes the results. In NICE, the system allows CAVEs, ImmersaDesks, desktop

workstations, WWW browsers and Java programs to all collaborate simultaneously.

CHAPTER 3

THE APPROACH

In light of all the complex, interacting aspects of computer graphics, networking, databases,

and human-factors that come into play in teleimmersion, developing teleimmersive applications

can be a daunting task. The temptation and common mistake, made by application developers

that are building teleimmersive applications for the �rst time, is that they will �rst build a non-

collaborative application and then attempt to retro-�t it for teleimmersive capabilities. It is

in fact more di�cult to retro-�t an application for teleimmersive capabilities than to introduce

them early in the design phases of the application. Hence it is important to provide tools

that will encourage application developers to envision teleimmersive scenarios at a high-level so

that they can determine how such capabilities would be most useful in their own applications.

However a high-level set of tools does not o�er much help for those trying to retro-�t existing

applications. A high level library of well integrated tools often assumes a speci�c software-design

methodology. This methodology may be incompatible with the software that is being retro-

�tted. For example a high-level library such as DIVE is a good system for rapidly constructing

new teleimmersive applications, but it cannot be used for adding teleimmersive capabilities to

an existing Performer CAVE application. The mechanisms for graphics rendering in DIVE and

Performer are incompatible and DIVE is not modularized enough to allow arbitrary use of its

individual components.

28

29

LIMBO /
DOMAIN space

Non−graphical
Templates

Graphical Templates

VR Library

Teleimmersive
Application

IRB

Figure 4. Software infrastructure of CAVERNsoft.

To address this issue this dissertation proposes a software infrastructure (called CAVERN-

soft) that will support both the rapid creation of new teleimmersive applications, and the

retro-�tting of previously non-collaborative VR applications with teleimmersive capabilities.

3.1 CAVERNsoft

CAVERNsoft, shown in Figure 4, consists of a central structure called the Information Re-

source Broker (or IRB) surrounded by layers of support software. Although these layers appear

to increasingly hide the lower layers from the main application they are in fact accessible at

every level. The lower-levels facilitate the construction of new components, and the retro-�tting

of existing applications. The higher-levels facilitate the rapid development of new teleimmersive

applications.

30

The IRB is a relatively low-level merging of networking and database capabilities that

is completely separate from graphics. Hence the basic IRB core can be placed in any soft-

ware application regardless of whether it possesses graphics capabilities. This allows graphical

applications to communicate with non-graphical applications and it also allows existing non-

collaborative applications to possess networking capabilities with minimal disturbance to their

existing mechanisms for rendering graphics.

At a layer above the IRB are still non-graphical template libraries that support such things

as: base classes for the coordination of avatars, and audio and video data compression algo-

rithms. On top of this layer is a higher level layer that consists of graphical versions of the

previous layer. For example OpenGL, Performer, and Video avatar templates. These higher

level templates can then be gathered into even higher level fully functional teleimmersion spaces

called LIMBO spaces.

LIMBO spaces will provide varying degrees of avatar rendering and recording; model import-

ing, distribution, manipulation and version control; and audio/video teleconferencing. These

individual elements will be integrated in a manner that is guided by research in human-factors

in cooperative work situations. Using a basic LIMBO space collaborators can begin working in

the virtual space immediately. They may enter the space with an avatar of their choosing and

import 3D models (perhaps of car designs, or scienti�c data-sets, etc) into the space. The space

will ensure proper distribution of the model to all the other remote participants. Once the

objects are distributed the participants may collectively modify them. In addition, application

31

developers may use the well documented source code of the LIMBO space to jumpstart the

development of their own domain-speci�c teleimmersive applications.

As more domain-speci�c applications are developed a growing library of CAVERNsoft-

based reusable components (such as collaborative visualization tools) will emerge. These can

be added to the library of existing templates and may be gathered to build DOMAIN spaces

that are specializations of LIMBO spaces. This will allow, for example a designer, to build a

teleimmersive design application by starting with an existing DOMAIN space that is equipped

with collaborative tools speci�cally for collaborative design, rather than starting from the basic

LIMBO space.

3.2 The Information Resource Broker

The full development of CAVERNsoft is beyond the scope of this dissertation. This dis-

sertation will focus on only one aspect of CAVERNsoft- the central core that will support

data distribution between CAVERNsoft applications. That is, this dissertation proposes and

implements a subset of the IRB.

The Information Resource Broker (IRB) is the nucleus of all CAVERN-based client and

server applications. The ultimate goal of the IRB is to place powerful networking and database

tools, that embody the expertise of networking and database researchers, at the �nger tips of

application developers. These tools should be presented with a uni�ed interface so that the

programmer does not have to learn separate networking and database models of operation.

This problem however is not solved by simply employing an existing distributed shared mem-

32

ory system or distributed database. The realtime requirements of teleimmersion make these

more-reliable, and consequently, constraining, solutions unsuitable. A suitable architecture

for Teleimmersion should: facilitate the rapid construction of arbitrary distributed topologies;

provide support for various networking protocols (including reliable and unreliable, unicast,

broadcast and multicast) and quality of service capabilities; provide facilities for supporting

concurrent programming (both a message-passing and a distributed shared memory model);

and provide support for persistence- where small-event, medium-atomic and large-segmented

data can be seamlessly managed.

The IRB supports these requirements with an architecture that is a hybrid of a realtime

networking library, a distributed shared memory system and a distributed database. It o�ers

a uni�ed high-level interface to these capabilities while still providing the necessary low-level

control necessary to manage realtime data.

A client application is built by using an IRB interface (IRBi) which, on invocation, will

spawn the client's \personal" IRB. This IRB is used to cache data retrieved from other IRBs

during the operation of the client. An application-speci�c server is similarly built using the

IRBi. Hence there is little di�erentiation between a client and a server (Figure 5.) Using

the IRBi a client can arbitrarily form a connection, after having acquired the proper permis-

sions, with any other client or server to access its resources. The IRBi will communicate the

request to the client's personal IRB which will then communicate with the remote client's or

server's IRB. It is the IRBs' responsibility to negotiate the networking and database services

requested by the client/server applications. This form of
exibility and symmetry will allow all

33

Client or
Server Application

IRB Interface spawns & interfaces
with personal IRB

Personal IRB connects with
external stand−alone IRBPersonal IRB

connects with
another client or
server

Client or Server
Application
& personal IRB

Networking Manager

Database Manager

Figure 5. Clients/Servers use the IRB interface to spawn personal IRBs with which to
communicate with other clients/servers or standalone IRBs.

of the main teleimmersive topologies to be quickly constructed. Figure 6a. shows IRB-based

clients with possibly fully replicated databases sharing updates via a multicast group (as in

DIS/NPSNET(7).) Figure 6b. shows the use of IRBs in a shared, centralized database (as in

CALVIN and NICE.) Figure 6c. shows IRB-based clients in a fully connected con�guration

to support a shared, distributed database with peer-to-peer updates (as in MRToolkit(24).)

Finally Figure 6d. shows IRB-based clients and servers that are connected to form a shared,

distributed client-server database (as in SPLINE(27).) The clients may arbitrarily connect to

any of the servers using any desired communications protocol to retrieve information. Since

34

multicast cloud

clients distributing
data over multicast
cloud

client
central server

Client

an IRB collective
used strictly as
servers

clients arbitrarily
connecting to
servers for
data

multicast cloud

a b

c d

Figure 6. Use of IRBs to construct all the major classes of Teleimmersion topologies. (a) Fully
replicated databases sharing updates via a multicast group/cloud. (b) IRB clients connected

to a shared centralized database (also an IRB.) (c) IRB clients in a fully connected
con�guration to support a shared, distributed database with peer-to-peer updates. (d) IRB

clients and servers connected to form a shared, distributed client-server database.

there is no distinction between a client or a server, an IRB-based program may be a client

running on a supercomputer, or a server interfacing with a large database of scienti�c data.

35

3.3 The IRB Interface

The IRB interface (IRBi) is the client and server's interface to the IRB. The IRBi provides

the application with a handle to a personal IRB that the application can use to activate dynamic

connections with remote IRBs. A client wishing to share information between its personal

IRB and a remote IRB begins by �rst creating a communication channel and declaring its

communication properties. Then any number of local and remote keys may be linked over the

channel (Figure 7.) A key is a handle to an arena of memory that can be committed to the

IRB's persistent store. Keys are uniquely identi�ed across all IRBs and can be hierarchically

organized much like a UNIX directory structure. Each local key may be linked only once to a

remote key on a remote IRB. That is the same key cannot be linked twice to the same IRB.

However each local key can initiate or accept multiple linkages to and from other remote keys on

di�erent IRBs. The application is generally unaware of these additional linkages as the personal

IRB transparently manages data sharing with the remote subscribers. The application is only

aware of the linkages that it has explicitly made. When keys are linked, any modi�cations made

to one key will automatically be propagated to all the other linked keys based on the individual

link properties.

3.3.1 Channel Properties

Channel properties allow clients to specify the networking service desired for data delivery.

Clients may specify reliable TCP, or unreliable UDP and multicast. Large packets delivered

36

localKey1 remoteKey2link

channel

localKey2 remoteKey2

Figure 7. Example of two local keys linked to remote keys on remote IRBs.

over unreliable channels will automatically be fragmented at the source and reconstructed at

the destination. If any fragment is lost while in transit the entire packet is rejected.

In addition to connection reliability clients may specify Quality of Service (QoS) require-

ments. Hence they are able to declare the desired bandwidth, latency, and jitter of the data

stream. The personal IRB will attempt to obtain the desired level of QoS from the remote

IRB, but if it fails, the client may at any time negotiate for a lower QoS. As in RSVP(29)

client-initiated QoS is used so that the client can specify the amount of data it can handle from

the remote IRB.

3.3.2 Link Properties

Link properties allow clients to specify the actions taken when local and remote keys are

linked. This includes being able to choose between active and passive updates and being able to

37

select the initial and subsequent synchronization behavior. Hence it allows the IRB to support

both write-update and write-invalidate coherence protocols as in a distributed shared memory.

In most teleimmersive applications, world state information consisting of a few tens of bytes

are actively distributed. That is, the moment a new value is generated it is automatically prop-

agated to all the subscribers of the data. Passive updates occur only on subscriber request and

usually involves a comparison of local and remote timestamps before transmission. For exam-

ple, passive updates are typically used to download large volumes of 3D model data. Caching

data and comparing their timestamps helps to reduce the need to redundantly download the

same data set.

The initial synchronization behavior determines how the local and remote keys should be

synchronized when the links are �rst formed. That is, clients are able to choose to synchronize

automatically based on the keys' timestamps. That is the older key will be updated with

information from the newer key. However the client may also choose to force synchronization

from the local key to the remote key, and vice versa, regardless of timestamp. Of course clients

may choose to perform no initial synchronization at all.

Subsequent synchronization behavior speci�es the manner in which data is synchronized

when local or remote updates to keys occur. The same options as for initial synchronization

apply.

The default link property is to use active updates with automatic initial and subsequent

synchronization.

38

3.3.3 Key Properties

Keys may be de�ned at a client's personal IRB or at a remote IRB provided the client

has the necessary permissions. Keys may either be transient or persistent. Persistent keys are

keys that will be stored in the IRB's datastore so that when a client or server re-launches, the

data will still be retrievable by specifying the same key identi�er. Clients determine whether

a key is to persist by asking the IRB to perform a commit operation on the data. In addition

simple locking functions should be provided to allow clients to lock local or remote keys (hence

permitting entry consistency.) Locking calls are non-blocking to prevent realtime applications

from stalling when attempting to acquire locks on keys. Instead the locking call accepts a

user-speci�ed callback function that will be called when a lock has been acquired or when any

relevant event pertaining to the lock occurs.

3.3.4 Asynchronous Triggering of Events

Although distributed shared memory (DSM) systems have historically been shown to be

easier to program than message passing systems(30), Teleimmersion requires that the DSM

model be enhanced with some message passing capabilities. Speci�cally it should be enhanced

with the ability to asynchronously generate events in the application. Many events may arise

during the course of distributing data between clients and servers. The client/server may need

to be noti�ed so that appropriate actions may be taken in response to these events. It is

ine�cient for realtime VR applications to continuously poll for such conditions. IRB-based

39

programs provide the IRBi with callback functions that the IRBi may call when the event

arises.

Examples of events include:

� New Incoming Data Event

This event occurs when a key receives a new piece of data. For example a key could be

subscribing to avatar state information (position and orientation of the avatar's head).

When this information changes, a callback can be invoked to make the corresponding

changes to the graphical representations of the avatars in the virtual world.

� IRB Connection Broken Event

When a connection to an IRB has been broken (possibly due to a crash) clients will

continue to function by accessing local versions of the subscribed data. The personal IRB

may then periodically attempt to re-establish connection with the remote IRB or choose

another client or server to take the place of the \broken" IRB. It is the responsibility of

the application-speci�c IRBs to determine the policies for such situations.

� QoS Deviation Event

This event occurs when the negotiated QoS falls below contracted levels. For example,

if the latency negotiated for a stream of tracker data falls below acceptable limits, the

VR client can be warned so that perhaps interpolative techniques such as dead-reckoning

can be activated to reduce the impact of the increased latency. Alternatively the client

40

can re-negotiate a di�erent QoS, perhaps one involving a lowering of the bandwidth (by

compression of data) in order to maintain the desired latency.

3.3.5 Direct Connection Interface

In addition to the many automatic networking capabilities provided by IRBs the IRBi must

still support direct access to low-level socket TCP, UDP, multicast interfaces so that connectivity

with legacy systems (such as WWW servers) can be supported. However CAVERNsoft adds

value to the basic socket-level interfaces by providing automatic mechanisms for accepting new

connections, and making asynchronous data-driven calls to user-de�ned callbacks.

3.3.6 Supplementary Concurrent Processing Facilities

Most of the networking and database operations performed in the IRB are executed con-

currently and, if a multiprocessor system is available, in parallel with the VR system. It

is therefore necessary to provide basic concurrency control primitives such as mutual exclu-

sion and condition variables, that are compatible with the IRB. These may be implemented as

macro de�nitions on top of the underlying threads library used by the IRB (for example POSIX

threads.)

3.3.7 Recording Keys

The IRBi should allow the clients to declare keys that hold recordings of groups of keys.

This facility is necessary to support State Persistence in VR.

41

In these recordings close synchronization of remote system clocks is not absolutely necessary

as recording is always made from one point of view (i.e. from a virtual camera) and hence it is

the point of view's time reference that all relevant information is recorded.

Recordings may consist of time stamping and storing every change in value that occurs at

a key and recording the state of all the keys at wide intervals. The former is needed to track

the gradual changes in the virtual environment over time. The latter is needed to establish

checkpoints so that the recordings may be fast-forwarded or rewound without having to compute

every successive state that led to the fast-forwarded/rewound location.

On playback the recordings will populate the appropriate keys and, if desired, trigger client

callbacks. In some instances it is useful to be able to playback only a subset of the recorded keys.

This will allow the user to observe smaller subsets of events that occur in the VR environment.

For example the Virtual Director(31) (a VR application that allows users to record the path

of a virtual camera through a virtual environment) allows playback of recordings of camera

positions in each of the three X,Y,Z axes so that each of the paths in the axes can be edited

independently.

Finally to synchronize the playback of experiences across multiple virtual environments each

environment must constantly broadcast their frame-rate. This ensures that faster VR systems

do not overtake slower systems while rendering the virtual imagery.

In order to support these and many other recording capabilities in Teleimmersion, the

IRB must adopt a notion similar to quality of service for networks. That is, the IRB needs

42

a mechanism for the client/server program to be able to negotiate the kinds of data storage

throughput and integrity needed for its particular application (as indicated in section 2.7.3.)

CHAPTER 4

IMPLEMENTATION OF THE IRB

In this chapter a detailed description of the implementation of a prototype IRB will be

presented. This prototype does not implement all the capabilities of the IRB, it only implements

the main capabilities that de�ne the IRB. Speci�cally the features include:

1. The ability to arbitrarily de�ne local and remote keys on networked IRBs.

2. The ability to create multiple communications channels between arbitrary IRBs using

both reliable (TCP) and unreliable (UDP, multicast) protocols.

3. The ability to link keys across communication channels and have them automatically

propagate data. Clients are able to select di�erent initial and subsequent synchronization

mechanisms as well as active and passive updates.

4. The ability to trigger on key events and connection events so that the IRBs can inform

client-applications of new data or broken connections.

5. A prototype persistent key datastore has been implemented. This preliminary implemen-

tation caches all accessed persistent data in main memory and maps the key hierarchy to

a UNIX directory and �le system, and hence it supports small-event and medium-atomic

data.

43

44

The initial prototype was implemented to run on any O2, Octane and Onyx2 generation of

Silicon Graphics computers. This was chosen primarily because they are currently the main

platforms for the development of high-end teleimmersive applications. However, a port to other

UNIX-based platforms should not be di�cult as the IRB contains no graphics capabilities.

The IRB's underlying networking is supported by Nexus(32). Nexus is an e�cient multi-

threaded communications library developed by Argonne National Laboratory to connect client

applications with remote supercomputing resources.

Nexus supports �ve basic abstractions: Nodes, Contexts, Threads, Communication Start-

points and Endpoints, and Remote Service Requests. Nodes refer to computational resources

such as workstations and processors on supercomputers. Contexts are Nexus-based programs

or forked processes that run on nodes. Threads are concurrent, light-weight \sub-processes"

that share the same address space as a UNIX forked process. Communication Startpoints and

Endpoints are created between communicating contexts. Remote service requests are essen-

tially remote procedure calls (without a synchronous reply mechanism) that are initiated from

a startpoint to call a remote function at an endpoint. When a request arrives at the endpoint

a thread is created to process the remote function. Many startpoints may be bound to a single

endpoint and hence an endpoint may handle requests for many remote contexts. This model of

threaded remote procedure call without a reply facility was chosen by the designers of Nexus to

maximize asynchronous communication and parallelism so that programs do not have to block

while waiting for replies from remote calls.

