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SUMMARY

Many inter-related planetary height map and surface image map data sets exist, and more

data are collected each day. Broad communities of scientists require tools to compose these data

interactively and explore them via real-time visualization. While related, these data sets are

often unregistered with one another, having different projection, resolution, format, and type.

I present a GPU-centric approach to the real-time composition and display of unregistered-but-

related planetary-scale data. This approach employs a GPGPU process to tessellate spherical

height fields. It uses a render-to-vertex-buffer technique to operate upon polygonal surface

meshes in image space, allowing geometry processes to be expressed in terms of image process-

ing. With height and surface map data processing unified in this fashion, a number of powerful

composition operations may be universally applied to both. Examples include adaptation to

non-uniform sampling due to projection, seamless blending of data of disparate resolution or

transformation regardless of boundary, and the smooth interpolation of levels of detail in both

geometry and imagery. Issues of scalability and precision are addressed, giving out-of-core

access to giga-pixel data sources, and correct rendering at sub-meter scales.

xiv



CHAPTER 1

INTRODUCTION

1.1 Motivation

A vast quantity of data exists describing the Earth and other planets, their terrain and

features, their surface reflectance in many wavelengths, and a variety of other quantities sampled

across their land-forms. Thanks to the many sensors and instruments currently deployed and in

development, this quantity of data is expanding at an ever increasing rate. These data find use

in a wide variety of disciplines including geology, geography, climatology, astronomy, planetary

science, and more.

The format, type, projection, resolution, and coverage of these data sets are appropriate to

their subject, and thus are as varied as the subjects. However, all of the data relating to given

land-form are related, and there is a clear motivation to bring these data together in a common

visualization.

Unfortunately, terrain visualization literature does not emphasize the composition of dis-

parate data sets. The brute-force approach is assumed: if you want to juxtapose multiple

elements, you merely render each in turn. The extent to which the composition of elements is

addressed usually goes no further than simply texturing an image data set onto the geometry

of a height data set.

1
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We are motivated then to consider mechanisms for enabling more powerful data composition

operations. Here are some examples.

• Neither spherical nor polar projections suffice to usefully represent global data (Sec-

tion 2.8.2). To render the entire globe, at least three distinct data sets should be used.

We need a means to seamlessly combine dissimilar projections, adapting to the areas of

optimal sampling of each.

• Data coverage may not be of uniform resolution. For example, a high resolution map of

a fault line may be displayed in the context of the terrain where it lies. It is of no benefit

to re-sample one to the resolution of the other, so when surface geometry is generated

we may make no assumptions of granularity and must smoothly accept transitions in

resolution.

• As a visualization zooms, the granularity of the geometry must adapt. If significant care

is not taken, these adaptations occur suddenly and the output pops from one level of

detail to the next. However if geometry is operated upon as imagery, then discontinuous

level-of-detail transitions may be smoothed using simple image blending.

• Realistic rendering benefits from the use of per-pixel illumination processing using bump

texture mapping. However, such textures are derived from height maps, which are not

necessarily registered with the image map giving the diffuse surface color. We need a

means of adaptively registering the inputs to the lighting model with one another.
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• Surface reflectance sensors measure in limited wavelengths, giving science data, but not

necessarily giving visual realism. If for example the high resolution luminance of Mars

Reconnaissance Orbiter (MRO) HiRISE were combined with the low-resolution chroma

of Viking Orbiter, a high-resolution photo-real image of Mars would result. To support

this, we need the ability to transform input color-space, register data sets, and transform

output to RGB on the fly.

• Many data sources are time-variant. For example, Blue Marble Next Generation (BMNG)

provides a separate 3 giga-pixel image of the Earth for each of the 12 months of the year

2004. The BMNG images prior to and following any given date may be blended, giving

a smoothly-varying approximation of the appearance of the Earth at any time in 2004.

Thus we can produce an animation spanning the year without popping from month to

month.

• Shaded relief is a non-photorealistic topographical representation highly valued by geol-

ogists. Users insist upon precise control over lighting parameters and tinting, while still

retaining the ability to merge relief shading with other geologic data. We desire a means

to extract relief from height maps and illuminate it with interactive control.

• Many data are layered. For example, Antarctica has both an ice layer and a bedrock

layer. We need the means to peel these structures apart and see their layers in relation

to one-another.

Enabling such operations flexibly and interactively elevates terrain rendering from a static

visualization tool to a dynamic query and exploration tool. Providing the means to integrate
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arbitrarily large data stores in this fashion in real-time leads to new ways of working with the

streams of data flowing in from throughout the solar system. Recent advances in graphics

processing hardware make these possible.

1.2 Moving forward

I propose a GPU-centric real-time approach to generating and rendering planetary bodies

composed of arbitrary quantities and types of height-map data, textured and illuminated using

arbitrary quantities and types of surface-map data. At the core of this approach lies the

assertion that modern graphics hardware need not draw a distinction between colors and vectors.

