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Abstract. Tele-Immersive applications possess an unusually broad range of networking requirements. 
As high-speed and Quality of Service-enabled networks emerge, it will becoming more difficult for 
developers of Tele-Immersion applications, and networked applications in general, to take advantage 
of these enhanced services. This paper proposes an adaptive networking framework to ultimately 
allow applications to optimize their network utilization in pace with advances in networking services. 
In working toward this goal, this paper will present a number of networking techniques for improving 
performance in tele-immersive applications and examines whether the Differentiated Services 
mechanism for network Quality of Service is suitable for Tele-Immersion. 

1 Introduction 
 
Tele-Immersion is the integration of collaborative virtual reality (VR) with audio and video conferencing in 
the context of data-mining and significant computation. The ultimate goal of Tele-Immersion is not only to 
reproduce a real face-to-face meeting in every detail, but to provide the "next generation" interface for 
collaborators, world-wide, to work together in a virtual environment that is seamlessly enhanced by 
computation and large databases. When participants are Tele-Immersed, they are able to see and interact 
with each other in a shared virtual environment. They are able to query and visualize data stores and steer 
complex scientific and engineering simulations[1]. 
 
One of the challenges of Tele-Immersion is that it poses diverse requirements of the underlying networks 
(Figure 1). For example, to convey audio and gestures of virtual participants (avatars,) low network latency 
is required; to distribute state updates, low latency but reliable data transmission is preferred; and to 
distribute data sets high-speed bulk data transfer is needed. 
 

  
Estimated 
bandwidth (bps) Burstiness 

Latency 
Sensitive 

Jitter 
Sensitive 

Error 
Sensitive 

Avatar 6K x N (at 15fps) Constant y y n 
Audio Streaming 64K x N (at 8kHz) Brief y y n 

Video Streaming 10M (2-way) Constant y y y&n 

Pre-recorded Stream Playback Variable Constant y n y&n 

Control Data 7K  x N Brief y&n y&n y&n 

Bulk Data Variable 
Sustained 
burst n n y 

Figure 1: Network characteristics of typical Tele-Immersion data streams. N refers to N collaborators. The 6K 
estimate for avatar representation assumes position and orientation data for a head tracker and a wand tracker. 
Pre-recorded streams refer to previously recorded VR streams that are replayed for viewing by multiple 
participants as in collaborative training simulations. Video streaming assumes low-latency NTSC resolution 
motion Jpeg. Bulk data refers to 3D models or large data sets. 
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In this paper, we will present our most recent work in exploiting advanced networking techniques to 
optimize data distribution in Tele-Immersion. We will describe our experiences in using Quality-of-
Service-enabled high-speed networks for supporting Tele-Immersion. We will structure this work by 
proposing an adaptive networking framework to allow application developers to map their data distribution 
requirements to suitable networking services. We believe that as networking technology becomes more 
complex, application developers will have to rely increasingly on intelligent adaptive systems to make 
decisions on how to optimally distribute their data over them. The work discussed in this paper serves as a 
starting point toward that ultimate goal. 

2 Adaptive Networking for Tele-Immersion 
 
We propose an intelligent adaptive networking system (Figure 2) consisting of a Strategy Selector, Adaptive 
Controller and three supporting services: a Resource Monitor, a Quality of Service (QoS) Provisioner and a 
collection of network transport mechanisms. The Strategy Selector’s role is to take application-specified 
data delivery requirements (e.g. bandwidth, latency, jitter, reliability, etc) and translate them into 
networking and computational resource allocations needed to meet the applications’ demands. The Strategy 
Selector must monitor the current state of the network, select an optimal transmission protocol, and make 
QoS requests (if available.) Some protocols such as Forward Error Corrected UDP or Parallel TCP 
(described later) may pose additional computational overhead, which the Strategy Selector must take into 
account. If QoS is available, the Strategy Selector must contact the Admission Control system to determine 
if the available bandwidth is available, and then make a reservation using the Reservation Controller. Once 
a strategy has been activated, the Adaptive Controller must monitor the progress of the data transmission 
and adjust networking and computational parameters to sustain the desired performance. To accommodate 
multiple simultaneous and heterogeneous network flows, the Adaptive Controller may alter some of the 
low-level transport protocol parameters (such as buffer or window size,) or may adjust QoS reservations 
dynamically. 
 