45

Future releases of Nexus will also provide networking quality of service capabilities. The

CAVERNsoft programmer can then access these capabilities through the IRB's API. Hence

as new networking capabilities are provided by Nexus, these same capabilities will be made

available to the IRB.

4.1 Overall Structure of the Information Resource Broker

The IRB consists mainly of three components: the Communication Manager, the Active

Key Manager and the Persistent Heap (please refer to Figure 8 frequently while reading the

remainder of this chapter.)

� Communication Manager: The Communication Manager (labeled cvrnCommunication-

Manager c after the C++ class used to implement it) maintains the networking connec-

tions that are created and removed by Nexus.

� Active Key Manager: The Active Key manager (activeKeyManager c) manages the cre-

ation and removal of keys; the loading of possibly persistent keys into memory; and

contains information on which remote IRB links subscribe to the data.

� Persistent Heap: The Persistent Heap dynamically allocates memory for the active key

manager and performs reads and writes to persistent store. It basically provides the

database capabilities of the IRB.

In addition to these three main components are three supporting components: the Incoming

Hailing Channel, the Channel Bu�er, and the Garbage Collector.

46

channel buffer

links present if this channel is used for mcast
mcastChannel_c

mcast bundle

mcastChannelDB
[mcast addr & port]

meta data (active/passive update)

active key entry

hailing channel to remote IRB

channelDB [int]

each channel buffer supports
1 CAVERNlink

channel buffer list [md5]

bundle

Persistent heap

Active key entry

local shadow buffer key

trueKey

activekeyId

IRB

cvrnCommunication
Manager_c

activeKey
Manager_c [md5]

persistent
heap [md5]

mcast bundle

each bundle holds the
connections to 1 remote IRB.

there is only 1 mcast bundle containing
channels to several mcast groups

incoming hailing channel

CAVERN_irbChannel_c

associatedChannelId

associatedBundleId

CAVERN_irbLink_c

channelBufferId

bundleD
B

 [int] channel buffer list [int, ie bundleId]

linkOperationMutex

remoteRequest
PendingMutex

channelBuffer
Mutex

Simultaneous
swapMutex

true key
mutex

reference
Count mutex

Persistent Heap
Manager has a
mutexchannel buffer channel buffer

tcp/udp
bundle

tcp/udp
bundle

active key
entry

active key
entry

user callback

channel buffer channel buffer

buffer key

parent channel ptr

mcast parent channel ptr

channel buffer channel buffer

channel buffer list[md5]

mcast channel

mcast channel

bundleId

channelId

CAVERN_irbKey_c

cvrnChannel_c cvrnChannel_c

arena

arena

arena

Figure 8. Internal Structure of an Information Resource Broker

47

� Incoming Hailing Channel: The incoming hailing channel is always opened when the IRB

is �rst initiated. This channel listens on a pre-speci�ed port (10000) for incoming hails

from other remote IRBs. This is implemented by opening a Nexus Endpoint to which

other IRBs may attach. These hails are command messages to coordinate the remote IRBs

on a variety of future tasks that ful�ll the CAVERNsoft API. That is, they coordinate

the creation and removal of communications channels of varying networking protocols

and they coordinate the creation and removal of remote resources needed to sustain links

between local and remote keys.

� Channel Bu�ers: Whereas the active key manager accesses the persistent heap directly

through its API, the communication manager communicates with the active key manager

through a series of channel bu�ers. These channel bu�ers are created whenever a link of

two keys are requested by the user. They are the primary means by which active keys

can determine which networking interface must be used to send outgoing data destined

for a remote key. They are also the primary means by which incoming data determines

which active key should receive the data.

� Garbage Collector: When connections and, hence links, are broken they are not immedi-

ately removed from the IRB. Instead they are marked by the system as defunct. The

garbage collector is a concurrent thread launched by the IRB to monitor itself from time

to time (every 10 seconds) to search for defunct resources and remove them.

The IRB does not remove a resource the moment it is labeled as defunct, because there are

many possible concurrent threads also attempting to access the same resource. Removing

48

the resource while it is being used will very likely crash the IRB. Instead the concurrent

threads are allowed to also determine for themselves that the resource is defunct and

cleanly abort their current operation. Marking the resource defunct prevents further

access from any new threads of control.

As part of the garbage collector's normal operation, it will send out periodic \health

pulses," which consist of small packets of data, to other connected IRBs. This is necessary

because Nexus can only determine that a connection is broken by sending data over it.

4.2 Communication Manager

The communication manager consists of a dictionary (hash table) of communication bun-

dles to support point-to-point connections, and a single multicast bundle to handle multicast

connections.

When two IRBs communicate with one another through a point-to-point connection, they

must each hold a communication bundle (Figure 9.) This bundle will maintain all the net-

working connections that will be created between the IRBs. For example a bundle will hold

one connection via a reliable protocol, and another connection via an unreliable protocol. Each

communication bundle contains a Nexus Startpoint that is attached to the remote IRB's In-

coming Hailing Channel Endpoint. Using this Startpoint the local IRB may send command

messages to the remote IRB.

Each of the separate networking connections that are created between two IRBs are encap-

sulated in a communications channel (labeled cvrnChannel c). This channel contains Nexus

49

Nexus Startpoint Nexus Endtpoint

bi−directional hailing channel
Communications Bundle

localKey remoteKey

Communication Channel

link between 2 keys
delivered over the
communication channel

Channel Buffer

Nexus startpoint/endpoint pairs

Figure 9. A Communications Bundle consists of a hailing channel and multiple
Communications Channels. Each channel manages a number of links that bind local and

remote keys together.

50

Startpoint and Endpoint pairs that connect to a corresponding communications channel and

bundle on a remote IRB. These communication channels are maintained in a channel dictionary

(hash table labeled channelDB).

In addition to the channel dictionary, the bundle also has a single channel bu�er list (again

a hash table) which holds pointers to the channel bu�ers. The channel bu�er is used to link the

communications channel to the key containing the data (more on this later). One channel bu�er

is created per CAVERN link created. Each channel bu�er in the bundle is uniquely identi�ed

by the key it is associated, and hence a key cannot be redundantly linked to the remote IRB.

A key may however be linked more than once to completely separate IRBs since each of these

links (and hence channel bu�ers) will reside in separate communications bundles, each with

their own channel bu�er lists.

4.3 Active Key Manager

The active key manager is a dictionary of all the keys that are currently active in the IRB.

Whenever the user de�nes a key locally, or whenever a remote IRB requests a link to a local

key, an entry is made in the active key manager. A reference count is maintained in the entry

so that the IRB will know when the key is no longer being used and hence may be purged to

free valuable memory. Each active key entry consists mainly of a channel bu�er list (much like

the one in the bundle), a trueKey pointer and a local shadow bu�er key pointer. Auxiliary

items include a pointer to a user-de�ned callback which can be triggered whenever new key

data arrives; a number of mutual exclusion variables to guarantee atomicity in data transfer.

51

The channel bu�er list is a dictionary of pointers pointing to the same channel bu�ers in the

bundle's channel bu�er list. As mentioned earlier the channel bu�ers are the interface between

the communication manager and the active key manager.

When the user requests that a key be linked to a remote key over a speci�c communications

channel the IRB �rst identi�es the bundle that contains the channel and creates a channel

bu�er. An entry in the bundle's channel bu�er list is created to point to this channel bu�er.

In the bundle's channel bu�er list the entry is uniquely identi�ed by the name of the key. The

active key manager locates the active key that is being linked and adds a similar pointer to

the channel bu�er, to its channel bu�er list. In this case the channel bu�er entry is uniquely

identi�ed by the communications bundle's ID rather than the name of the key.

As mentioned earlier the active key entry also contains a trueKey pointer and a local shadow

bu�er key pointer. These pointers point to arenas of memory allocated by the persistent heap.

The trueKey's arena contains the actual current data stored in a user-de�ned key. The local

shadow bu�er key's arena is used as a cache for any locally initiated user requests to �ll the

key with new data. When the user initiates a put() call to the key, the shadow bu�er is �rst

�lled with the new data. When the data has been deposited, the trueKey is locked and a

pointer-switch occurs to swap the contents of the trueKey and the shadow bu�er key. The

trueKey, now holding the new data, can be unlocked for general access. The shadow bu�er on

the otherhand now holds an arena that can be re-used for the next put()- hence the same

memory is e�ciently recycled reducing the need for dynamic memory reallocation.

52

The channel bu�er also contains a similar bu�er key with its corresponding pointer to an

arena of memory in the persistent heap. Any incoming data from the network is �rst collected

into the channel bu�er's key bu�er. Then, as in the case with the local put() call, a pointer-

switch occurs to swap the contents of the channel bu�er's bu�er key and the trueKey. This

scheme allows the IRB to minimize the number of redundant memory copies that are needed to

move data from the network to the user and vice versa. In addition it also guarantees that

all data accessed by the user and transmitted to remote IRBs are atomic. Finally,

since one channel bu�er is allocated for each remote subscriber to the key, the IRB

is able to parallelize the download of incoming data streams.

4.4 Putting it all together

4.4.1 When a user places new data in a key

When a user invokes the put() call to place new data into a key the key is �rst located in the

active key manager. The data is deposited in the local shadow bu�er and then pointer-switched

with the trueKey. Finally the IRB iterates through the list of channel bu�ers in the active key's

channel bu�er list and sends the data out to any IRBs that may be linked (subscribing) to the

key. This is done by examining each channel bu�er, and following the channel bu�er's parent

channel pointer to the channel responsible for delivering the data to the external IRB. Data

transfer can then occur by accessing the Nexus startpoint stored in the channel. This process

currently occurs sequentially. In principle this process can be done concurrently via multiple

threads.

53

4.4.2 When data arrives from a channel

When new key-data arrives from a channel the message usually contains the name of the

key and the ID of the bundle that holds the communication channel. With this information

the bundle can be retrieved from the bundle database. With the bundle at hand, the key can

be looked up in the channel bu�er list. If found the channel bu�er is retrieved and the data is

deposited in the channel bu�er's bu�er key. Recall that by depositing the data in the bu�er

key, the IRB is able to parallelize the receipt of incoming data destined for the same key, as

each channel has its own channel bu�er.

When the data has been completely transferred, a pointer-switch occurs to swap the data

in this bu�er with that in the active key entry's trueKey. If the user has speci�ed a callback in

the active key it will �re so that the client application can be alerted. Then the IRB must scan

the active key's channel bu�er list and iterate through each of the channel bu�ers and send the

data out to all their associated channels. Hence local user noti�cation is prioritized over

data retransmission to the external subscribers.

4.5 Keytool: the Persistent Heap

The Persistent Heap is implemented as a prototype to determine the kind of API needed to

support the IRB. As a result the implementation is not optimal. In the future the persistent

heap will be implemented with more e�cient and robust database technology.

The heap identi�es the individual storage arenas by a path name and a �nal leaf (key) name,

that corresponds directly with a UNIX local path and a �lename. Hence when a key is made

54

persistent, a sequence of UNIX sub-directories (corresponding to the path speci�cation of the

key,) is created before the �nal data is stored at a �lename with the same name as the key. In

addition a meta-data �le is created that is used to store any auxiliary data about the key (such

as time stamps).

When a key is �rst requested the persistent heap searches the �le system for the same

pre-existing key. If it exists the persistent heap will load it into main memory as an arena.

This arena is turned over to the active key manager to be used as needed. When new data is

deposited in the arena the persistent heap �rst determines if the key will �t in the arena already

allocated to the key. If it does, the logical size of the arena is set to the size of the key- the

physical size of the arena is unchanged. If it does not �t (i.e. it is too big) then the arena

must be grown to �t the key and the old arena is discarded. This resizing scheme is done

to reduce the need for constant dynamic memory reallocation by the operating

system (which can be very slow). Instead the arena will always \stretch" to the size of the

largest piece of data encountered by the key. Currently the only provision for re-shrinking the

arena size is if the IRB is re-started or the key is unde�ned and then rede�ned. On re-start the

IRB will adopt the size of the last committed version of the key.

Keytool allows independent keys to be read, updated and committed in parallel. Keytool

commits keyed data by �rst writing the data to a temporary �le and then renaming the �le to

replace the previously existing one. It does this to provide a small measure of fault tolerance

in the system so that if a commit is interrupted during a �le write there is always a backup

version available.

55

As a side note about keys: for e�ciency, all path names and key names are concatenated

together and condensed into a 16 byte MD5 key (MD5 is an encryption algorithm that allows

arbitrarily sized bodies of data to be encrypted into a unique 16 byte value). All keys used in

the IRB are MD5 encoded. All dictionaries that use a key's name as a search key use the MD5

encoding as the key's ID (Figure 8 has labeled all dictionaries that use the MD5 encryption

scheme with [md5].) This encoding scheme is not used for encryption per-se, rather it is used

as a means to uniquely represent a key name in a statically sized addressing space.

4.6 Multicasting

Multicasting involves clients all sending data to a single multicast group address. Any clients

that happen to be listening to the same address will automatically receive a copy of the data.

This is useful because it reduces the amount of data each client must broadcast to all its linked

clients.

This de�nition of multicasting however is somewhat incompatible with the key-link scheme

used so far to distribute data between IRBs. Thus far the IRB has supported point-to-point

broadcasting. This has been achieved by allowing keys to be linked over communications

channels between a number of distinct IRBs. This has allowed applications to link a key with

one name to a remote key with an entirely di�erent name. The consequence of this is that

key names are automatically globally unique, as they are identi�ed by the path, the name and

the IRB in which they reside. This ability to link multiple keys with di�ering key names is

essentially a form of name aliasing. When applying this scheme to multicasting, name aliasing

56

is ine�cient as it ultimately means the multicast channel is being used for point-to-point data

delivery. Hence in the IRB, when a multicast channel is used, no name aliasing is allowed. Hence

applications that wish to deliver data over multicast must police their own global naming scheme

so that key names that mean one thing on one IRB mean the same on all the participating

IRBs. Hence when data is sent out on multicast the name of the key can be attached to the

message and properly distributed to all the participating IRBs.

To provide for this each IRB contains a single multicast bundle that maintains all the

multicast channels to which the IRB subscribes (Figure 10.) Each channel contains a channel

bu�er list whose entries are uniquely identi�ed by the name of the key (encoded as an MD5

key). And as with the point-to-point scheme, each channel bu�er will subsequently point to

their associated active key entries.

When data arrives on a multicast channel, the destination key of the channel is extracted

and used to locate the respective channel bu�er. Once found, the data is deposited in the

channel bu�er's key bu�er. When done, the key bu�er is swapped with the contents of the

trueKey bu�er in the active key entry. This will then initiate a sequence of retransmissions

that may be necessary due to subscriptions by other IRBs to the key (as in the point-to-point

case).

4.7 Providing Fault Tolerance

One design goal of the IRB was for it to be able to remain persistent for great lengths of

time. Hence it makes every e�ort to not crash or terminate a program when channels and links

57

Multiicast Bundle

Channel Buffer

Key

Multicast Channel

Multicast Group

Key

Figure 10. A Multicast Bundle manages multiple multicast channels that subscribe to
independent multicast groups.

are closed or broken. Instead it o�ers callbacks to user-speci�ed functions that can be used to

alert the program of such events. The program can then proceed to attempt to re-establish the

channel. At the current time this must be done manually by the user. In the future, the IRB

will attempt to re-establish connections automatically.

Hence currently when the client application receives an event that a channel has been

broken, the protocol the client should follow is to delete and create a new channel object;

then delete all the associated link objects and �nally recreate all the new links with a newly

opened channel (either to the same server or perhaps to a backup server.) The keys need not

be rede�ned. This allows the client application to continue functioning even in the event of a

58

crash on a remote server. The IRB however cannot protect the client program against any bugs

that may be inherent in the program- such as accidental accesses to dangling memory pointers.

These will surely crash any program (regardless of whether it is IRB-based.) This however will

not adversely a�ect the remote IRB to which the client may have been connected. The crash

will eventually be noticed by the IRB and the previous resources occupied by the connection,

recycled.

As part of the IRB's fault tolerance provisions, all IRB interface API calls return status

values that state whether a link, channel, or key is no longer valid (i.e. stale.) These statuses

are provided to prevent the client programs from accidentally accessing dangling pointers that

may have once referred to valid objects. This allows the IRB to dynamically purge broken

connections and reclaim system resources without adversely a�ecting the client program. At

the outer perimeter of Figure 8 one can see three of the IRB API's protective classes (CAV-

ERN irb Link c, CAVERN irbChannel c, CAVERN irbKey c.) These classes are the client

program's handles to the internal structures of the IRB. A detailed description of the IRB API

is provided in Appendix A.

4.8 Compatibility between the IRB and the CAVE library

The IRB does not depend on any part of the CAVE library. It was designed as a system that

can be attached to graphical as well as non-graphical programs. The o�cial CAVE library and

its variations use similar models for separating computation and graphics rendering. That is,

when a CAVE application is launched the CAVE library will �rst fork-o� a number rendering

59

processes (one for each wall of the CAVE,) and a tracker process. Each of these processes,

including the main process, communicate with each other using shared memory. This model is

somewhat di�erent from the threaded model of the IRB. The IRB, when launched will thread-

o� a number of concurrent threads. Threads are similar to separate forked processes in that

they allow multiple tasks to operate concurrently. Threads are di�erent from forked processes

in that they take less processing time and resources to create. In addition they share the

same address space as the main program, hence there is no need to use shared memory for

interprocess communication.

However in order for the CAVE forked model and the CAVERNsoft threaded model to

work together the IRB can only be initiated after the CAVE library has forked-o� its many

processes (after the CAVEInit() call). In addition the IRB can only be used in the CAVE's

main processing loop as it has no scope in the separate rendering processes. This is acceptable

because the rendering processes should be dedicated solely to rendering tasks anyway.