It is clear that the realization of such a system is an ambitious endeavor. In this paper, we will present 
several steps we have taken towards understanding the issues and creating the necessary building blocks 
towards such a system. These include: 

- a study of the behavior of the Differentiated Services QoS with respect to the requirements of real-
time tele-immersive applications; 

- the development of a collection of advanced data delivery mechanisms as part of our 
CAVERNsoft Tele-Immersion toolkit[2, 3]. These include Parallel TCP, and Reliable Blast UDP 
for bulk data transfer, and Forward Error Corrected UDP for semi-reliable, low-latency state 
transfer. 
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Figure 2: Components of an Adaptive Networking System 

3 Quality of Service for Real-time Collaborative Applications 
 
Network Quality of Service (QoS) refers to the ability of an application to request a guaranteed level of 
networking service in the form of bandwidth, latency or jitter (in reality only bandwidth is guaranteed.) 
There are two well-known types of QoS: Integrated Services (IntServ) and Differentiated Services 



 

(DiffServ). IntServ achieves QoS by having intervening routers maintain the state of a particular network 
link between two end points[4]. While this method can provide a hard guarantee on QoS, it is ultimately 
not scalable to the larger Internet. DiffServ, on the other hand, takes the approach of marking network 
traffic with a priority level that can be interpreted by the router to effect special treatment of the data 
packet[5]. In particular, the marked packets are promoted to a higher priority queue in the router and, as a 
result, spend less time in the router. Packets that are not marked are attached to a lower priority queue, and 
in some cases may be dropped when congestion arises. A more detailed description of DiffServ may be 
found in the paper by Foster et al [6]. 
 
The common misconception in the field of collaborative virtual reality (CVR) is that QoS, once it is 
available, will solve all of CVR’s networking problems. At the same time networking experts believe that 
bandwidth provisioning is the only form of QoS needed by applications. The experiments described below 
were performed as a joint project between collaborative virtual reality and networking experts in order to 
shed some light on these common misconceptions. 
  
A series of experiments were performed over a wide area DiffServ testbed as part of the EMERGE project. 
EMERGE [7] is a Department of Energy funded project for designing, deploying and testing Differentiated 
Services on an IP/ATM Regional GigaPoP Network interoperating with ESnet for applications in 
Combustion, Climate and High-Energy Physics. The main participants of the experiments were EVL and 
Argonne National Laboratory (ANL)- approximately 30 minutes away by car. 
 

 
Figure 3: EVL / ANL DiffServ testbed architecture. 

Cisco 7507 DiffServ routers at ANL were connected to DiffServ routers at EVL as shown in Figure 3. The 
router at EVL had Weighted Fair Queueing enabled; and the routers at ANL had Priority Queueing enabled 
to produce DiffServ’s Expedited Forwarding behavior. Several experiments were performed over this 
testbed, but in the interest of brevity, we will report on the results of only one experiment. The reader is 
encouraged to peruse the detailed technical report at [8]. The goal of the experiment was to observe 
whether DiffServ is able to maintain bandwidth allocations while keeping latency low, especially during 
periods of high network congestion. The experiment began with the transmission of a steady foreground 
stream of UDP data at the networks saturation point (25Mbps) from ANL (Tundra) to EVL (Laurel). After 
some time, 25Mbps of competitive networking traffic was transmitted from Fjuk to Laurel to increase 
congestion over the inter-domain link between EVL and ANL. Then DiffServ was enabled on the 
foreground stream to determine if bandwidth and latency recovery would occur. GARA (the General-
purpose Architecture for Reservation and Allocation,) developed by ANL was used to make the DiffServ 
reservation[9]. 
 



 

In Figure 4 the dip in the top graph shows that when competitive traffic is injected the throughput of the 
foreground stream suffers. However, when DiffServ is enabled the throughput is brought back to near its 
original levels.  
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DiffServ Latency
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DiffServ Packet Loss
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Figure 4 : Results showing that DiffServ, while being able to make bandwidth guarantees, may not always 
provide latency guarantees. 

 
This shows that DiffServ is effective in providing bandwidth guarantees. However, the second and third 
graphs show that latency was only partially restored and packet loss has doubled. Note also that the 
restored (one-way) latency is at approximately 150ms, which has been shown in the past, to be intolerably 
high for real-time tightly coupled interactions in Tele-Immersion. Park et al1 [10, 11] have found that the 
roundtrip latency threshold where human performance begins to noticeably degrade is approximately 
200ms. The results suggest that while DiffServ is suitable for making bandwidth guarantees it is unable to 
reliably make latency guarantees under heavy network congestion. We have performed the same 
experiment over uncongested links (from EVL to ANL over an 80Mbps private virtual circuit) and have not 
observed the same performance degradation[8].  
 
We believe the increased latency under heavy congestion is due to queueing that is occurring at the interior 
router (Aruba.) Priority queueing would ensure that the DiffServ marked packets would receive priority 
transmission, however to prevent starvation the router will allow a small amount of background traffic 
through. Since the private virtual circuit from ANL to EVL is bottlenecked at 25Mbps, the allowance of 
                                                        
1 Park’s results also suggest that 200ms of roundtrip latency with 0 jitter has the same effect on users as 
10ms of roundtrip latency with 7ms jitter. In essence, this implies that the minimization of jitter is also 
critical in realtime tightly coupled tele-immersive applications. 



 

background traffic caused the priority queue’s length to grow hence resulting in longer delays in priority 
packet delivery. 
 
Finally to confirm our results in the context of a real tele-immersive application, we repeated the 
experiment using the Tele-Immersive Data Explorer (a collaborative VR application for querying data 
mining servers)[12]. In this experiment, low-bandwidth avatar data represented the foreground traffic. 
Again over a congested network, we observed the same increase in latency, as in our previous experiments 
[8]. 

4 Advanced Data Transport Techniques for Tele-Immersion 
CAVERNsoft is an open source, cross-platform, C++ toolkit for building tele-immersive applications[2, 3]. 
Although its initial intended audience was developers of VR applications, CAVERNsoft’s decoupled 
networking tools has made it useful in building networked applications in general. CAVERNsoft supports a 
broad collection of low-level to high-level data distribution tools. Low-level tools include classes for basic 
UDP, TCP and multicasting. Mid-level tools consist of classes for remote procedure calls, key/value 
database, parallel sockets, UDP and TCP reflectors, and remote file transfer. High-level tools include C++ 
classes for rendering articulated avatars, audio conferencing, and shared scene graphs. As one of the 
intended audiences for these tools are computational scientists, a 64-bit version was implemented- for 
example the 64-bit remote file transfer API allows the transfer of files greater than 2 Gigabytes in size. 
Finally, since optimal network utilization requires careful monitoring of network performance, every 
CAVERNsoft network class has been instrumented to measure bandwidth, latency, jitter and burstiness. 
 
In our continuing efforts to expand CAVERNsoft’s networking services, we present below, schemes for 
reliable low-latency state transmission, and high throughput bulk data transfer. 
 
4.1 Reliable Low-Latency Data Transfer for Tele-Immersion 
For long distance networks such as international networks, latencies are high (on the order of hundreds of 
milliseconds). In Tele-Immersion we would ideally like state updates in the shared environment to occur 
with a minimum amount of latency and with a high degree of reliability. A scheme is therefore needed to 
transmit data reliably over long distances without requiring the acknowledgement typically used in 
protocols such as TCP. Forward Error Correction (FEC) provides a promising solution to this problem. 
FEC works by collecting between 1 and N (typically 2 or 3) data packets and performing a bit-wise 
operation on the packets (such as XOR) to generate a “redundant” packet. This packet is delivered along 
with the regular UDP traffic as a separate UDP stream. If any data packets are lost, FEC packets can be 
used to reconstruct the missing packet. A detailed description of the encoding algorithm can be found in 
[13]. 
 