As the IRB is a threaded library (it uses Posix Threads for its implementation) the mecha-

nisms for mutual exclusion are incompatible with those used by the CAVE library. The CAVE

library uses shared memory locks that are part of Silicon Graphics' shared memory library. The

IRB library uses the Pthreads mutual exclusion mechanism. The two are not compatible. The

CAVE library provides a lock management API to allow applications to create read and write

locks that are shared across processes (including the rendering processes). The IRB provides

a lock management API that is a simpli�cation of the Posix standard that allows locking of

threads within the main process. Hence, as long as the application uses the IRB's locking

60

mechanism to lock data within the scope of the CAVE main process, but uses the CAVE's

locking mechanism to lock data between the main process and the rendering processes, there

should be no con
ict.

Ultimately a solution would be to move the CAVE library to a threaded model. Since op-

erating systems such as Windows-NT use a threaded model, creating a threaded CAVE library

would also simplify the port across multiple platforms- especially when a uniform threaded API

such as ACE(33) is used. However at this time the main computing platforms for the CAVE

are Silicon Graphics computers which is only beginning to provide stable Pthread implementa-

tions. The current versions o�er little control for scheduling threads across multiple processors.

This capability is crucial for the CAVE because the CAVE library tries to dedicate independent

processors to each forked process.

CHAPTER 5

EVALUATION

The IRB is neither strictly a networking library, nor a distributed database, nor a distributed

shared memory. It uni�es networking and databases in an unconventional way to provide

persistent distributed shared memory services over both reliable and unreliable networks. The

claim is that these properties make it particularly well suited to distributing a wide spectrum of

teleimmersive data. To answer to this claim, this chapter will �rst begin by illustrating, through

example, the ease with which the IRB provides networking and database capabilities to its users.

This includes a brief report on the integration of the IRB into two CAVE applications, NICE

and General Motor's VisualEyes. Following this, a critique of the IRB's current weaknesses

will be presented along with a comparison of the IRB to HLA (the Department of Defense's

competing product.) Finally the results of a set of networking benchmarks comparing the

capabilities of a typical TCP program, Nexus and the IRB, are presented.

5.1 Bene�ts of using IRBs for Teleimmersion

5.1.1 IRB Network and Database Programming is Easy

As the IRB combines both networking and database capabilities into a coherent interface,

programming with it is relatively easy. The API allows programmers to treat data sharing in

a way that they are most familiar. That is, they may treat the IRB as a persistent distributed

61

62

shared memory, or they may use the trigger mechanisms and treat the IRB as a message passing

system.

As an example of the ease of IRB programming the following is a complete IRB-based

program. Once this program is compiled and executed it will automatically possess the ability

to serve remote connections from other clients and link and share information between keys.

Furthermore if no remote clients communicate with this program it will occupy very few system

resources.

#include "CAVERN.h++"

#include <unistd.h>

main(int argc, char** argv)

{

/// Startup CAVERN.

CAVERN_irb_c *personalIRB = CAVERNInit(&argc, &argv, NULL);

if (!personalIRB) exit(1);

/// Now you can do your own stuff here. Or you can do nothing in a

/// an infinite while loop.

while(1) sleep(10);

}

For a more complex example, the following are the main fragments of a program to download

data stored in a key (perhaps a 3D model) on any remote IRB or IRB-based application

regardless of what the application was originally designed to do. Figure 11 illustrates each of

the steps.

/// 1. Startup CAVERN

CAVERN_irb_c *personalIRB = CAVERNInit(&argc, &argv, NULL);

63

/// 2. Create a channel over which communication will occur.

CAVERN_irbChannel_c *aChannel = personalIRB->createChannel();

/// 3. Open the channel to a remote IRB over a reliable protocol.

aChannel->open(&remoteIRBId,NULL,CAVERN_irbChannel_c::RELIABLE,

&channelRetStatus);

/// 4. Define the local key

CAVERN_irbKey_c *aKey = personalIRB->define(&aKeyId, NULL, &irbStatus);

/// 5. Create a link to link the local key with the remote key.

CAVERN_irbLink_c *aLink = aChannel->link(aKey, &remote_aKeyId,

&linkAttribute);

/// 6. Download the data.

aLink->requestRemote(CAVERN_irbLink_c::DEFAULT, &linkStatus,

CAVERN_irbLink_c::BLOCKING);

IRB-based applications treat each other as information resources that they may access at

any time. Hence IRB-based programs take on almost biological abstractions where IRBs may

dock with other IRBs with matching key names much like enzymes are able to target speci�c

molecular structures.

5.1.2 Topology Building is Easy

Since the IRB handles many remote connections transparently it can be used to easily build

a variety of networking topologies. For example lets say a set of teleimmersion applications

chose to set a single key called AVA as the key to distribute avatar tracking data for everyone.

Figure 12a. shows an IRB server connected by a client program that links the client's local

AVA key with server's AVA key. Any time the client places new data in local key AVA, the

64

 1. Startup CAVERN
CAVERN_irb_c *personalIRB = CAVERNInit(&argc, &argv, NULL);

2. Create a channel over which communication will occur.
CAVERN_irbChannel_c *aChannel = personalIRB−>createChannel();

3. Open the channel to a remote IRB over a reliable protocol.
aChannel−>open(&remoteIRBId,NULL,CAVERN_irbChannel_c::RELIABLE,

&channelRetStatus);

 4. Define the local key
CAVERN_irbKey_c *aKey = personalIRB−>define(&aKeyId, NULL, &irbStatus);

5. Create a link to link the local key with the remote key.
CAVERN_irbLink_c *aLink = aChannel−>link(aKey, &remote_aKeyId,

&linkAttribute);

6. Download the data.
aLink−>requestRemote(CAVERN_irbLink_c::DEFAULT, &linkStatus,
CAVERN_irbLink_c::BLOCKING);

channel

aKey

remoteKey
aKey

Figure 11. Linking two keys over a channel between two IRB-based programs.

65

same change will be propagated to the server. This is done with code fragments such as the

following:

/// Startup CAVERN.

CAVERN_irb_c *personalIRB = CAVERNInit(&argc, &argv, NULL);

/// Create a channel over which communication will occur.

CAVERN_irbChannel_c *aChannel = personalIRB->createChannel();

/// Open an unreliable channel to a remote IRB.

aChannel->open(&remoteIRBId,NULL,CAVERN_irbChannel_c::UNRELIABLE,

&channelRetStatus);

/// Define the local Avatar key

remote_aKeyId.setName("AVA");

CAVERN_irbKey_c *aKey = personalIRB->define(&aKeyId, NULL, &irbStatus);

/// Create a link to link the local key with the remote key.

CAVERN_irbLink_c *aLink = aChannel->link(aKey, &remote_aKeyId,

&linkAttribute);

/// Allow new incoming data to call a user-defined callback.

aKey->trigger(callbackForAKey,NULL);

Now by using this exact same program another copy of the client (client B) may attach to

the IRB server. Any changes to the AVA key on client B will be echoed to the server which

will relay the change to client A (Figure 12b.)

Furthermore client A and client B may be located at very distantly located sites each with

small clusters of computers that may also wish to join in the teleimmersive session. They may

all either connect directly to the server, or they can connect to their nearest client (Figure 12c.)

All this is achieved by the same unmodi�ed program. Yet another possibility is for both client

66

AVA

AVA

IRB server
IRB client

AVA

AVA

AVA

client A

client B

AVA

client A client B

AVA!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

AVA

AVA

AVA

AVA

AVA
AVA

AVA

multicast
group

a.

b.

c.

d.

AVA

client A client B

AVA AVA

AVA

AVA

AVA

AVA
AVA

AVA

Figure 12. A variety of schemes for sharing avatar information in CAVERNsoft

67

A and client B to link their AVA keys to multicast channels so that their local area clients may

simply tune into the AVA keys via the channel (Figure 12d.) Hence any changes to AVA on

any of the client programs will be propagated to, say, client A which will then be propagated

towards the central server which will further propagate the change to client B and �nally client

B over multicast to its subscribing clients. In fact the central server can be removed completely

and client A and client B may connect directly- hence instantly producing a multicast tunnel.

5.1.3 Persistence Makes it Easy to Save Downloaded 3D Models

When a remote key containing a 3D model (or any piece of data) has been downloaded (as

in the second example in section 5.1.1) it is particularly easy to commit the model to persistent

store. The only command that needs to be added to the example is:

aKey->commit();

When the client application starts up again at a later time and re-de�nes the key, the

key will automatically be �lled with the committed data. To check for new remote updates

the client need only link the key to the remote IRB. The IRBs will compare timestamps and

appropriately synchronize versions.

5.1.4 Concurrency A�ects Graphics Minimally

A number of casual tests uploading 8 Megabyte keys to a remote IRB-based Performer

CAVE application showed that it had very little impact on the graphics during the upload of

the data to the IRB and during the commit of the data to persistent store. The IRB performs

these operations in concurrent threads which will take advantage of spare processors if available.

68

5.1.5 Fault Tolerance Allows Applications to Survive Server Crashes and Re-route

to Backup Servers

Since the transfer of information is via storing new data values in the keys the break of a

connection due to a possible server crash will not cause the client application to crash also. This

is because the handles for data distribution are keys and not network connections. Connections

may break without a�ecting the keys. The application can continue to operate by placing data

at- and retrieving data from the keys even though those changes may not be propagated to the

remote site.

When the client application re-establishes the connection, to possibly a backup server, and

then relinks the local and remote keys, normal operation of the program can resume.

69

5.2 Applications of the IRB

The following sections will describe two slightly di�ering approaches to using CAVERNsoft

to support Teleimmersion. The �rst (retro-�tting NICE) demonstrates the use of CAVERNsoft

as a message passing library. The second (retro-�tting General Motors' VisualEyes) demon-

strates the use of CAVERNsoft as a distributed shared memory and database.

5.2.1 NICE

The original NICE was a highly collaborative application that used reliable TCP, unreliable

UDP and multicast for transmission of world state information, avatar information, and three

dimensional models. Each of these employed an independent mechanism for communications

and hence was coded inconsistently. Retro-�tting NICE with CAVERNsoft provided a means

to unify these communications mechanisms. In the new version a central IRB server was used

both to support the garden's simulation as well as to broadcast avatar information.

To support avatar management a low-level CAVERNsoft avatar class was written to replace

the original NICE avatar class. This class subscribed to two keys. The �rst key, the Avatar

Hailing Key (AHK) was linked to an IRB server via a reliable connection. It is used as a

message passing conduit through which information about newly joining avatars and exiting

avatars are distributed. Hence any time a new client entered the NICE world, it would send a

message on this conduit announcing its presence to others. The second key, the Avatar Tracker

Key (ATK) was linked to an IRB server via an unreliable connection. This key allowed the

distribution of avatar state information- mostly from the CAVE/Idesk tracker.

70

ATK

ATK

AHK

AHK

HAIL

OUT
IN

HAIL

IN

OUT#ID

unreliable channel

reliable channel

NICE Client

NICE Garden Server

Figure 13. NICE Client Connecting to a Garden Server. OUT#ID is a dynamic key generated
by the remote NICE client to allow the garden server to send it private messages.

To support the relaying of garden state information, each client created three keys, a hailing

key, an incoming data key, and an outgoing data key. The hailing key was used to send

initial identi�cation information to the IRB garden server. In response the garden server would

subscribe to a separate outgoing key (OUT#ID) that was dedicated to delivering data only to

the connected client via the client's incoming data key. Each client would send data via its

outgoing data key to the IRB server to be received by its incoming data key. These two keys

provided the main message passing channels for relaying the state of the garden.

71

The original NICE architecture was programmed serially. That is, all networking was per-

formed at speci�c instances in the NICE main loop. This meant that NICE had few provisions

for guarding against parallel accesses to its internal data structures. CAVERNsoft on the oth-

erhand was coded entirely with concurrent programming in mind; this made the retro-�tting

process di�cult. Two solutions were considered: the �rst solution would involve painstaking

examination of each line of NICE source code to analyze situations where CAVERNsoft might

create a race condition; the second solution would involve providing CAVERNsoft with an abil-

ity to better support serial applications while leaving much of its operations parallel. The latter

solution was chosen as it is anticipated that the same situation will arise when attempting to

retro-�t other CAVE applications.

Providing serializing support for NICE resulted in the addition of a CAVERNsoft C++ class

called CAVERNplus callSequencer c. This class when invoked allowed CAVERNsoft's event

triggers to �re only at speci�c instances. These instances would be controlled by the NICE

main loop. Hence, while CAVERNsoft was still able to process incoming networking data in

parallel, the noti�cation of the arrival of new data was performed at controlled locations in

the NICE main loop. This in e�ect emulates the serial functionality of the original NICE but

with one major di�erence. In the original version of NICE, the serial processing of networking

messages mean that NICE could freeze in the event of a network stall. This occurs when NICE

is in the middle of transmitting or receiving a packet of data over an unreliable network. This

problem is eliminated in the CAVERNsoft implementation because all networking is processed

concurrently.

72

5.2.2 General Motors - Teleimmersive VisualEyes

A routine part of the car design process at General Motors includes the time consuming

task of building large clay models of their designs. These clay models reside in the design

studios over long periods of time as the prototype that they will repeatedly refer to while they

are considering new design changes. In recent years GM has been interested in producing

the electronic substitute for the persistent and evolving clay model, in the hope that it will

take them less time to modify the electronic representation than the clay model, and that

the �nal version will be both precise in terms of engineering speci�cations as well as aesthetic

requirements.

To transition to the electronic clay model, GM has developed VisualEyes- an application

that allows GM designers to import 3D CAD models into the CAVE for quick visual inspection

and design reviews. This initial use of CAVE-based technology has generated considerable

interest in other GM research sites around the world, all of whom are planning their own

CAVE installations.

This has prompted GM to collaborate with EVL again, to extend VisualEyes to allow GM's

trans-globally situated research and design teams to collaborate in remote design reviews. The

goal is to allow designers to both synchronously and asynchronously access a design that persists

and evolves over time.

When working with trans-globally situated collaborators where time-zone di�erences may

signi�cantly limit the opportunity for synchronous collaboration, the need to provide asyn-

chronous support increases. Collaborators will need to be able to record versions of designs,

73

Figure 14. General Motors- VisualEyes. Selecting the CAVE allows the participant to teleport
into the environment where the interior of a GM car is being designed.

74

and annotate parts of designs for later review. In essence what is required is a persistent

teleimmersive environment which has the ability to chronicle design evolutions.

The retro-�tting of VisualEyes (VE) for collaboration began with the use of the same CAV-

ERNsoft avatar template used for NICE for managing the entry and exit of avatars. Whereas

NICE had the ability to dynamically load objects into its scene graph, VisualEyes did not.

This meant that all avatars in VE had to be pre-loaded and made invisible until they are in-

voked. Hence when a new participant entered the space the participant's ID would trigger the

appearance of the respective avatar.

As part of a teleimmersive demonstration at the Supercomputing '97 conference, GM wanted

to illustrate the idea that one could use a networked CAVE as a portal to the design spaces at

other CAVE's/Immersadesks, at other remote GM design centers. Hence the prototype allowed

participants to aim their wand at a virtual CAVE or Immersadesk depicting a remote site, and

press a button to enter the space. In VE this was implemented by a switch in its scene graph

when the button was pressed. This in turn altered the avatar information that the participant

was sending so that the connected CAVEs and Immersadesks knew whether the participant had

left or entered the space. Hence participants were able to jump in and out of various design

spaces much like in a VRML browser.

Finally to share updates of each world, the script �les that VE loaded on startup were

marked with labels that registered the objects that were collaboratively manipulable. These

labels were conveniently mapped to keys of the same name in CAVERNsoft. Hence when a

participant moved an object the new value of the change would be stored in the respective key

75

and all participants subscribing to the key would receive the update which would in turn �re an

event to adjust their local scene accordingly. Since these keys were mainly stored in a central

IRB-based server any participant may enter the world and receive an update of the world's

current state from the server. In addition a remote commit can be performed on each key

so that the next time each participant entered the space the VE clients will synchronize their

state according to the central server's committed values; hence the environment is persistent

supporting both synchronous and asynchronous collaboration. Based on this initial experiment

GM has proposed that the IRB's underlying database hierarchy be a canonical data structure

to allow VE to dynamically interoperate with Alias (a CAD modeling and animation package.)

As a side note: because of the IRB's symmetric client/server properties the central server

used in the GM application need not be a special server written for the application. Any

IRB-based program (even the NICE garden server) will do.

76

5.3 Areas of Potential Improvement in the Prototype IRB

The IRB bases all of its networking capabilities on Nexus. As a result the IRB is able to

leverage the capabilities of Nexus as they are implemented, however, at the same time it su�ers

from some of the current limitations of Nexus.

5.3.1 UDP and Multicasting

Currently Nexus (version 4.1) only supports the transmission of UDP and multicast packets

of 1024 bytes however the Nexus group is currently working on a scheme to allow Nexus to

transmit packets of arbitrary size. Nexus will handle large packet disassembly and re-assembly.

5.3.2 New Threading Model

Nexus currently provides very little control of threads. Threads are used in the IRB to

handle multiple parallel streams of incoming data. Nexus' current threading model allows either

completely non-threaded, or fully threaded communication. In non-threaded communication all

communications channels are treated completely serially and hence no parallelism is possible.

In fully threaded communication each incoming remote service request is threaded. This poses

a problem for the IRB because if the IRB is
ooded with many rapidly arriving UDP packets,

the resulting spawned threads will over
ow the limit allowed by the operating system.

The ideal threading model for the IRB is for each communications channel that is opened

by the IRB to be managed by a single thread. This single thread can then create additional

threads to allow parallel processing of data streams. However these threads should be managed

so that they come from a limited pool of threads. The number of threads in the pool can grow

77

and shrink based on the application's speci�cation or based on the number of communications

channels being serviced by the IRB. This model of threading is believed to be supportable by

the future release of Nexus- which will adopt a thread manager as part of Globus.

5.3.3 Networking Quality of Service Capabilities

The IRB has API calls to allow an application to specify network quality of service param-

eters. These API calls are only stubs. Nexus has these capabilities planned in the future. As

these capabilities become available they will also be made available to the IRB.

5.3.4 Further Reducing Redundant Memory Copying

Currently when data is transmitted from- or received by- Nexus, a single redundant copy

of the data has to be made at each phase. A \raw" TCP program however, does not incur this

overhead since no redundant copies are made.

To solve this problem future releases of Nexus will provide direct put and get operations that

will allow Nexus to directly �ll the IRB's channel bu�ers rather than having to make redundant

copies of the data.

5.3.5 Security

The IRB prototype possesses no capabilities for maintaining security in keys. Nor does it

maintain security in transmitted data. The issues of security are important and complex and

have been excluded in the �rst prototype to simply its design. Future versions of the IRB

should provide facilities for selecting secure transmission channels. Nexus will once again be

responsible for securing those channels.

78

5.3.6 Locking Scheme for Keys

The current IRB prototype provides no provisions for locking keys. The kind of locking

expected to be useful for Teleimmersion is a non-blocking form of entry consistency. Entry

consistency in distributed shared memory circles amounts to the explicit locking and unlocking

of potentially shared entities. A non-blocking scheme is needed in Teleimmersion to prevent a

realtime application from blocking when a lock is requested. Instead when a lock is requested

a callback function is also provided that is called by the IRB once news about the status of the

lock arrives. If the news is that the lock has been acquired the application may then safely read

the contents of the key and modify it. If the lock could not be acquired the client application

is still able to read the key, however any attempted updates to the key will be discarded.

In addition to providing a callback function two time-out parameters are needed. The �rst

speci�es how long the application is willing to wait to acquire a lock. The second speci�es how

long the application is expected to need the lock once it has been acquired. If the application

needs to keep its lock it must refresh the lock before the lock expires. This is provided to

prevent a client application from inadvertently forgetting to release a lock and hence potentially

preventing other participants from ever accessing the data again. In addition it provides a simple

deadlock resolution scheme.

5.3.7 Preventing Cycles

A cycle occurs when keys are linked together across multiple IRBs in a loop. When one

key is modi�ed the change will propagate to its linked counterpart. That key will propagate

79

its update to its counterpart, and so on until the originating key is reached. This will trigger

the key to repeat the entire sequence again.

The IRB has only the most simple provisions for detecting cycles. It prevents redundant

links from being created between immediately connected IRBs. There are no provisions for

cycles that result from loops with more intermediate IRBs. One way to address this issue is to

tag data as \original" or \forwarded." Original data is data that is originated at an IRB and

sent to another IRB. On receipt of the data the IRB may need to forward this data to other

subscribing IRBs. Before forwarding this data it is tagged as \forwarded data." Along with

this label the original timestamp of the data is also forwarded. On receipt of the data by each

IRB the data's timestamp is compared to the timestamp of a previous copy of the data at the

IRB. If the \new" data's timestamp is as old as or older than the copy already at the IRB, then

the \new" data is ignored and hence not forwarded.

It is clear that a deeper study of the problem is needed to provide a suitable solution- in

particular a solution that does not occupy valuable networking resources to achieve.

5.3.8 Database Quality of Service

The IRB currently provides a prototype database. The prototype was developed to o�er

guidance over the kind of API expected by the IRB (this API is speci�ed in Appendix B). The

prototype caches all data in main memory and hence will support small-event and medium-

atomic data as long as it all �ts in the computer's physical memory. As physical memory

is exhausted the operating system will begin to page the data to virtual memory. This will

degrade the performance of the entire application to the point that realtime interaction will

80

be impossible. Hence the prototype's replacement must be able to provide multiple levels of

data caching, and it must allow the client/server program to negotiate the kind of database

performance needed for its particular application (i.e. a notion of database quality of service.)

This non-trivial problem is beyond the scope of this dissertation.

5.3.9 Cross-platform Porting

Currently the IRB prototype has been implemented for Silicon Graphics computers primar-

ily because they are presently the platform of choice for Teleimmersion. However since the IRB

contains no graphical capabilities, and bases its networking on Nexus (which has been ported

to Sun, IBM AIX, IBM SP2, and HP,) the IRB should also be relatively portable.

81

5.4 A Comparison of the IRB and HLA/DIS for Data Distribution

As the IRB possesses no graphical capabilities, the comparison between the IRB and

DIS/HLA will be made in terms of their respective approaches to data distribution.

DIS (Distributed Interactive Simulation) is being phased out and is being replaced by HLA

(High Level Architecture for Simulation) - the Department of Defence's new initiative to provide

a broader-based simulation standard that is designed to overcome inadequecies and extend the

capabilities of DIS.

HLA is an extremely complex and ambitious standard. It is attempting to be the \silver-

bullet" of distributed simulation standards- able to support realtime military simulations as well

as R&D, engineering, and analysis domains. Their primary objective however is still largely

to create a standard that will allow all their future military simulations to interoperate. This

standard is currently based on CORBA- in particular Orbix's implementation of CORBA.

There are some major advantages to using CORBA. The CORBA standard is both pro-

gramming language- and computer architecture independent. CORBA allows the speci�cation

of distributed objects at a very high-level. An object's data and member functions (and hence

behavior) can be speci�ed. Multiple inheritances, encapsulation, and polymorphism, as in

traditional object-oriented programming, are also supported. CORBA eliminates the need to

understand low-level networking protocols. It eliminates the need to manually serialize data

and marshal parameters for remote procedure calls. It eliminates the need to know explicitly,

on which remote computers an object may reside. All these details are handled transparently

82

by CORBA. Ideally all teleimmersive applications should be built by specifying and connecting

high-level CORBA-like objects.

CORBA is however, not the �rst object-oriented system that has been used in distributed

virtual reality. The early version of DIVE(25) used an object database called ISIS. DIVE no

longer uses ISIS. The main reason was that the overhead incurred in using such an object system

was unacceptable for realtime VR applications. This is not to suggest that object databases

are patently unsuitable for Teleimmersion. The value of distributed objects is unquestionable.

However the use of the currently available commercial object databases, is questionable. All

the conveniences provided by distributed objects also incur a signi�cant performance penalty.

Current implementations of CORBA are highly ine�cient. They do not scale well to support

large numbers of small objects, nor do they support very large objects- that is, objects such

as enormous scienti�c data sets(34). When objects are transacted between clients and servers,

multiple redundant copies of object data are performed in the ORBs(33). As the size of the

data increases so does the overhead of data copying. Data-copying has been shown to be the

ultimate limiting factor in the throughput achievable with the CORBA implementations(33).

The number of redundant copies made also vary with ORB implementations. ORBeline for

example copies the data almost three times more than Orbix(33).

A document(35) prepared for the US Army Simulation, Training and Instrumentation Com-

mand reported that the current implementation of the CORBA-based HLA prototype was not

su�cient for DIS-type real-time simulation. In particular: latencies for data communication ex-

ceeded the DIS threshold. The overall average latencies for attribute updates were between 400

83

and 500 milliseconds. Furthermore, attribute updates sent over reliable channels were slower,

with average latencies of 800-1200 milliseconds observed.

The CAVERNsoft-IRB approach to this problem has been to introduce a light-weight so-

lution that provides an API that is high-level enough to allow distributed applications to be

easily built, but is low-level enough to be able to meet the realtime needs of Teleimmersion.

As the IRB is being built from the ground-up it serves as a testbed to allow researchers in

Teleimmersion to investigate, understand, and resolve issues relating to realtime performance,

as they arise. For example the HLA performance report(35) noted an anomalous batching e�ect

in the delivery of its attribute updates. That is, the �rst update received in a batch was the

longest delayed from its send time, with the delay declining for each successive update received

in the batch. They were unable to identify the cause of this batching behavior as it would require

detailed analysis of the CORBA-ORB. This batching could have been occurring from within the

CORBA implementation or, as a similar experience with the CAVERNsoft-IRB would suggest,

the batching behavior might be in fact, due to the inherent bu�ering of packets that occurs

within the implementation of TCP. Even if this were identi�ed as the cause of HLA's problem,

CORBA does not allow the low-level manipulation of networking attributes. This may make

the integration of up-and-coming networking quality of service capabilities di�cult.

It is anticipated that in order for a CORBA-like interface to be use-able in the context of

Teleimmersion, it must be completely re-built from the foundation with new optimizations that

take into account quality of service issues in network data delivery and data storage. In essence

an IRB must be built before an ORB can be built.

84

5.5 IRB Performance Benchmarks

The examples in sections 5.1.1 and 5.2 illustrate the ease with which the IRB can be used in

a variety of situations. However one important question that arises when working with a system

of this complexity is \how much performance is lost in maintaining this level of functionality?"

To answer this question a networking-interface and a database performance experiment

was conducted. The networking-interface experiment was performed in order to reveal the

performance penalty incurred by using CAVERNsoft as compared to Nexus and raw TCP. The

database test was performed to give a general impression of the kind of performance that was

currently being provided by Keytool, the IRB's prototype database.

All experiments were conducted on a 175Mhz, 128M RAM, Silicon Graphics Indy, running

a pthreads-patched version of IRIX 6.2. Version 1.6-alpha of the IRB was used, which included

version 4.1 of Nexus. The Indy was taken o� the main ethernet local area network as ear-

lier pre-tests showed noticeable performance
uctuations, even though the tests involved the

transmission of data from one program to another on the same computer.

5.5.1 Networking Interface Performance Comparison

5.5.1.1 General Experimental Setup

The general goal of the experiment was to compare the performance di�erences between

sending data using the standard UNIX TCP socket library, Nexus, and CAVERNsoft. The

calls to the UNIX TCP socket library are similar to Stevens' classic examples(36) using blocking

85

sockets with small-packet-bu�ering disabled. That is, it represents the typical TCP program

most client-server applications would use for communication.

All tests were performed by separate processes all residing on the same computer. One

program would typically send data to another program and the time di�erence between sending

the packet and receiving the packet would be recorded. The programs were executed on the

same computer in order to produce results that are independent of networking medium and so

that time synchronization between two computers would not be necessary.

5.5.1.2 Experiment 1 : Comparison of raw TCP, Nexus and CAVERNsoft for small

packet sizes below 8192 bytes.

The �rst experiment was to examine the behavior of the three networking systems for small

packet sizes. For each system, 100 packets were sent from one process to another. Each packet

was timestamped. On receipt of the packet, the elapsed time was recorded. After 100 samples,

the recorded results were written to an output �le. The experiment was repeated with packet

size increments of 128 bytes until a size of 8192 bytes was reached. The mean of all the

experimental cases are plotted in Figure 15.

5.5.1.3 Interpretation of Results

The plots seemed to suggest a linear increase in delivery time as packet size increased. Nexus

appeared to impose an overhead of approximately 1 millisecond over raw TCP (Figure 17.)

CAVERNsoft appeared to impose an additional 0.6 milliseconds on top of Nexus (Figure 16.)

86

Comparison between raw TCP, Nexus and CAVERNsoft with packet sizes smaller
than 8K bytes

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Packet size (bytes)

Tim
e (

s)

CAVERN

Nexus

TCP

Figure 15. Comparison of raw TCP, Nexus and CAVERNsoft at packet sizes below 8192 bytes.

87

CAVERNsoft overhead over Nexus

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Packet size (bytes)

Tim
e (

s)

Figure 16. Overhead imposed by CAVERNsoft over Nexus for packet sizes less than 8K bytes.

88

Nexus overhead over Raw TCP

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Packet size (bytes)

Tim
e (

s)

Figure 17. Overhead imposed by Nexus over TCP for packet sizes less than 8K bytes.

89

5.5.1.4 Experiment 2 : Broad comparison between raw TCP, Nexus and CAVERNsoft.

The second experiment was designed to give a broader performance comparison of the three

networking systems. The same setup as in Experiment 1 was used except packet sizes increased

in 81920 byte increments until approximately 8 Megabytes was reached.

The mean of all the results are plotted in Figure 18.

5.5.1.5 Interpretation of Results

Figure 18 seems to indicate that CAVERNsoft's performance followed Nexus' closely even as

packet size increased. This is further illustrated in a plot of the di�erence between CAVERNsoft

and Nexus (Figure 19.)1

Two other di�erences were observed between the performance of CAVERNsoft/Nexus and

raw TCP: a) TCP appeared to signi�cantly out-perform CAVERNsoft/Nexus and b) the TCP

graph displayed a \terracing" e�ect. The latter is believed to be due to the internal bu�ering

of the underlying TCP algorithm. A similar e�ect was also observed in the benchmarks of

HLA(35).

1As the CAVERNsoft experiments were done independently of the Nexus experiments, there are
instances in the graph (negative values) that seemed to indicate that CAVERNsoft out-performed Nexus.
This is of course not the case. Initially when this experiment was being designed the thought was to
place pro�ling statements within the CAVERNsoft code so that the overhead of CAVERNsoft and
Nexus could be measured at the same time. This was not possible as the program code for CAVERNsoft
was so intertwined with Nexus-related calls that considerable sub-measurements would have had to be
taken between calls to properly isolate each sub-system's contribution. These sub-measurements would
themselves have contributed to an overall performance penalty in CAVERNsoft.

90

Comparison between CAVERNsoft, Nexus, TCP using packet size increments of
81920 bytes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

Packet size (bytes)

Tim
e (

s)

CAVERNsoft

Nexus

TCP

Figure 18. A comparison of raw TCP performance against CAVERNsoft and Nexus using
packet size increments of 81920 bytes.

91

CAVERNsoft overhead over Nexus for packet sizes >= 81920 bytes

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

Packet size (bytes)

Tim
e (

s)

Figure 19. CAVERNsoft overhead over Nexus using packet size increments of 81920 bytes.

The large performance di�erence between CAVERNsoft/Nexus is believed to be due to the

additional redundant memory copies incurred by Nexus during a send and receive of data (as

described in section 5.3.4.) To test this hypothesis, the raw TCP experiments were repeated

with one redundant copy made at the client and at the server. The results, which are plotted

in Figure 20, seemed to con�rm this.

92

Comparison between CAVERNsoft, Nexus, TCP (with buffering) using packet size
increments of 81920 bytes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

10
00

00
0

20
00

00
0

30
00

00
0

40
00

00
0

50
00

00
0

60
00

00
0

70
00

00
0

80
00

00
0

90
00

00
0

Packet size (bytes)

Tim
e (

s) CAVERNsoft

Nexus

TCP

Figure 20. A comparison of bu�ered TCP performance against CAVERNsoft and Nexus using
packet size increments of 81920 bytes.

93

Despite the current large performance di�erence between Nexus and raw TCP, future re-

leases of Nexus, with its direct put and get capabilities, will eliminate this di�erence. However

at the same time it should be noted that although the TCP results showed better overall per-

formance than CAVERNsoft/Nexus the responsiveness of CAVERNsoft/Nexus send calls were

higher. Figure 21 shows the elapsed time for performing the send calls for each of the net-

working interfaces. Note that CAVERNsoft/Nexus returns from the send calls sooner than raw

TCP. This is because the copying of the data bu�er in Nexus allowed it to perform the send

as a separate concurrent thread from the main thread whereas the raw TCP program must

block until the entire send is complete. With a strictly non-bu�ered send, the client application

programmer must write his/her own thread to deliver the data concurrently.

5.5.2 Database Performance Experiment

This experiment examines the performance of committing data to the Keytool prototype

database as compared to writing the same data to a UNIX �le system. Another possible

experiment might have been to compare the prototype to existing commercial databases. This

comparison was not performed as the IRB's database was implemented only as a placeholder for

an eventual, more e�cient and robust database. The placeholder's purpose was to help realize

the proof of concept IRB and to enable the speci�cation of Keytool's API (see Appendix B).

The database experiment is therefore only to provide some general impression of the kind

of performance that is presently being o�ered by the prototype IRB.

94

Comparison of time spent in send calls for raw TCP, CAVERNsoft and Nexus.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

81
92

0

40
96

00

73
72

80

10
64

96
0

13
92

64
0

17
20

32
0

20
48

00
0

23
75

68
0

27
03

36
0

30
31

04
0

33
58

72
0

36
86

40
0

40
14

08
0

43
41

76
0

46
69

44
0

49
97

12
0

53
24

80
0

56
52

48
0

59
80

16
0

63
07

84
0

66
35

52
0

69
63

20
0

72
90

88
0

76
18

56
0

79
46

24
0

Packet size (bytes)

Tim
e (

s)

CAVERNsoft

Nexus

TCP

Figure 21. Comparison of time spent in send calls for raw TCP, CAVERNsoft and Nexus for
packet size increment of 81920 bytes.

95

5.5.2.1 General Experimental Setup

In the database experiments, networking was not needed. Hence only a single IRB-based

program was launched. This program timed a number of immediately successive commit calls

to a single key on the IRB. The experiment began with a database entry of 163840 bytes and

50 trials. Successive experiments increased the database entry size in increments 163840 bytes

until 16384000 bytes was reached.

Following this experiment another identical experiment was performed to write data to a

single �le using the standard UNIX fwrite() system call.

All database commits and �le fwrites were performed on a non-NFS-mounted local disk

space.

5.5.2.2 Interpretation of Results

The initial �ndings were somewhat surprising. The plots labeled \CAVERNsoft" and \fwrite

single �le" in Figure 22 seemed to suggest that Keytool was signi�cantly out-performing raw

fwrites. This did not seem correct since Keytool based its own �le writes on fwrite.

The reason for this discrepancy was that the simple fault tolerance provision in Keytool

was also helping to improve its overall performance. As described in section 4.5, a small degree

of fault tolerance was added to Keytool so that commits were done by �rst writing the data

to a temporary �le and then renaming the �le to replace the older version. This fwrite to a

temporary �le meant that the IRB process would not have to wait until the previous �le I/O

operation was completely �nished by the operating system before beginning the next fwrite. To

96

Comparison between CAVERNsoft database performance vs UNIX fwrite

0

1

2

3

4

5

6

0 5000000 10000000 15000000 20000000

Buffer size (bytes)

Tim
e (

s)

CAVERNsoft

fwrite single file

fwrite swapped

Figure 22. CAVERNsoft database performance vs UNIX fwrite.

verify that this was indeed the cause of the performance improvement, the fwrite test program

was modi�ed to perform �le writes in a similar manner. The plot in Figure 22 labeled \fwrite

swapped" seemed to con�rm this. From comparing Keytool with the �le-swapped fwrite results,

it appears that Keytool still imposes very little additional overhead.