To evaluate our FEC implementation we performed a series of experiments between EVL and SARA 
(SARA- Stichting Academisch Rekencentrum Amsterdam) over STAR TAP (the Science and Technology 
Advanced Research Transit Access Point- a National Science Foundation funded project to interconnect 
international high speed networks.)[14]. The experiment involved comparing the latency, jitter and packet 
loss of basic UDP, TCP and UDP augmented with FEC. Details on the experimental setup can be found in 
[13]. Figure 5 shows the results of the experiment using an FEC scheme that generated 1 redundant packet 
for every 3 consecutive UDP packets. Notice that FEC does appear to incur lower latency than TCP but 
slightly higher latency than UDP. Also, note that the benefits of FEC are greatest at small packet sizes since 
it takes less time to accumulate 3 small packets and encode. The goal in future work would be to bring FEC 
performance closer to UDP performance while maintaining maximal reliability. 
 



 

Latency of transmitting 100 packets under three protocols

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500
Packet size in bytes

1-
w

ay
 la

te
n

cy
 in

 m
s

UDP

TCP

FEC over UDP

 

Jitter for UDP, TCP and FEC over UDP
Moving average (over 20 successive data points) of deviations of Short Term 

Latency (also over 20 successive data points)

0
2
4
6
8

10
12
14

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Ji
tt

er

UDP

TCP

FEC/UDP

 
Figure 5: The top graph shows that our FEC scheme derives its greatest benefit when packet sizes are small as 
larger packet sizes incur additional buffer processing time. The bottom graph shows that FEC also introduces 
jitter in the data stream. Jitter in is computed by first calculating the short-term latency over every 20 data 
points and then computing the average deviation of the instantaneous latency as compared to the short-term 
latency. 

Figure 5 also shows the variation of latency (jitter) between TCP, UDP and FEC. Notice that FEC produces 
lower levels of jitter than TCP but higher levels than standard UDP. 
Finally, to observe packet loss of UDP versus FEC, packets were sent at a rate of 50Mbps over a 100Mbps 
link between EVL and SARA. Then an additional 50Mbps of congestion traffic was injected. The results in 
Figure 6 shows that FEC was quite effective at recovering lost packets. However, note that while our FEC 
scheme is good at recovering intermittent lost packets it cannot recover from the loss of large consecutive 
blocks of packets. To recover from this the selection of encoding packets must be more widely distributed 
across the data stream. This unfortunately has the effect of increasing latency. Another drawback of FEC is 
that the FEC packets themselves can become a source of congestion. Hence, careful selections of FEC 
parameters need to be made to ensure optimal performance. For the purposes of transmitting real-time state 
information in tele-immersive applications, the recommendation is to encode few (like 3) and small (like 
1Kbyte) consecutive packets over networks that have the capacity to sustain the additional bandwidth 
needed by FEC. 

  Packet Loss 
UDP 1.90% 
FEC 0.05% 
UDP with congestion 17.40% 
FEC with congestion 4.15% 

Figure 6: Comparison of Packet Loss in UDP vs. FEC over an uncongested and congested network. 

 



 

4.2 High Throughput Techniques for Tele-Immersion 
 
Quality of Service is designed to guarantee a level of service (mainly bandwidth) for the networked 
application. It does not however guarantee that the networked application will be able to take full advantage 
of the bandwidth, even when it is made available. Since tele-Immersive applications are so highly 
interactive, the expectation is for the retrieval of distantly located data sets, such as 3D models, to be 
equally expedient. This can only be achieved by being able to maximally use the available bandwidth to 
deliver the data. 
  