97

5.5.3 Summary of Findings

In general the prototype version of CAVERNsoft imposes very little additional networking-

interface overhead over Nexus. In experiments that involved the transmission of small packets,

the imposed overhead was approximately 0.6 milliseconds. In experiments that involved the

transmission of large packets, the imposed overhead became too small to di�erentiate from the

time spent in delivering the data. The imposed overhead by Nexus over using low-level UNIX

TCP calls was approximately 1 millisecond. For large packets however, raw TCP signi�cantly

out-performed Nexus. This was due to the redundant bu�ering currently present in Nexus' send

and receive calls. This bu�ering delay will be removable in future releases of Nexus. However,

there is a trade-o� between getting a packet to its destination as quickly as possible versus

returning from the packet send call as quickly as possible. In the former case the client's data is

directly sent to the destination without any intermediate bu�ering. Hence the client program

will need to block until the data has completely reached its destination before it can perform the

next modi�cation to the data. In the latter case the client's data is copied by the IRB so that

the IRB may send the copy independently of whatever new modi�cations the client may make

immediately following the send call. This improves concurrency at the expense of performing

one redundant memory copy. This trade-o� is a common problem faced by all higher-level

networking libraries. Future versions of the IRB's API will have to o�er both options and allow

the programmer to choose the one most appropriate for his/her application.

The database experiments suggested that Keytool imposes very little overhead over raw

UNIX �le writes. This database is only a placeholder for its eventual replacement. However,

98

even as a prototype it has been found to be useful in storing and retrieving small-event and

medium-atomic data- as demonstrated by the NICE and General Motors examples.

All the experiments described above were conducted on a speci�c con�guration of equip-

ment. These experiments will produce di�erent results on di�erent systems. CAVERNsoft's

performance will increase on a faster computer. Hence to support time-critical teleimmersive

applications that could potentially be running on computers with varying capabilities, it is im-

portant that the IRB provide a self-benchmarking and statistics-gathering capability to inform

the way it grants networking and database quality of service contracts.

CHAPTER 6

CONCLUSION

A suitable architecture for Teleimmersion should: facilitate the rapid construction of arbi-

trary distributed topologies; provide support for various networking protocols (including reliable

and unreliable, unicast, broadcast and multicast) and quality of service capabilities; provide

facilities for supporting concurrent programming (both a message-passing and a distributed

shared memory model); and provide support for persistence- where small-event, medium-atomic

and large-segmented data can be seamlessly managed.

To support these capabilities, the Information Resource Broker has been proposed, and a

prototype has been implemented and evaluated. The IRB provides a layer of software above that

of a threaded networking library (such as Nexus and ACE(33)) but below that of a distributed

object database (such as CORBA).

The IRB provides application developers with the ability to treat applications symmetrically

as both clients and servers, allowing any IRB-based program to link with any other IRB-based

program in almost any desired topology, to share information. Benchmarks show that it is

possible to provide both client and server capabilities with little additional overhead on top of

normal data distribution. The IRB uni�es data sharing in a manner that allows developers to

conveniently treat data sharing as either message passing or as a distributed shared memory or

database.

99

100

This initial work can serve as a foundation for many new areas of interesting research in

Teleimmersion:

� In order for the IRB to reach its full potential, the ability to control networking and

database quality of service must be implemented. Networking QoS is needed to ensure

that data streams are \smooth-enough" for the application at hand. Database QoS is

needed to ensure that the application can store, possibly streams of a teleimmersive

recording session, to the adequate degree of reliability and performance. To inform the

IRB's ability to provide certain levels of QoS, the IRBs must contain some means of

self-pro�ling.

� The building of continuously persistent LIMBO and DOMAIN spaces using the CAV-

ERNsoft architecture will be the primary means to motivate the development of new

teleimmersive applications. The proper integration of technology in these spaces will re-

quire both the careful design and modularization of the components being integrated (so

that the components can be used individually to retro-�t non-teleimmersive applications,)

and the consideration of the human-factors aspects of working in the collaborative space.

� The problems involved in supporting state persistence will be an exciting and important

area of Teleimmersion research. State persistence involves both the support of asyn-

chronous collaboration where the entire state of the world may need to be saved; and the

support of continuous recordings of the world as it evolves. Research obviously needs to

be done in the area of e�cient realtime storage and playback of the recordings- hence the

need to provide QoS capabilities in the IRB. However research also needs to be done in

101

supporting indexing and querying of the recorded data. Hence human-factors research

needs to be done in providing sensible interfaces with which collaborating participants

can navigate in virtual time as well as in virtual space.

APPENDICES

102

103

Appendix A

THE CAVERNSOFT APPLICATION PROGRAMMER'S INTERFACE

Contents

1 CAVERNInit | This is the �rst thing you do to start CAVERN : : : : : : : : 174

2 CAVERN initAttrib c | Class to set CAVERN initialization attributes : 177

3 CAVERN linkAttrib c | Class for specifying the characteristics of links 110

3.1 CAVERN update t | Choose between ACTIVE or PASSIVE update

of linked keys. :
111

3.2 CAVERN synch t | Choose between the types of synchronization

across the links. :
112

4 CAVERN irbChannel c | IRB Communications Channel class : : : : : : : : : : 115

4.1 status t | Status codes returned from CAVERN irbChannel c meth-

ods. :
116

4.2 CAVERN channelEvent t | Trigger event types for channels. : : : : 117

4.3 CAVERN networkReliability t | Network reliability types : : : : : : : : : 117

4.4 CAVERN update t | Update types : 118

104

Appendix A (Continued)

5 CAVERN irbId c | Class to specify a remote IRB to connect : : : : : : : : : : : 122

6 CAVERN irbKeyId c | Class to specify a key's ID : 123

7 CAVERN irbKey c | CAVERN IRB Key class : 124

7.2 status t | Status codes returned from CAVERN irbKey c methods. 127

7.3 CAVERN irbKeyBlocking t | Used to specify if speci�c key op-

erations should block till completion or not (See put(), deliver(),

deliverIncludingPassive()) :
128

7.4 CAVERN irbKeyEvent t | Trigger event types for keys. : : : : : : : : : : 128

8 CAVERN irbLink c | Link management class : 139

8.1 status t | Status codes returned from CAVERN irbLink c member

functions. :
140

8.2 CAVERN linkBlocking t | Used to set either blocking or non-

blocking remote request. :
141

8.3 CAVERN linkEvent t | Trigger event types for links. : : : : : : : : : : : : : 141

8.6 CAVERN requestType t | Remote request types. : : : : : : : : : : : : : : : : : : 143

9 CAVERN irbMcastChannel c | IRB Multicast Communications Channel

class :
146

9.1 status t | Status codes returned from CAVERN irbChannel c meth-

ods. :
147

105

Appendix A (Continued)

10 CAVERN irbMcastLink c | Multicast link management class : : : : : : : : : : : : 149

11 CAVERN irb c | Class for the personal IRB returned from CAV-

ERNInit() :
150

11.1 status t | Status codes returned from various methods. : : : : : : : : : : : : 151

12 CAVERN keyDefAttrib c | Class describing the properties of a key de�-

nition :
154

13 CAVERN qosAttrib c | Class to de�ne network Quality of Service pa-

rameters :
155

13.1 CAVERN qosGetRule t | Strategies for acquiring QOS : : : : : : : : : : : 156

14 CAVERNplus callSequencer c | Class for enforcing serial processing in

CAVERNsoft :
157

15 CAVERNplus condition c | Class for thread condition variables : : : : : : : 160

16 CAVERNplus datapack c | Data packing class : 163

17 CAVERNplus mutex c | Mutual exclusion class : 165

18 CAVERNplus thread c | Thread class : 166

19 cvrnPrintf | A thread-safe printf : 168

Class Graph : 180

106

Appendix A (Continued)

1

CAVERN irb c* CAVERNInit (int *argc, char*** argv, CAV-

ERN initAttrib c *initAttr=NULL)

This is the �rst thing you do to start CAVERN

This is the �rst thing you do to start CAVERN.

Sample call:

CAVERN_irb_c *personalIRB = CAVERNInit(&argc, &argv, NULL);

Once it is called it will spawn o� a number of threads to support your personal IRB. Every
CAVERN client has a personal IRB. The personal IRB is the main object you use to control
CAVERN. See the CAVERN irb c class for a description of what this handle can do.

This call returns a handle to the personal IRB or NULL if the initialization failed.

CAVERNsoft always creates a local default data-store in which it can store persistent data.
The default data-store is created in a directory called CAVERN DEFAULT DB in the same
location where your CAVERNsoft-based application is executed. The name of the default data-
store directory can be changed by setting one of the options in the CAVERN initAttrib c class
as an argument to CAVERNInit().

WARNING 1: CAVERN uses threads. Therefore it is important that CAVERNInit() is
called after the LAST fork in your program. For example, in the CAVE you call CAVERNInit()
just before the CAVE's main process' while loop. This is so that the threads belong to the main
process of the CAVE. What this also means is that CAVERN calls should ONLY be made in
the CAVE main process and NOT the draw processes.

If someday the CAVE library gets rewritten with threads then we will all be one happy
family.

WARNING 2: CAVERN's networking is supported by Nexus which creates a thread every
time a new message arrives from a remote source. Currently if you have too many messages
coming in simultaneously Nexus will spawn so many threads that eventually it will run out of
system resources and terminate your program. This will be �xed in the future when Nexus
modi�es its threading scheme. But in the meantime one way to reduce this problem is to try to
not send enormous numbers of small packets in a small amount of time (like tracker packets)-

107

Appendix A (Continued)

separate them with a small sginap(3). This is one of the reasons why all the demos in this
CAVERN distribution include small delays after each send of data. The other reason is to slow
down output so that you can read it.

Parameters: initAttr | The attribute sets any special conditions for initializ-

ing CAVERN (like port number.) If it is set to NULL then default

settings are assumed. Also if this is set to NULL, CAVERN will

look for the CAVERN PORT environment variable for a possible

starting port number.

argc | Argc from main(argc,argv).

argv | Argv from main(argc,argv).

108

Appendix A (Continued)

2

class CAVERN initAttrib c

Class to set CAVERN initialization attributes

A.0.3.0.1 Public Members

2.1 void setPort (unsigned short thePort)
Change CAVERN default main port to

something else : 178

unsigned short
getPort () Get default main port of CAVERN client.

void setDBName (char *dbRootName)
Set the data store name. By default

the datastore name is set as: CAV-

ERN DEFAULT DB.

char* getDBName () Get the data store name.

Class to set CAVERN initialization attributes. With this you can choose the port to open
for your personal IRB and you can choose the name of the local CAVERN data-store. Other

attributes will be added with time.

2.1

void setPort (unsigned short thePort)

109

Appendix A (Continued)

Change CAVERN default main port to something else

Change CAVERN default main port to something else. Must be a number greater than 6000.
The main port is the port that all IRBs connect to �rst before establishing any other commu-
nication lines.

110

Appendix A (Continued)

3

class CAVERN linkAttrib c

Class for specifying the characteristics of links

A.0.3.0.2 Public Members

3.1 enum CAVERN update t Choose between ACTIVE or PASSIVE

update of linked keys. : : : : : : : : : : : : : : : : : 111

3.2 enum CAVERN synch t Choose between the types of synchroniza-

tion across the links. : : : : : : : : : : : : : : : : : 112

3.3 void setInitialSynchType (CAVERN synch t t)
This to set how data is initially synchro-

nized between 2 keys when a link is �rst

established : 113

3.4 void setSubsequentSynchType (CAVERN synch t t)
This is to set how data is subsequently

synchronized between 2 keys in a link : 113

CAVERN synch t
getSubsequentSynchType ()

Returns the current synch type.

3.5 void setUpdateType (CAVERN update t t)
Set the link's update type to either active

or passive : 114

CAVERN update t
getUpdateType () Get update type

CAVERN synch t

111

Appendix A (Continued)

getInitialSynchType ()
Get initial synch type.

Class for specifying the characteristics of links. By default links are auto-synchronizing and use
active updating. That is links will compare local and remote timestamps to determine if data
transfer is needed. Also when data is changed at any site, it is automatically propagated to

remote sites.

3.1

enum CAVERN update t

Choose between ACTIVE or PASSIVE update of linked keys.

A.0.3.0.3 Members

3.1.1 ACTIVE Active update means key data are syn-

chronized whenever the data changes : : 112

PASSIVE Passive update means the user must ex-

plicitly deliver or request data.

3.1.1

ACTIVE

Active update means key data are synchronized whenever the data changes

112

Appendix A (Continued)

Active update means key data are synchronized whenever the data changes. This is similar to

a server push.

3.2

enum CAVERN synch t

Choose between the types of synchronization across the links.

A.0.3.0.4 Members

NONE Perform no synchronization at all. Use-

ful for initial synch conditions.

AUTO SYNCH Automatically allow CAVERNsoft to

manage synchronization based on times-

tamps.

SYNCH LOCAL TO REMOTE
Synchronize by tranfering data from local

to remote site based on time stamp.

SYNCH REMOTE TO LOCAL
Synchronize by tranfering data from re-

mote to local site based on time stamp.

FORCE LOCAL TO REMOTE
Force tranfer of data from local to remote

site regardless of timestamp.

FORCE REMOTE TO LOCAL

113

Appendix A (Continued)

Force tranfer of data from remote to local

site regardless of timestamp.

3.3

void setInitialSynchType (CAVERN synch t t)

This to set how data is initially synchronized between 2 keys when a link is �rst established

This to set how data is initially synchronized between 2 keys when a link is �rst established.
When either SYNCH LOCAL TO REMOTE, SYNCH REMOTE TO LOCAL or AUTO are
used local and remote timestamps are checked to decide whether data transfer is necessary.
In the future this will be extended to also compare checksums since timestamp alone is not
a su�cient indication of whether two �les are the same or not. For example if 2 keys have
di�erent timestamps but are exactly the same then synching is a waste especially if the keys

hold very large amounts of data.

3.4

void setSubsequentSynchType (CAVERN synch t t)

This is to set how data is subsequently synchronized between 2 keys in a link

This is to set how data is subsequently synchronized between 2 keys in a link. In subse-
quent synch timestamps are not checked. So SYNCH LOCAL TO REMOTE is the same
as FORCE LOCAL TO REMOTE. Similarly SYNCH REMOTE TO LOCAL is the same as
FORCE REMOTE TO LOCAL. Note. If you use REMOTE TO LOCAL synching locally, any
changes that you make to your local key will not be propagated to the remote subscriber/client

114

Appendix A (Continued)

since you have forced data transfer into being unidirectional. These rules can be overriden on

temporary bases with: CAVERN irbLink c::requestRemote()

3.5

void setUpdateType (CAVERN update t t)

Set the link's update type to either active or passive

Set the link's update type to either active or passive. Active update means key data are
synchronized whenever the data changes. In some sense this is similar to a server push. Passive
update means the user must explicitly deliver or request data.

115

Appendix A (Continued)

4

class CAVERN irbChannel c

IRB Communications Channel class

A.0.3.0.5 Public Members

4.1 enum status t Status codes returned from CAV-

ERN irbChannel c methods. : : : : : : : : : : 116

4.2 enum CAVERN channelEvent t
Trigger event types for channels. : : : : : 117

4.3 enum CAVERN networkReliability t
Network reliability types : : : : : : : : : : : : : : 117

4.4 enum CAVERN update t Update types : 118

4.5 ~CAVERN irbChannel c ()
Deleting this channel will close the chan-

nel : 118

4.6 void open (CAVERN irbId c* remoteIRB,

CAVERN qosAttrib c* qosAttr,

CAVERN networkReliability t reliability,

CAVERN irbChannel c::status t *retStatus)

Open the channel to a remote IRB : : : : 119

void close () Close an open channel.

4.7 void reserveQoS (CAVERN qosAttrib c *,

CAVERN irbChannel c::status t *retStatus)

Reserve Network Channel's Quality of

Service : 120

4.8 CAVERN irbLink c*

116

Appendix A (Continued)

link (CAVERN irbKey c* localKey,

CAVERN irbKeyId c* remoteKeyID,

CAVERN linkAttrib c* attr=NULL)

Link a local and remote key together us-

ing this channel : 121

4.9 void trigger (void (*call-

back)(CAVERN irbChannel c::CAVERN channelEvent t

event, CAVERN irbChannel c *thisChannel,

void* userData), void* userData)

Trigger on events about the channel : : : 121

IRB Communications Channel class. Channels are the actual communication pathways that
are set up between local and remote CAVERNsoft-based clients/servers. These channels can
be set to transmit data via reliable TCP or unreliable UDP. Also at some point in the future
channels can be used to set the kind of quality of service options (bandwidth, latency, jitter
requirements) desired by your application. Your application can open as many channels as
you like, each possibly with di�ering communications characteristics. Once these channels are
created you may choose what pieces of data are transmitted over them by linking local keys

with remote keys (see CAVERN irbLink c).

4.1

enum status t

Status codes returned from CAVERN irbChannel c methods.

A.0.3.0.6 Members

117

Appendix A (Continued)

OK Operation succeeded.

FAILED Operation failed.

NEGOTIATED Used for QoS- operation negotiated a

lower QoS.

4.2

enum CAVERN channelEvent t

Trigger event types for channels.

A.0.3.0.7 Members

BROKEN CHANNEL
Broken link due to break of connection.

QOS DEVIATION Triggers when the QoS of the network

service begins to deviate.

4.3

enum CAVERN networkReliability t

Network reliability types

118

Appendix A (Continued)

A.0.3.0.8 Members

RELIABLE Use reliable protocols- DEFAULT.

UNRELIABLE Use unreliable protocols.

4.4

enum CAVERN update t

Update types

A.0.3.0.9 Members

ACTIVE UPDATE Active update- DEFAULT.

PASSIVE UPDATE
Passive update.

4.5

~CAVERN irbChannel c ()

Deleting this channel will close the channel

Deleting this channel will close the channel. Also it will unlink all links.

119

Appendix A (Continued)

4.6

void open (CAVERN irbId c* remoteIRB, CAVERN qosAttrib c*

qosAttr, CAVERN networkReliability t reliability, CAV-

ERN irbChannel c::status t *retStatus)

Open the channel to a remote IRB

Parameters: CAVERN irbId c | Speci�es remote IRB.

CAVERN qosAttrib c | Speci�es the desired QoS. It returns set

with the QoS it was able to negotiate. Currently this feature

has not been implemented since Nexus does not yet support QoS

capabilities.

CAVERN networkReliability t | selects ei-

ther CAVERN irbChannel c::RELIABLE or CAV-

ERN irbChannel c::UNRELIABLE transmission.

status | returns OK if got contract ; NEGOTIATED if had to

negotiate for lower QoS; FAILED if completely failed.

120

Appendix A (Continued)

4.7

void reserveQoS (CAVERN qosAttrib c *, CAVERN irbChannel c::status t

*retStatus)

Reserve Network Channel's Quality of Service

Parameters: CAVERN qosAttrib c | Speci�es the desired network quality of

service (QoS). It returns set with the QoS it was able to negotiate.

If no QoS attributes are desired, then set this parameter to NULL.

retStatus | returns OK if got contract ; NEGOTIATED if had

to negotiate for lower ; FAILED if completely failed. Currently

this feature has not been implemented since Nexus does not yet

support QoS capabilities.

4.8

CAVERN irbLink c* link (CAVERN irbKey c* localKey, CAV-

ERN irbKeyId c* remoteKeyID, CAV-

ERN linkAttrib c* attr=NULL)

Link a local and remote key together using this channel

121

Appendix A (Continued)

Link a local and remote key together using this channel. Returns a link object if successful, else
NULL. Linking allows you to store data in a local key and have it automatically propagated to
a remotely linked key and vice versa. Linking to a non-existant remote key will dynamically

create the remote key.

4.9

void trigger (void (*callback)(CAVERN irbChannel c::CAVERN channelEvent t

event, CAVERN irbChannel c *thisChannel, void* userData),

void* userData)

Trigger on events about the channel

Trigger on events about the channel. For example, if a connection breaks the user can be
warned by a BROKEN CHANNEL event.

Parameters: callback | Callback should be of the form: void call-

back(CAVERN irbChannel c::CAVERN channelEvent t event,

CAVERN irbChannel c *thisChannel, void* userData);

122

Appendix A (Continued)

5

class CAVERN irbId c

Class to specify a remote IRB to connect

A.0.3.0.10 Public Members

void setAddress (char *ipAddr)
Set address of remote IRB.

void setPort (unsigned short prt =

CAVERN IRB DEFAULT MAIN PORT)

Set port of remote IRB.

char* getAddress () Get address.

unsigned short
getPort () Get Port.

Class to specify a remote IRB to connect. For now this is identi�ed by IP and Port. In the
future we can use Globus to do it.

123

Appendix A (Continued)

6

class CAVERN irbKeyId c

Class to specify a key's ID

A.0.3.0.11 Public Members

char* getPath () Get the designated path of key.

char* getName () Get text name of key.

6.1 void setPath (char*) Set the designated path of key : : : : : : : : : 123

void setName (char*) Set text name of key.

char* getFullName () Get full combined path/name

Class to specify a key's ID. A key is identi�ed by a path name and a name. Path's can be
considered to correspond to a UNIX directory hierarchy rooted at CAVERN's default database
directory (usually CAVERN DEFAULT DB). If the path is not set or is set to NULL then the

root database directory path is assumed.

6.1

void setPath (char*)

Set the designated path of key

Set the designated path of key. e.g. setPath("foo/bar");

124

Appendix A (Continued)

7

class CAVERN irbKey c

CAVERN IRB Key class

A.0.3.0.12 Public Members

7.1 ~CAVERN irbKey c ()
The destructor will dereference the local

key so that it may be garbage collected to

free up CAVERN's resources : : : : : : : : : : 127

7.2 enum status t Status codes returned from CAV-

ERN irbKey c methods. : : : : : : : : : : : : : : 127

7.3 enum CAVERN irbKeyBlocking t
Used to specify if speci�c key operations

should block till completion or not (See

put(), deliver(), deliverIncludingPas-

sive()) : 128

7.4 enum CAVERN irbKeyEvent t
Trigger event types for keys. : : : : : : : : : : 128

7.5 void put (char *bu�er, int *sze, status t *status,

CAVERN irbKey c::CAVERN irbKeyBlocking t

blockingType = CAVERN irbKey c::NON BLOCKING)

125

Appendix A (Continued)

Put data into key : 129

7.6 void import (char *�lename, int *sze, status t *status,

CAVERN irbKey c::CAVERN irbKeyBlocking t

blockingType =

CAVERN irbKey c::NON BLOCKING)

Import data into key from a �le : : : : : : : 130

7.7 void export (char *�lename, status t *status)
Export a key to an output �le : : : : : : : : : 132

7.8 void get (char *bu�erToFill, int *sze, status t *status)
Get a copy of the data from key : : : : : : : 132

void getSize (int *sze, status t *status)
Get size of data in key.

7.9 void getAutoAlloc (char *&autoAllocatedBu�er, int *sze,

status t *status)

Get a copy of the data in the key but auto

allocate memory for the bu�er : : : : : : : : 133

7.10 void getDirect (char *&direct, int *sze, status t *status)
Get the direct pointer to the data in the

key : 133

7.11 void allocDirect (char *&direct, int *sze, status t *status)
Similar to getDirect : : : : : : : : : : : : : : : : : : : 134

7.12 void releaseDirect (status t *status)
Release the pointer to the data in the key

: 134

7.13 void commit (status t *status)

126

Appendix A (Continued)

Commit the local key to persistent store 135

7.14 void deliver (status t *status,

CAVERN irbKey c::CAVERN irbKeyBlocking t

blockingType =

CAVERN irbKey c::NON BLOCKING)

Dispatch data inside current key : : : : : : 135

7.15 void deliverIncludingPassive (status t *status, CAV-

ERN irbKey c::CAVERN irbKeyBlocking t

blockingType = CAV-

ERN irbKey c::NON BLOCKING)

This does the same thing as deliver except

it delivers to passive links as well : : : : : 136

7.16 void trigger (void (*call-

back)(CAVERN irbKey c::CAVERN irbKeyEvent t

event, CAVERN irbKey c *thisKey, void* userData),

void* userData)

Trigger on an event : : : : : : : : : : : : : : : : : : 137

CAVERN irbKeyId c
getKeyId () Get a copy of the key Id that de�ned this

key.

CAVERN IRB Key class. Objects of this type are instantiated by calling CAV-
ERN irb c::de�ne(). When you are done refering to the key delete it to free up system resources.

127

Appendix A (Continued)

7.1

~CAVERN irbKey c ()

The destructor will dereference the local key so that it may be garbage collected to free up
CAVERN's resources

The destructor will dereference the local key so that it may be garbage collected to free up
CAVERN's resources. Hence it is a way to unde�ne a key. There is currently no call to

unde�ne a key permanently including the persistent store.

7.2

enum status t

Status codes returned from CAVERN irbKey c methods.

A.0.3.0.13 Members

OK Operation succeeded.

FAILED Operation failed.

KEY STALE Access to the key failed because the key is

no longer valid; delete the key and rede-

�ne it if you wish to access it

BUFFER TOO SMALL

128

Appendix A (Continued)

Returned if you attempt a get() but did

not provide a large enough bu�er for

CAVERNsoft to store the data into

7.3

enum CAVERN irbKeyBlocking t

Used to specify if speci�c key operations should block till completion or not (See put(),
deliver(), deliverIncludingPassive())

A.0.3.0.14 Members

BLOCKING Blocking.

NON BLOCKING Non-blocking.

7.4

enum CAVERN irbKeyEvent t

Trigger event types for keys.

A.0.3.0.15 Members

NEW DATA ARRIVED

129

Appendix A (Continued)

New data has arrived at the key.

7.5

void put (char *bu�er, int *sze, status t *status, CAV-

ERN irbKey c::CAVERN irbKeyBlocking t blockingType = CAV-

ERN irbKey c::NON BLOCKING)

Put data into key

Put data into key. This replaces the previous contents with the new contents. This call usually
results in a copy of the entire data to the remote site.

130

Appendix A (Continued)

Parameters: buffer | gets copied to key.

sze | amount of data to copy. Returns sze successfully copied.

status | returns status: FAIL occurs if any general problems oc-

curred (like internal mem allocation) KEY STALE occurs if this

key is no longer valid for data access. OK is returned if the put is

successful.

blockingType | if set to BLOCKING will return only after the

data has been delivered, otherwise this function will return imme-

diately after having initiated delivery. Blocking is ususually used

if you don't wish to continue with the
ow of your program until

a piece of data has been guaranteed to be delivered to the desti-

nation. For example you would perform a blocking put before you

did a remoteCommit on a link.

7.6

void import (char *�lename, int *sze, status t *status, CAV-

ERN irbKey c::CAVERN irbKeyBlocking t blockingType =

CAVERN irbKey c::NON BLOCKING)

Import data into key from a �le

131

Appendix A (Continued)

Import data into key from a �le. This replaces the previous contents with the new contents.
This call usually results in a copy of the entire data to the remote site.

Parameters: filename | speci�es the �le to load.

sze | this returns the size of the �le loaded.

status | returns status: FAIL occurs if any general problems oc-

curred (like internal mem allocation) KEY STALE occurs if this

key is no longer valid for data access. OK is returned if the put is

successful.

blockingType | if set to BLOCKING will return only after the

data has been delivered, otherwise this function will return imme-

diately after having initiated delivery. Blocking is ususually used

if you don't wish to continue with the
ow of your program until

a piece of data has been guaranteed to be delivered to the desti-

nation. For example you would perform a blocking put before you

did a remoteCommit on a link.

7.7

void export (char *�lename, status t *status)

Export a key to an output �le

132

Appendix A (Continued)

Parameters: status| returns either OK or FAILED. KEY STALE is returned

if this key is no longer valid for data access.

filename | is output �le to export to.

7.8

void get (char *bu�erToFill, int *sze, status t *status)

Get a copy of the data from key

Parameters: bufferToFill | is a user provided bu�er into which the data is

copied.

sze | is the size of the data bu�er provided. Sze returns the size

of the data copied into the bu�er.

status | returns status: BUFFER TOO SMALL occurs when

the data in the key is larger than data bu�er provided by user.

OK if everything was �ne. KEY STALE if for some reason this

key is no longer active.

133

Appendix A (Continued)

7.9

void getAutoAlloc (char *&autoAllocatedBu�er, int *sze, status t *status)

Get a copy of the data in the key but auto allocate memory for the bu�er

Get a copy of the data in the key but auto allocate memory for the bu�er. I.e. you give it
a plain pointer and it will return a chunk of memory. The returned bu�er must be manually
deleted by you. If memory could not be allocated the bu�er returns NULL, the size returns 0.

Parameters: status | returns OK if everything was �ne. Returns FAILED if

a memory allocation problem occurred. Returns KEY STALE if

the this key is no longer valid.

7.10

void getDirect (char *&direct, int *sze, status t *status)

Get the direct pointer to the data in the key

Get the direct pointer to the data in the key. Use this with CAUTION. This forces a lock
on CAVERNsoft's internal database so it could potentially prevent new incoming data from
arriving. Use the data and release the resource with releaseDirect() as quickly as possible.

Parameters: status | returns OK or KEY STALE.

See Also: releaseDirect()

134

Appendix A (Continued)

7.11

void allocDirect (char *&direct, int *sze, status t *status)

Similar to getDirect

Similar to getDirect. This function allocates memory in the key of a size speci�ed by the sze
parameter. Sze also returns the sze of the data successfully allocated. Direct is a pointer to
the allocated memory. Use this with CAUTION. This forces a lock on CAVERNsoft's internal
database so it could potentially prevent new incoming data from arriving. Use the data and
release the resource with releaseDirect() as quickly as possible.

Typical use of this function is:

aKey->allocDirect(bu�er,....);

�llBu�erWithData(bu�er);

aKey->releaseDirect();

aKey->deliver(......);

Warning. There is currently nothing that guarantees that the data in the key won't be
updated by new incoming data between the time of releaseDirect() and deliver().

Parameters: status | returns OK, KEY STALE or FAILED

See Also: releaseDirect()

7.12

void releaseDirect (status t *status)

Release the pointer to the data in the key

135

Appendix A (Continued)

Release the pointer to the data in the key. See getDirect(). At the present time, multiple
successive calls to releaseDirect can produce unde�ned behavior.

Parameters: status | returns either OK or KEY STALE.

7.13

void commit (status t *status)

Commit the local key to persistent store

Commit the local key to persistent store. If you wish to commit a remote key to persistent

store see CAVERN irbLink c::commitRemote().

7.14

void deliver (status t *status, CAVERN irbKey c::CAVERN irbKeyBlocking t

blockingType = CAVERN irbKey c::NON BLOCKING)

Dispatch data inside current key

Dispatch data inside current key. It ensures that if this key is participating in a link it will
dispatch its changes to all the remote connections. This is good to do after data is modi�ed with
getDirect and releaseDirect since these calls have no knowledge of whether you have modi�ed
the key or not.

136

Appendix A (Continued)

Delivery abides by the constraints set by CAVERN linkAttrib c during the creation of the
link.

See CAVERN irbLink c and CAVERN linkAttrib c.

Parameters: status | returns either OK or KEY STALE.

blockingType | if set to BLOCKING will return only after the

data has been delivered, otherwise this function will return imme-

diately after having initiated delivery. Blocking is ususually used

if you don't wish to continue with the
ow of your program until

a piece of data has been guaranteed to be delivered to the desti-

nation. For example you would perform a blocking put before you

did a remoteCommit on a link.

7.15

void deliverIncludingPassive (status t *status, CAV-

ERN irbKey c::CAVERN irbKeyBlocking t

blockingType = CAV-

ERN irbKey c::NON BLOCKING)

This does the same thing as deliver except it delivers to passive links as well

This does the same thing as deliver except it delivers to passive links as well. See CAV-
ERN irbLink c.

137

Appendix A (Continued)

Parameters: status | returns either OK or KEY STALE.

blockingType | if set to BLOCKING will return only after the

data has been delivered, otherwise this function will return imme-

diately after having initiated delivery. Blocking is ususually used

if you don't wish to continue with the
ow of your program until

a piece of data has been guaranteed to be delivered to the desti-

nation. For example you would perform a blocking put before you

did a remoteCommit on a link.

7.16

void trigger (void (*callback)(CAVERN irbKey c::CAVERN irbKeyEvent t

event, CAVERN irbKey c *thisKey, void* userData), void* user-

Data)

Trigger on an event

Trigger on an event. This will call a user-provided callback when an event occurs. See CAV-
ERN irbKeyEvent t. WARNING: Currently you cannot perform a put() or any of the deliver()
calls on this same key while you are in the user's callback [get() calls are ok.] This is because
the key is locked to protect other clients from writing to your key while you are reading it.
Hopefully soon we will come up with a solution for this.

138

Appendix A (Continued)

Parameters: callback | is the callback to call when trig-

ger occurs. Callback is of the form: void myCall-

back(CAVERN irbKey c::CAVERN irbKeyEvent t event, CAV-

ERN irbKey c *thisKey, void* userData);

userData | is address of data to pass into callback.

139

Appendix A (Continued)

8

class CAVERN irbLink c

Link management class

A.0.3.0.16 Public Members

8.1 enum status t Status codes returned from CAV-

ERN irbLink c member functions.

140
8.2 enum CAVERN linkBlocking t

Used to set either blocking or non-

blocking remote request. : : : : : : : : : : : : : : 141

8.3 enum CAVERN linkEvent t
Trigger event types for links. : : : : : : : : : 141

8.4 void trigger (void (*call-

back)(CAVERN irbLink c::CAVERN linkEvent t

event, CAVERN irbLink c *thisLink,

CAVERN irbLink c::status t status, void* userData),

void* userData)

Set a user-speci�ed callback to be called

when an event occurs : : : : : : : : : : : : : : : : : 142

~CAVERN irbLink c ()
This destructor will also unlink the link.

8.5 void commitRemote (status t *status)

140

Appendix A (Continued)

Tell the remote IRB to commit the re-

mote key's data to persistent data store

143
8.6 enum CAVERN requestType t

Remote request types. : : : : : : : : : : : : : : : : 143

8.7 void requestRemote (CAVERN requestType t requestType,

status t *status, CAV-

ERN irbLink c::CAVERN linkBlocking t

blocking =

CAVERN irbLink c::NON BLOCKING,

int timeOutTime = 30)

Request the data from a remote source

over a speci�c link : 144

Link management class. This class allows you to manage a link. It allows you to commit the
data in a remote key to a persistent data-store. It allows you to explicitly request data from a
remote key rather than having to wait for data to be automatically propagated to you. More

features will be added with time.

8.1

enum status t

Status codes returned from CAVERN irbLink c member functions.

A.0.3.0.17 Members

141

Appendix A (Continued)

FAILED Operation failed

OK Operation succeeded

TIMED OUT Operation timed out

NO DOWNLOAD NEEDED
This is a status message returned from a

remote request if the synchronizing time

stamps determine that a remote download

was not necessary.

8.2

enum CAVERN linkBlocking t

Used to set either blocking or non-blocking remote request.

A.0.3.0.18 Members

NON BLOCKING Non blocking remote request.

BLOCKING Blocking remote request.

8.3

enum CAVERN linkEvent t

Trigger event types for links.

142

Appendix A (Continued)

A.0.3.0.19 Members

REMOTE REQUEST
This event occurs when there is news

about a remote request.

8.4

void trigger (void (*callback)(CAVERN irbLink c::CAVERN linkEvent t

event, CAVERN irbLink c *thisLink, CAV-

ERN irbLink c::status t status, void* userData), void* userData)

Set a user-speci�ed callback to be called when an event occurs

Set a user-speci�ed callback to be called when an event occurs. Callback should be of the form:

void callback(CAVERN irbLink c::CAVERN linkEvent t event, CAVERN irbLink c *this-
Link, CAVERN irbLink c::status t status, void* userData);

This callback may receive for e.g. a REMOTE REQUEST event with a status of
TIMED OUT.