To support high-bandwidth bulk data transfer, we will describe two techniques- Parallel TCP Socket 
Striping and Reliable Blast UDP. These two schemes allow applications to overcome what is classically 
known as the Long Fat Network (LFN) problem[15].  The LFN problem occurs over long, high-bandwidth 
networks, such as those between the United States and Europe or Asia. The high round-trip latencies in 
these networks (at best 120ms) will result in gross bandwidth under-utilization when default TCP is used 
for data delivery. This is because TCP’s windowing mechanism imposes a limit on the amount of data it 
will send before it must wait for an acknowledgement. The long delays that occur over international 
networks means that TCP will spend an inordinate amount of time waiting for acknowledges, which in turn 
means that the client’s data transmission will never reach the peak available transmission rate of the 
network. Traditionally this is “remedied” by modifying TCP’s window and buffer sizes to match the 
bandwidth * delay product (capacity) of the network. For example, for a 45Mbps link between Chicago and 
Amsterdam, with an average round trip time of 150ms, the capacity is 45*0.15/8 = 0.84Mbytes. 
Unfortunately adjusting TCP window size is problematic for two reasons: firstly, on some operating 
systems (such as IRIX for the SGI,) the window size can only be modified by building a new version of the 
kernel- hence this is not an operation a user-level application can invoke. Secondly, one needs to know the 
current capacity of the network in order to set the window size correctly. The current capacity varies with 
the amount of background traffic already on the network. 
 
Parallel TCP Socket striping overcomes the LFN problem by partitioning a payload and delivering it over 
multiple TCP connections. Reliable Blast UDP overcomes the LFN problem by literally “blasting” UDP 
packets over the networks and then transmitting an acknowledgement only after the full payload has been 
transmitted. Our experiments between Chicago and Amsterdam (at SARA) will illustrate how each of these 
schemes can significantly improve throughput over LFNs. 
 
Parallel TCP Socket Striping 
 
Figure 7 shows the results of a socket stripe test between SGI Onyx2s at EVL and SARA. At the time of the 
experiment the STAR TAP link provided a bandwidth of 45Mbps with a round trip time of approximately 
150ms. The experiment was conducted using between 1 and 30 sockets. Notice that using TCP’s default 
window size (64Kbytes) and one socket (as in tools like ftp,) our data transfer is able to achieve a 
throughput of only 3.5Mbps. But when 12 sockets are used we are able to achieve a throughput of 
approximate 32Mbps. Note also that if more than the needed sockets are used the performance remains 
high however somewhat bursty. This burstiness is due to TCP throttling-back its data delivery in response 
to congestion. While this burstiness does not pose a significant problem for a low bandwidth link, it can be 
a significant waste of available bandwidth on higher bandwidth links.  
 
Finally, note however that when the TCP window size is set high, the benefits of parallel sockets are no 
longer as pronounced (Figure 8 shows the result of using a TCP window size of 1.875M.) 
 
Parallel TCP socket striping is currently in use in our tele-immersive image-based volume visualizer (called 
CIBRView- Collaborative Image Based Rendering Viewer) to retrieve large numbers of composited texture 
maps from remotely located servers. In a test campaign between Chicago and Japan, at the INET2000 
conference in Yokohama, we found parallel TCP to dramatically increase CIBRView’s interactivity[2]. 
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Figure 7: Achieved bandwidth while transmitting 50M from Amsterdam to Chicago over a 45Mbps link using 
parallel sockets with default TCP window size of 64K. Notice that throughput reaches a maximum at 12 sockets. 
Beyond 12 sockets, throughput remains high but bursty. This burstiness is due to each TCP socket activating its 
congestion control mechanism. 
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Figure 8: Plot of average achievable bandwidth vs. number of parallel TCP sockets used to deliver a 50M File 
from Chicago to Amsterdam  over 45Mbps Link. In this case, the TCP window size was set to 1.875M rather 
than the default 64K. Notice that when the window size is set large enough the benefits of parallel sockets are no 
longer as pronounced. 

Reliable Blast UDP (RUDP) 

When operating over QoS-enabled networks the probability of packet loss is low. To take advantage of this 
we have implemented an alternative reliable data transmission scheme using UDP augmented with 
acknowledgements. The scheme works by “blasting” the contents of a data file at just below the available 
bandwidth without asking the remote site to acknowledge any of the packets. Hence, all the bandwidth is 
used for pure data transmission. At the remote site, a tally is kept for all the packets that have arrived and, 
after some timeout period, a list of missing packets is sent back to the sending client. The sender reacts by 
resending all the missing packets and again waiting for another negative acknowledgement. 
 