Parameters: userData | is for passing any user data to the callback on invo-

cation.

143

Appendix A (Continued)

8.5

void commitRemote (status t *status)

Tell the remote IRB to commit the remote key's data to persistent data store

Parameters: status | returns either FAILED or OK.

8.6

enum CAVERN requestType t

Remote request types.

A.0.3.0.20 Members

DEFAULT Default request will compare timestamps.

FORCED REQUEST
Forced request will always download data

regardless of timestamps.

144

Appendix A (Continued)

8.7

void requestRemote (CAVERN requestType t requestType, status t *sta-

tus, CAVERN irbLink c::CAVERN linkBlocking t

blocking = CAVERN irbLink c::NON BLOCKING, int

timeOutTime = 30)

Request the data from a remote source over a speci�c link

Request the data from a remote source over a speci�c link. Used primarily for passive up-
dates. Callback of remote request could get status: FAILED, NO DOWNLOAD NEEDED,
TIMED OUT or OK. OK event means data will be transmitted to your locally linked key. This
will �re the irb Key's callback for new incoming data.

145

Appendix A (Continued)

Parameters: timeOutTime | is the time (in seconds) this request waits for ei-

ther status information or incoming data. When timeout occurs a

TIME OUT event will �re.

blocking| is used to make this request a blocking or non-blocking

request. If non-blocking then this function will return immediately

with either a status of OK or FAILED that re
ects the status of

calling this request (ie not the status of the result of the completed

request). The callback will actually reveal the true status of the

completed request. If blocking then this function waits till remote

status information arrives and remote data is completely down-

loaded (whichever occurs �rst). The status in this case would be

the status of the completed request- i.e. the status the callback

would get.

146

Appendix A (Continued)

9

class CAVERN irbMcastChannel c

IRB Multicast Communications Channel class

A.0.3.0.21 Public Members

enum CAVERN mcastChannelEvent t
Trigger event types for mcast channels.

9.1 enum status t Status codes returned from CAV-

ERN irbChannel c methods. : : : : : : : : : : 147

9.2 void open (char * mcastAddr, unsigned short mcastPort,

int mcastTTL, CAVERN qosAttrib c* qosAttr,

CAVERN irbMcastChannel c::status t *retStatus)

Open the multicast channel to a multicast

group : 147

9.3 CAVERN irbMcastLink c*
link (CAVERN irbKey c* localKey)

Link a local key to the multicast channel

: 148

IRB Multicast Communications Channel class. A multicast channel opens up to a multicast
group rather than to a remote IRB. Multicast channels use the standard unreliable multicast
protocol. If you wish to multicast between distantly located remote sites you will either need
your system administrator to set up a multicast tunnel, or you need to create your own version
of a tunnel by forming explict CAVERN irbChannel c's and links to the remote site. Note:
when you open a connection to a multicast group on a machine you cannot open a connection

another multicast group from the same machine.

147

Appendix A (Continued)

9.1

enum status t

Status codes returned from CAVERN irbChannel c methods.

A.0.3.0.22 Members

OK Operation succeeded.

FAILED Operation failed.

NEGOTIATED Used for QoS- operation negotiated a

lower QoS.

9.2

void open (char * mcastAddr, unsigned short mcastPort, int mcastTTL, CAV-

ERN qosAttrib c* qosAttr, CAVERN irbMcastChannel c::status t

*retStatus)

Open the multicast channel to a multicast group

Open the multicast channel to a multicast group. All IRB programs expected to receive the
same packets must listen to the same multicast address and port.

148

Appendix A (Continued)

Parameters: mcastAddr | Speci�es a multicast address as a string. Multicast

addresses should be of the form 224.x.x.x

mcastPort | Speci�es a multicast port.

CAVERN qosAttrib c | Speci�es the desired QoS. It returns set

with the QoS it was able to negotiate. Currently this feature has

not been implemented since Nexus does not yet support QoS ca-

pabilities.

status | returns OK if got contract; NEGOTIATED if had to

negotiate for lower QoS; FAILED if completely failed.

9.3

CAVERN irbMcastLink c* link (CAVERN irbKey c* localKey)

Link a local key to the multicast channel

Link a local key to the multicast channel. Note any remote IRBs listening to the same channel
with a key that is linked with the SAME NAME will receive data from this key if this key is
modi�ed. Conversely if any remote IRB modi�es the key this key will also be updated. Hence
multicast is like a big pool of memory where everything is shared.

149

Appendix A (Continued)

10

class CAVERN irbMcastLink c

Multicast link management class

A.0.3.0.23 Public Members

void unlink () Unlink this link and hence unlink any

keys linked to the multicast channel.

Multicast link management class. For multicast there is practically nothing to manage except
to unlink it when done. Deleting the object will also unlink it.

150

Appendix A (Continued)

11

class CAVERN irb c

Class for the personal IRB returned from CAVERNInit()

A.0.3.0.24 Public Members

CAVERN irbId c
getSelfIRBId () Find out what your IRB ID is (in terms

of initial IP and port.)

11.1 enum status t Status codes returned from various meth-

ods. : 151

11.2 ~CAVERN irb c () Deleting the IRB will shut it down : : : : 151

11.3 CAVERN irbChannel c*
createChannel () Create a channel (either TCP or UDP)

over which local and remote keys may

share data : 152

11.4 CAVERN irbMcastChannel c*
createMcastChannel ()

Create a multicast channel to a multicast

group : 152

11.5 CAVERN irbKey c*
de�ne (CAVERN irbKeyId c *newKeyInfo,

CAVERN keyDefAttrib c *keyDef, status t *status)

De�ne a key on the personal IRB : : : : : 153

Class for the personal IRB returned from CAVERNInit(). CAVERNInit() is the only function
that generates this object. Each client or server program only has 1 of these objects.

151

Appendix A (Continued)

Once you have this IRB object you can call the CAVERN irb c::de�ne() member function
to de�ne local keys in which data may be stored.

Then you can create a channel (CAVERN irbChannel c) between a local and remote IRB
and link (CAVERN link c) keys over this channel so that any updates to a key will be shared
across the network.

11.1

enum status t

Status codes returned from various methods.

A.0.3.0.25 Members

OK Operation successful.

FAILED Operation failed.

11.2

~CAVERN irb c ()

Deleting the IRB will shut it down

Deleting the IRB will shut it down. It will also shutdown your application- Nexus won't let me

keep the application alive.

152

Appendix A (Continued)

11.3

CAVERN irbChannel c* createChannel ()

Create a channel (either TCP or UDP) over which local and remote keys may share data

Create a channel (either TCP or UDP) over which local and remote keys may share
data. After a channel is created it can be opened to connect to a remote IRB. See CAV-
ERN irbChannel c::open().

Return Value: a CAVERN irbChannel c object or NULL if failed.

11.4

CAVERN irbMcastChannel c* createMcastChannel ()

Create a multicast channel to a multicast group

Create a multicast channel to a multicast group. After a channel is created it can be opened
to connect to the mcast group by using CAVERN irbMcastChannel c::open().

Return Value: a CAVERN irbMcastChannel c object or NULL if failed.

153

Appendix A (Continued)

11.5

CAVERN irbKey c* de�ne (CAVERN irbKeyId c *newKeyInfo, CAV-

ERN keyDefAttrib c *keyDef, status t *status)

De�ne a key on the personal IRB

De�ne a key on the personal IRB.

Return Value: A handle to the database. Delete the handle when you're done

referencing it. It will help free up system resources.

Parameters: keyDef | if set to NULL then it assumes default settings. Cur-

rently this is not used so please set it to NULL.

status | returns either: OK or FAILED.

154

Appendix A (Continued)

12

class CAVERN keyDefAttrib c

Class describing the properties of a key de�nition

Class describing the properties of a key de�nition. This is used in calling: CAV-
ERN irb c::de�ne().

Currently there are no de�neable attributes. Attributes for setting permissions will be added
in time.

155

Appendix A (Continued)

13

class CAVERN qosAttrib c

Class to de�ne network Quality of Service parameters

A.0.3.0.26 Public Members

13.1 enum CAVERN qosGetRule t
Strategies for acquiring QOS : : : : : : : : : : 156

void setQosGetRule (CAVERN qosGetRule t)
Set QoS rule.

void setAcceptableLatency (
oat)
Set acceptable latency in milliseconds.

void setAcceptableJitter (
oat)
Set acceptable jitter in milliseconds.

void setBandwidth (int) Set bandwidth in bits per second.

CAVERN qosGetRule t
getQosGetRule () Accessor for QoS rule.

oat getAcceptableLatency ()
Accessor for latency.

oat getAcceptableJitter ()
Accessor for jitter.

int getBandwidth () Accessor for bandwidth (in bits per sec-

ond).

Class to de�ne network Quality of Service parameters. QoS attributes allow you to negotiate
how much bandwidth, latency, and jitter is acceptable over your subscription to a remote IRB.

156

Appendix A (Continued)

13.1

enum CAVERN qosGetRule t

Strategies for acquiring QOS

A.0.3.0.27 Members

QOS GET EXACT Get exact QoS desired or fail.

QOS NEGOTIATE Ask for QoS but negotiate for best that

can be gotten.

See Also: setQosGetRule, getQosGetRule

157

Appendix A (Continued)

14

class CAVERNplus callSequencer c

Class for enforcing serial processing in CAVERNsoft

A.0.3.0.28 Public Members

14.1 void permitCall (int delay=3)
Choose a point where an external callback

is allowable : 159

void enterCall () Call this before doing work inside the

callback function.

void exitCall () Call this when you are about to exit from

the callback function.

CAVERNplus callSequencer c ()
Constructor.

~CAVERNplus callSequencer c ()
Destructor.

Class for enforcing serial processing in CAVERNsoft.

This class is a convenience for people who are trying to retro�t previously developed appli-
cations with CAVERNsoft. Often times programs are not written with concurrent processing in
mind. CAVERNsoft makes extensive use of concurrent programming and so problems may arise
when attempting to retro�t the non-concurrent application with CAVERNsoft. For complex
programs this is particularly di�cult because there could be many inter-acting variables.

One simple solution to this problem is to force CAVERNsoft to work sequentially too (it's
not e�cient but for some applications it may be the only course of action.)

The way to do this is to assign a location in your program where you think CAVERNsoft
callbacks are safe to occur. Using the CAVERNplus callSequencer c class you can declare that
point in the program by using the permitCall() member function.

158

Appendix A (Continued)

Then from within the callback you can call the enterCall() and exitCall() member functions.
Call the enterCall() before doing any work in your callback and do an exitCall() before exiting
your callback. Remember to perform the exitCall() function or else your callback will block
preventing CAVERNsoft from launching any future calls to this function.

An example of a main() function of a program might be:

CAVERNplus_callSequencer_c *seq;

main() {

blah....

blah....

// Do this after CAVERNsoft has been initialized.

seq = new CAVERNplus_callSequencer_c;

while(1) {

do stuff...

seq->permitCall();

}

}

The callback might look like this:

callback() {

seq->enterCall();

blah....

seq->exitCall();

}

This concept is similar to monitors however unlike monitors the call sequencer mechanism does
not explicitly guarantee mutual exclusion for every variable that is accessed within the callback.

159

Appendix A (Continued)

14.1

void permitCall (int delay=3)

Choose a point where an external callback is allowable

Parameters: delay| - the amount of time to wait for a callback to be detected.

160

Appendix A (Continued)

15

class CAVERNplus condition c

Class for thread condition variables

A.0.3.0.29 Public Members

15.1 int wait (CAVERNplus mutex c *mutex)
Wait on a condition to be signalled : : : 161

15.2 int signal () Signal that a condition has arisen : : : : : 162

15.3 int broadcastSignal () Signal that a condition has arisen : : : : : 162

nexus cond t*
getNexusCondition ()

Return nexus' condition variable.

Class for thread condition variables. Condition variables are used in conjunction with
mutexes to provide a way for threads to wait until a condition occurs.

An example of waiting on a signal is:

// Lock your mutex that is protecting someState.

myMutex->lock();

// Watch for your desired state to occur.

while(someState != reached) {

// Wait for a signal.

myCondition->wait(myMutex);

.... got the condition and the lock so now continue

}

myMutex->unlock();

161

Appendix A (Continued)

An example of sending the signal is:

// Lock your mutex that is protecting someState.

myMutex->lock();

// Signal that the state has been reached.

if (someState == reached) myCondition->signal();

// Unlock your mutex so that the waiting thread can continue.

myMutex->unlock();

15.1

int wait (CAVERNplus mutex c *mutex)

Wait on a condition to be signalled

Wait on a condition to be signalled. This function �rst releases the mutex and then waits on
the condition. When the condition arises (ie it has been signaled) the mutex is reaquired, and
the function returns.

Return Value: 0 if function successfully completes else non-zero

15.2

int signal ()

162

Appendix A (Continued)

Signal that a condition has arisen

Signal that a condition has arisen. This wakes up one thread that is suspended on this condition.
If no threads are suspended this call has no e�ect.

Return Value: 0 if function successfully completes else non-zero

15.3

int broadcastSignal ()

Signal that a condition has arisen

Signal that a condition has arisen. This wakes up ALL threads that are suspended on this
condition. If no threads are suspended this call has no e�ect.

Return Value: 0 if function successfully completes else non-zero

163

Appendix A (Continued)

16

class CAVERNplus datapack c

Data packing class

A.0.3.0.30 Public Members

CAVERNplus datapack c (char *bu�, int sz)
User must specify a pre-allocated data

bu�er and size of the bu�er.

void setBu�er (char *bu�, int sz)
User can switch data bu�ers. But again

you need to specify the size.

char* getBu�er () Retrieve the data bu�er.

int getBu�erMaxSize () Retrieve the original full size of the data

bu�er.

int getBu�erFilledSize ()
Retrieve the size of the data bu�er that

has been packed with data so far.

void restart () Reset the packing position to the begin-

ning of the bu�er.

int packFloat (
oat val) Floats

int packLong (long val) Long

int packInt (int val) Int

int packDouble (double val)
Double

int packChar (char val) Char

int pack (char *buf, int sz)

164

Appendix A (Continued)

Raw char*

oat unpackFloat () Float

long unpackLong () Long

int unpackInt () Int

double unpackDouble () Double

char unpackChar () Char

int unpack (char *buf, int sz)
Char*

Data packing class. It is basically a glori�ed memcpy(). The idea is that you create an
object to help you pack data for transmission over networks.

First you create a CAVERNplus datapack c object. Then assign it a pre-allocated memory
bu�er. Then using the various pack*() member functions, you can pack integers, characters,

oats etc into the bu�er. When done you can simply assign the bu�er to whatever call needs
the bu�er.

Similarly if you receive a bu�er of data from the network, you can unpack its constituent
components using the unpack*() member functions. Note: this class does not save the format
of your packing or unpacking it simply lays out your data in the bu�er you provide it. You
must pack things and unpack things in the same order in order for them to make sense.

Author: : Jason Leigh

Version: : 3/7/97

165

Appendix A (Continued)

17

class CAVERNplus mutex c

Mutual exclusion class

A.0.3.0.31 Public Members

CAVERNplus mutex c ()
Construct for a CAVERN mutual exclu-

sion object.

void lock () Lock the mutex object.

void unlock () Unlock mutex object.

void setMutexDebug (CAVERNplus mutex c::mutexDebug t stat)
Turn mutex debug messages on or o�.

void setMutexDebugMesg (char *msg)
Set the debug message to print whenever

lock and unlock is performed.

~CAVERNplus mutex c ()
Destructor for a CAVERN mutual exclu-

sion object.

nexus mutex t*
getNexusMutex () Return the nexus handle to the mutex

variable.

Mutual exclusion class.

This class encapsulates mutual exclusion in a C++ object.

166

Appendix A (Continued)

18

class CAVERNplus thread c

Thread class

A.0.3.0.32 Public Members

18.1 int create (void * (*threaded func)(void *), void *arg)
Create a thread : 166

nexus thread t*
getNexusThread () Return nexus' thread handle.

Thread class. Note: the CAVERNplus thread-related classes are intended to be simpli�ed
versions of the nexus/pthread interfaces so that beginners can quickly create threaded programs.
For greater control over threads use the nexus thread API which is very similar to the pthreads

API.

18.1

int create (void * (*threaded func)(void *), void *arg)

Create a thread

167

Appendix A (Continued)

Return Value: 0 if thread successful, else non-zero.

Parameters: threaded func | is your function that will be called in a sep-

arate thread. The function needs to be of the form: void *

threaded func(void *arg);

arg | is the argument to pass to the threaded function.

168

Appendix A (Continued)

19

void cvrnPrintf (char *fmt, ...)

A thread-safe printf

A thread-safe printf. Use this rather than the standard printf to print text to the TTY.

example 1:

cvrnPrintf("Hello

prints something like:

Hello 123 32.4

Parameters: fmt | format string that you normally would have speci�ed for

printf.

arguments | for the format string.

169

Appendix A (Continued)

Class Graph

2

CAVERN initAttrib c : 177

3

CAVERN linkAttrib c : 110

4

CAVERN irbChannel c : 115

5

CAVERN irbId c : 122

170

Appendix A (Continued)

6

CAVERN irbKeyId c : 123

7

CAVERN irbKey c : 124

8

CAVERN irbLink c : 139

9

CAVERN irbMcastChannel c : 146

10

CAVERN irbMcastLink c : 149

11

CAVERN irb c : 150

171

Appendix A (Continued)

12

CAVERN keyDefAttrib c : 154

13

CAVERN qosAttrib c : 155

14

CAVERNplus callSequencer c : 157

15

CAVERNplus condition c : 160

16

CAVERNplus datapack c : 163

172

Appendix A (Continued)

17

CAVERNplus mutex c : 165

18

CAVERNplus thread c : 166

173

Appendix B

KEYTOOL: THE CAVERNSOFT PERSISTENT HEAP APPLICATION

PROGRAMMER'S INTERFACE

Contents

1 keyToolKey c | Key tool key class : 174

1.1 status t | Status : 175

2 keyToolManager c | Key Tool Manager class : 177

2.1 status t | Status of getKey() call. : 178

Class Graph : 180

174

Appendix B (Continued)

1

class keyToolKey c

Key tool key class

B.0.3.0.33 Public Members

1.1 enum status t Status : 175

md5Key c getKeyId () Get the key id of the current key object.