Figure 9 shows the results of using RUDP to deliver a 50M file over a 100Mbps link between EVL and 
SARA. Since QoS is currently not available between the two sites, we chose to send data at rates well 
below the maximum available bandwidth of the network link- in essence emulating a smaller reserved QoS 
link. The table shows the bandwidth at which RUDP data was transmitted and the effective throughput of 
the total file transfer. Notice that on an over-provisioned network, effective throughput is almost as high as 
the sending bandwidth. This is in contrast to TCP, which typically incurs a 20% bandwidth loss by 
requiring frequent acknowledgements. Note also that as we approach the bandwidth limit of the link, 
performance begins to decrease- however performance is no poorer than what is expected of optimally 



 

tuned TCP. Remember that these experiments were conducted without the benefit of QoS. Hence, 
interference from competing traffic streams was possible and likely. We predict that our results would yield 
even better performance with QoS. 
 

Sending Bandwidth (Mbps) Effective Bandwidth Number of NAKs 
20 19.7 0 
40 38.5 0 
60 54-57 1 
80 56-70 2 
90 61-77 3 

Figure 9: Comparison of transmission bandwidth vs. effective throughput using Reliable Blast UDP over a 
100Mbps non-QoS provisioned link between Chicago and Amsterdam. When the network is over provisioned 
performance is good. We anticipate the best results of RUDP to occur in conjunction with the use of a QoS 
scheme such as DiffServ or IntServ. 

5 Conclusion 
The work presented in this paper serves as a beginning for our research in adaptive networking. While our 
interest has been driven mainly by our need to provide better networking services for Tele-Immersion, the 
results we have presented are generalizable to other networked applications. 
 
Future research on our adaptive networking framework will consist of the following goals: 
 

1. To define QoS from the point of view of application developers. For example QoS may mean: 
“reliable low-latency transmission,” “faster download,” “faster realtime response,” “guaranteed 
delivery by a deadline.” 

2. To characterize transmission protocols, QoS mechanisms and computational resources as a set of 
parameters or functions. 

3. To find suitable mappings that will translate application-level descriptions of QoS to 
characterizations of required network services. Ie. To map from item 1. to 2. to guarantee optimal 
application and network performance. Heuristics may be used initially. For example: 

o If data requires low latency but can tolerate much loss use UDP 
o If data requires low latency and can tolerate low loss use Forward Error Corrected UDP 
o Else use TCP 
o If data set is large and requires reliable delivery: 

§ Use TCP and adjust window size and buffer size to match network capacity if 
possible; 

§ Else use parallel TCP socket striping; 
§ If QoS is available- use Reliable Blast UDP 

4. To find prediction models that can be used to predict the consequences of making mapping 
decisions during dynamic network situations. 

5. To test our predictions on real applications and on real networking testbeds. 
 
Our QoS experiments have shown that Differentiated Services is able to provide bandwidth and latency 
guarantees when the network is not over-subscribed. However, if the network is over-subscribed then only 
bandwidth guarantees are possible. We believe that Integrated Services QoS should be able to overcome 
the limitations of DiffServ. However the main drawback of IntServ is that it is not scalable to the larger 
Internet. We, as well as other researchers have proposed that a scalable solution might require the use of 
IntServ at the edge routers (where the clients connect,) and the use of DiffServ in the core routers (where 
the excess bandwidth resides.)[16] We are in the process of constructing a network testbed to firstly, 
examine IntServ, and then a combination of IntServ and DiffServ. 
 
Finally, we are in the continual process of translating our research results into useable tools for the 
computational science community. CAVERNsoft [2, 3], our open source toolkit for building networked 
applications, already has built-in performance monitoring, and parallel socket striping capabilities. Modules 
for Forward Error Correction and Reliable Blast UDP will be incorporated in the near future. 
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