1.2 char* getData () Get pointer to data bu�er in key : : : : : : 176

int getDataSize () Return size of data.

int getRealSize () Return size of internal bu�er.

status t alloc (int size) Allocate memory in key (previous con-

tents MAY be deleted).

status t trash () Delete the data in a key.

Allocate memory while maintaining con-

tents.

status t resize(int size);

status t commit () Commit this key (automatially times-

tamps. Does not a�ect aux time stamp.)

status t setMeta (char *data, int msize)
Set meta �eld

char* getMeta () Get meta data. Returns ptr to the bu�er.

int getMetaSize () Return size of meta data.

175

Appendix B (Continued)

void stampTime () Force stamp the timestamp with the cur-

rent time. Ie without doing a commit.

void stampAuxTime () Stamp the aux time stamp.

void setTimeStamp (double theTime)
Set the time stamp to a particular time.

void setAuxTimeStamp (double theTime)
Set the aux time stamp to a particular

time.

double getTimeStamp () Get the time stamp.

double getAuxTimeStamp ()
Get the aux time stamp.

Key tool key class. Objects of this type are created by the Key Tool Manager.

See Also: keyToolManager c (!2, page 177)

1.1

enum status t

Status

B.0.3.0.34 Members

FAILED Failed.

OK Ok.

176

Appendix B (Continued)

1.2

char* getData ()

Get pointer to data bu�er in key

Get pointer to data bu�er in key. Need more elaborate call in future.

177

Appendix B (Continued)

2

class keyToolManager c

Key Tool Manager class

B.0.3.0.35 Public Members

2.1 enum status t Status of getKey() call. : : : : : : : : : : : : : : : 178

2.2 keyToolKey c*
getKey (char *path, char *name, status t *retStatus)

Get key : 179

2.3 keyToolKey c*
getKey (md5Key c keyId, status t *retStatus)

Get key : 179

int existsKey (char *path, char* name)
Check to see if a key exists at all.

status t swapContents (keyToolKey c *key1, keyToolKey c *key2)
Swap contents of keys (ptr switch).

status t removeKey (keyToolKey c *key)
Remove a key from this manager.

status t removeKeyPermanently (keyToolKey c *key)
Remove a key from this manager and per-

sistent store.

status t commit () Commit the entire database.

void showPro�le () Show performance pro�le.

Key Tool Manager class. This is a quick keytool simulator hack. It is a �rst try. The spec will
no doubt change over time. So the documentation describes the functionality of the existing
classes, which may or may not change in the �nal spec.

To begin you need to create a key tool manager which basically sets up a directory in which
is can store �les to hold data for the keys (Ptool will no doubt have its own way of doing
this). Currently every key gets 1 data �le and 1 meta data �le. The data �le only contains

178

Appendix B (Continued)

the contents of the key. The meta data �le contains the meta data: size of data, timestamp,
comment.

Using the keytool manager you can get a keytool key object (a wrapper) which gives you
access to the internals of the keys- ie the actual data, the time stamp, etc. The keytool manager
is essentially a cache between physical memory and secondary storage.

Note, the di�erence between a time stamp and an aux (auxiliary) time stamp is that the
former is always done on a commit. The latter is not. The aux time stamp is used to allow
user de�ned timestamping. e.g. the aux time stamp can be used to record the timestamp of
the original remote data source, whereas the regular timestamp can be used to record the time
stamp of the local copy of the data.

2.1

enum status t

Status of getKey() call.

B.0.3.0.36 Members

FAILED Failed.

KEY ALREADY IN MANAGER
Key already in manager.

KEY FOUND IN FILE
Key read in from �le.

KEY COMPLETELY NEW
Key completely new- ie not in manager

nor �le.

OK Ok.

179

Appendix B (Continued)

2.2

keyToolKey c* getKey (char *path, char *name, status t *retStatus)

Get key

Get key. If key does not exist already then a new key is generated in the manager. A wrapper
(keyToolKey c) is returned. This key does not get stored permanently until you do a commit.

If key already exists in the database but not in the manager then load it from the database
to the manager. Return a wrapper (keyToolKey c) to the key.

If key already exists in the manager then simply return a wrapper (keyToolKey c) to the

key.

2.3

keyToolKey c* getKey (md5Key c keyId, status t *retStatus)

Get key

Get key. This only returns a keyToolKey c wrapper if the key has been previously loaded into
the manager via the other overloading of the getKey call. If it hasn't then this call returns
NULL.

180

Appendix B (Continued)

Class Graph

1

keyToolKey c : 174

2

keyToolManager c : 177

181

CITED LITERATURE

1. Leigh, J., Johnson, A. E., Vasilakis, C. A., and DeFanti, T. A.: Multi-perspective collabo-
rative design in persistent networked virtual environments. In Proceedings of IEEE
Virtual Reality Annual International Symposium '96, pages 253{260, April 1996.

2. Leigh, J., Johnson, A., and DeFanti, T. A.: CALVIN: an immersimedia design environ-
ment utilizing heterogeneous perspectives. In Proceedings of IEEE International
Conference on Multimedia Computing and Systems '96, pages 20{23, June 1996.

3. Leigh, J. and Johnson, A. E.: Supporting transcontinental collaborative work in persis-
tent virtual environments. IEEE Computer Graphics and Applications, pages 47{
51, 1996.

4. Lehner, V. D. and DeFanti, T. A.: Distributed virtual reality: Supporting remote col-
laboration in vehicle design. IEEE Computer Graphics and Applications, in press,
1997.

5. Cruz-Neira, C., Sandin, D. J., and DeFanti, T. A.: Surround-screen projection-based virtual
reality: The design and implementation of the CAVE. In Computer Graphics
(SIGGRAPH '93 Proceedings), ed. J. T. Kajiya, volume 27, pages 135{142, August
1993.

6. Locke, J.: An Introduction to the Internet Networking Environment and SIM-
NET/DIS. Master's thesis, Naval Postgraduate School, August 1995. http://www-
npsnet.cs.nps.navy.mil/npsnet/ publications/DISIntro.ps.Z.

7. Macedonia, M. R. and Zyda, M. J.: A taxonomy for networked virtual environments. In
Proceedings of the 1995 Workshop on Networked Realities, Oct 1995.

8. Macedonia, M. R., Brutzman, D. P., and Zyda, M. J.: NPSNET: A multi-player 3D
virtual environment over the internet. In Proceedings of the 1995 Symposium on
Interactive 3D Graphics, pages 93{94. ACM, ACM, 1995.

9. Roussos, M., Johnson, A., Leigh, J., Vasilakis, C., and Moher, T. G.: Constructing collab-
orative stories within virtual learning landscapes. In Proceedings of the European
Conference on A.I. in Education, pages 129{135, Sept 1996.

182

10. Roussos, M., Johnson, A., Leigh, J., Barnes, C. R., Vasilakis, C. A., and Moher, T. G.:
The nice project: Narrative, immersive, constructionist/collaborative environ-
ments for learning in virtual reality. In ED-MEDIA/ED-TELECOM 97: World
Conferences on Educational Multimedia and Hypermedia and on Educational
Telecommunications, 1997.

11. Roy, T. and Cruz-Neira, C.: Cosmic worm in the CAVE: Steering a high-performance
computing application from a virtual environment. Presence, 4(2):121{129, 1995.

12. Freitag, L., Diachin, D., Heath, D., Herzog, J., and Plassmann, P.: Remote engineer-
ing using cave-to-cave communications. Virtual Environments and Distributed
Computing at Supercomputing'95: GII Testbed and HPC Challenge Applications
on the I-Way, page 41, 1995.

13. Ware, C. and Balakrishnan, R.: Reaching for objects in VR displays: Lag and frame
rate. ACM Transactions on Computer-Human Interaction, 1(4):334{356, Decem-
ber 1994.

14. Park, K. S.: E�ects of network characteristics and information sharing on human perfor-
mance in COVE. Master's thesis, Electronic Visualization Laboratory, University
of Illinois at Chicago, 1997.

15. Fish, R. S., Kraut, R. E., and Chalfonte, B. L.: The videowindowsystem in informal
communication. In Proceedings of Computer Supported Cooperative Work, pages
1{11, 1990.

16. Tang, J. C. and Isaacs, E.: Why do users like video? In Computer Supported Cooperative
Work, pages 163{196. CSCW, 1993.

17. Fish, R.: Bellcore cross-industry working team workshop XIWT. personal correspondence,
1996.

18. Argyle, M. and Cook, M.: Gaze and Mutual Gaze. Cambridge University Press, 1976.

19. McGrath, J.: Groups: Interaction and Performance. Englewood Cli�s, NJL Prentice-Hall,
1984.

20. Short, J., Williams, E., and Christie, B.: The Social Psychology of Telecommunications.
Wiley and Sons, 1976.

183

21. Olson, J. and Olson, G. M.: What mix of video and audio is useful for small groups doing
remote real-time design work. In Proceedings of SIGCHI'95, pages 362{368. ACM,
ACM Press, 1995.

22. Lin, J. C. and Paul, S.: RMTP: A reliable multicast transport protocol. In Proceedings of
IEEE INFOCOM'96, pages 1414{1424, 1996.

23. Mandeville, J., Furness, J., and Kawahata, T.: Greenspace: Creating a distributed virtual
environment for global applications. In Proceedings of IEEE Networked Virtual
Reality Workshop. IEEE, 1995.

24. Shaw, C. and Green, M.: The MR toolkit peers package and environment. In Proceedings
of the Virtual Reality Annual International Symposium. VRAIS'93. IEEE Com-
puter, 1993.

25. Carlsson, C. and Hagsand, O.: DIVE - a multi-user virtual reality system. In Proceedings
of the IEEE Virtual Reality Annual International Symposium, 1993.

26. Wang, Q., Green, M., and Shaw, C.: EM - an environment manager for building networked
virtual environments. In Proceedings of the Virtual Reality Annual International
Symposium. VRAIS'95, pages 11{18. IEEE Computer, IEEE, 1995.

27. Barrus, J. W., Waters, R. C., and Anderson, D. B.: Locales and beacons: E�cient and
precise support for large multi-user virtual environments. In Proceedings of the
Virtual Reality Annual International Symposium. VRAIS'96, pages 204{213. IEEE
Computer Society, IEEE, March 1996.

28. Funkhouser, T. A.: Network topologies for scalable multi-user virtual environ-
ments. In Proceedings of the Virtual Reality Annual International Symposium.
VRAIS'96, pages 222{228. IEEE Computer Society, IEEE, March 1996.

29. Zhang, L., Deering, S., Estrin, D., Shenker, S., and Zappala, D.: RSVP: A new resource
ReSerVation Protocol. IEEE Network, September 1993.

30. Protic, J., Tomasevic, M., and Milutinovic, V.: Distributed Shared Memory: concepts and
systems. IEEE Computer Society, 1997.

31. Thiebaux, M.: The Virtual Director. Master's thesis, Electronic Visualization Laboratory,
University of Illinois at Chicago, 1997.

184

32. Foster, I., Kesselman, C., and Tuecke, S.: The Nexus approach to integrating multithread-
ing and communication. Journal of Parallel and Distributed Computing, (37):70{
82, 1996.

33. Schmidt, D. C., Harrison, T., and Al-Shaer, E.: Object-oriented components for high-speed
network programming. In Proceedings of USENIX Conference on Object-Oriented
Technologies, Monterey, CA, Jun 1995.

34. Orfali, R., Harkey, D., and Edwards, J.: The Essential Distributed Objects Survival Guide,
chapter 3, page 63. John Wiley & Sons, 1996.

35. TASC Inc.: Report DO0007-96005C-1 : Platform proto-federation: Lessons learned doc-
ument. Technical report, Prepared for: U.S. Army Simulation, Training and In-
strumentation Command (STRICOM), under Contract N61339-95-D-0006, October
1996.

36. Stevens, R. W.: UNIX Network Programming, chapter 6, page 270. Prentice Hall, 1
edition, 1990.

37. Grossman, R. L., Hanley, D., and Qin, X.: PTool: A light weight persistent object manager.
In Proceedings of SIGMOD'95, page 488. ACM, 1995.

38. Grossman, R. and Qin, X.: Ptool: A software tool for working with persistent data.
Technical Report 93-5, Laboratory for Advanced Computing, University of Illinois
at Chicago, 1993.

39. Grossman, R., Lifka, D., and Qin, X.: An object manager utilizing hierarchical storage. In
Twelth Symposium on Mass Storage Systems. IEEE, IEEE Press, 1993.

40. Baden, A. and Grossman, R.: Database computing in high energy physics. In Computing in
High-Energy Physics 1991, eds. Y. Watase and F. Abe, pages 59{66, Tokyo, 1991.
Universal Academy Press, Inc.

41. Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., and Hart, J. C.: The cave
automatic virtual environment. Communications of the ACM, 35(2):64{72, June
1992.

42. Shaw, C., Liang, J., Green, M., and Sun, Y.: The Decoupled Simulation Model for Virtual
Reality Systems. In Proceedings of CHI '92, pages 321{328. ACM, May 1992.

185

43. Funkhouser, T. A., Sequin, C. H., and Teller, S. J.: Management of large amounts of data
in interactive building walkthroughs. In Computer Graphics (1992 Symposium on
Interactive 3D Graphics), ed. D. Zeltzer, volume 25, pages 11{20, March 1992.

44. Zyda, M. J., Pratt, D. R., Monahan, J. G., and Wilson, K. P.: NPSNET: Constructing a 3D
virtual world. In Proceedings of the 1992 Symposium on Interative 3D Graphics,
pages 147{156, 1992.

45. Singh, G., Serra, L., Ping, W., and Ng, H.: BrickNet: A software toolkit for network-
based virtual worlds. Presence: Teleoperators and Virtual Environments, 3(1):19{
34, 1994.

46. Gaver, W., Sellen, A., Heath, C., and Lu�, P.: One is not enough: Multiple views in a
media space. In Proceedings of INTERCHI'93, New York, Apr 1993. ACM, ACM.

47. Morningstar, C. and Farmer, F. R.: Cyberspace: �rst steps, chapter The Lessons of Lucas-
�lm's Habitat, pages 273{302. MIT Press, 1991.

48. Blanchard, C. and Burgess, S.: Reality Built for Two. In Symposium on Interactive 3D
Graphics. ACM SIGGRAPH 90, 1990.

49. Grimsdale, C.: dVS: Distributed virtual environment system. Division Ltd, 1992.

50. Loe
er, C.: Networked virtual reality. In ATR Workshop on Virtual Space
Teleconferencing, pages 108{119, 1993.

51. Codella, C., Reza, J., Koved, L., and Lewis, J. B.: A toolkit for developing multi-user,
distributed virtual environments. In Proceedings of IEEE Virtual Reality Annual
International Symposium '93, pages 401{407, 1993.

52. Bricken, W. and Coco, G.: The VEOS project. Technical report, Human Interface Tech-
nology Laboratory, University of Washington, 1993.

53. Shu, L. and Flowers, W.: Groupware experiences in three-dimensional computer aided de-
sign. In Proceedings of the ACM Conference on Computer Supported Cooperative
Work, pages 179{186. ACM, ACM Press, 1992.

54. Stans�eld, S.: An application of shared virtual reality to situational training. In Proceedings
of the Virtual Reality Annual International Symposium. VRAIS'95, pages 156{
161. IEEE, IEEE Computer Society Press, 1995.

186

55. Macedonia, M. R., Zyda, M. J., Pratt, D. R., Barham, P. T., and Zeswitz, S.: NPSNET:
A network software architecture for large-scale virtual environments. Presence,
3(4):265{287, 1994.

56. Benford, S., Fahlen, J., Greenhalgh, L. E., and Snowdon, D.: User embodiment in collab-
orative virtual environments. In Proceedings of SIGCHI'95, pages 242{249, New
York, NY, 1995. SIGCHI, ACM.

57. Lehner, V.: Caterpillar collaborative vehicle design: http://www.ncsa.uiuc.edu/

VEG/DVR. Technical report, National Center for Supercomputing Applications, 1996.

58. Greenhalgh, C.: MASSIVE95 http://www.crg.cs.nott.ac.uk/ cmg/massive95.html,
1995.

59. NCSA: Habanero. http://www.ncsa.uiuc.edu/ SDG/Software/Habanero/index.html, 1996.

60. Roussos, M., Johnson, A. E., Leigh, J., Vasilakis, C. A., and Moher, T. G.: NICE: Narrative
immersive constructionist environments (http://www.ice.eecs.uic.edu/~nice), 1996.

187

VITA

Jason Leigh is a PhD candidate in his �nal moments of his degree specializing in Teleim-

mersion where he can combine his interests in human-factors, interactive computer graphics,

databases, and art. He has been working at the Electronic Visualization Laboratory at the

University of Illinois at Chicago for 5 years. In that time he has worked on a wide range of

projects that include:

Several VR visualization applications for Computational Neuroscientists at CALTECH as

part of the federal Human Brain Project which were exhibited at: SIGGRAPH'92, Neuro-

science'93, and SIGGRAPH'94.

Developing a multimedia presentation for Al Gore that was shown during the signing of the

Telecommunications Act of 96.

Worked in collaboration with artist Christina Vasilakis on an art show that allows visitors

to tour a virtual house of the future. This project was Jason's �rst introduction into the world

of Teleimmersion.

This preliminary work led to the construction of CALVIN a collaborative architectural

design system which has the unique property of allowing participants to interact with each

other simultaneously using heterogeneous perspectives. This work was presented at VRAIS'95.

Currently he is working on three projects:

He is assisting General Motors in applying collaborative technologies to their VisualEyes

VR vehicle design system.

188

He is working as a member of the NICE project to design a VR collaborative educational

environment for kids.

Finally he is developing a new collaborative VR networking architecture (called CAVERN-

soft) that integrates networking and databases in a manner that is optimized for Teleimmersion.