Massively parallel vector stream processors allow color computation to be performed with 32-

bit floating point precision, merging the processing of color with that of geometry. With the

distinction between color and vector blurred, a variety of highly efficient image processing

operations become applicable to both terrain geometry and terrain surface maps.

We begin the discussion of this approach with Chapter 2, an overview of the history of

terrain rendering and the 3D hardware that made it possible, including a discussion of current

hardware capabilities. These capabilities set the stage for the main focus of this work, the

proposed terrain rendering approach documented by Chapter 3. Chapter 4 then examines in

detail a few terrain composition techinques enabled by this algorithm. Finally, we validate the

approach with an examination of an implementation of the algorithm that demonstrates all of

these concepts. We see its use in a parallel real-time composition of 115GB of Earth data, with

a quantitative analysis of the algorithm’s behavior under this load in Chapter 5.



CHAPTER 2

TERRAIN RENDERING AND HARDWARE EVOLUTION

The field of terrain rendering algorithm research is vibrant, and has been for many decades.

Traditional motivations dating back to the birth of computer graphics focus on flight simulation

as the driving application for real-time algorithms. Since then real-time visualization has been

embraced by broad communities of scientists including geographers, geologists, cartographers,

and planetary scientists. Today, rendered terrain has spread to the entertainment industry,

becoming ubiquitous in film and 3D gaming, forming the substrate of virtual worlds of all

types.

The simplicity of basic terrain rendering and the satisfying output of even a modest effort

lends the field a wide appeal. Invariably, all 3D graphics professionals, researchers, and enthu-

siasts approach the problem of terrain rendering at some point in their careers, often at a very

early stage. This has led to a proliferation of implementations and approaches.

In this chapter we will review several notable terrain rendering algorithms. Each approach

will be described and we will examine their strengths and weaknesses. Most significantly, we

will see how each is motivated primarily by the capabilities of the hardware of the day. This will

lead us to examine the capabilities of current and future hardware, and finally to extrapolate

the influence this may have on terrain rendering.

Again, the field of terrain rendering is vast, and this discussion is by no means a complete

review of it. It is instead a presentation of the dominant forms of algorithms used throughout

5
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the long history of the field, with specific regard to the interplay of influence between hardware

and software which guided it.

We will begin by examining the regular grid, the simplest possible approach to mapping

height onto geometry. From there, we will see how triangulated irregular network approaches

preprocess these grids, optimizing them for better performance on early graphics hardware.

Then, we will see this static optimization replaced by ROAM, a dynamic optimizing approach

that adapts to the viewer. The arrival of powerful GPUs enables a shift from CPU-centric

algorithms toward GPU-centric algorithms, such as geomipmapping. Finally, the fully pro-

grammable GPU enables the geometry clipmap approach to terrain geometry rendering. Hav-

ing arrived at the state of the art, we touch upon additional background material surrounding

realism, and the application of terrain rendering techniques to spherical planets.

2.1 Regular grids

2.1.1 Motivation

In Figure 1 we see the basic 3D rendering pipeline, loosely as defined by the original OpenGL

specification in 1992 (1).

The application submits geometry in the form of vertices, normals, texture coordinates, and

materials. View and projection transformations are applied to these, and lighting is computed.

Polygons are assembled into triangular primitives with a position, texture coordinate, and

color at each vertex. These attributes are interpolated across the face of each triangle during

rasterization, and each resulting fragment is textured and tested for inclusion in the frame

buffer.
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1: The OpenGL fixed-function pipeline. (Gray areas are fixed; white areas are user-controlled.)

2.1.2 Grid rendering

Given a two-dimensional block of elevation values, submitting a height map to the 3D

pipeline is straightforward. The (x, y) position of the center of each pixel in the height map,

with the z position taken from the pixel’s value, gives a coordinate (x, y, z) in 3D space, which

is biased and offset as needed to achieve the desired scale.

Triangles are wound from the grid as in Figure 2, with an n × m height map giving an

n− 1×m− 1 array of right triangles. The result is 2(n− 1)(m− 1) triangles connecting n ·m

vertices. Normal vectors for each triangle are computed from vertex positions, and the normal

vector for each vertex is the average of those of all adjacent triangles.

Given that the transform-lighting (“T&L”) stage of the pipeline must process each of these

n · m vertices in turn, a common optimization submits geometry to the 3D pipeline in the
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2: An 8 × 8 height map gives a 7 × 7 triangle grid.

form of triangle strips, linear sequences of adjacent triangles, each sharing one edge with the

previous. As shown in Figure 3, this reduces the total vertex processing cost to 2n(m − 1).

3: A triangle strip, efficiently defining n triangles using n + 2 vertices

The application of a color map texture to this geometry is equally straightforward. It is

commonly assumed that the color map is registered with the height map. That is, while the

two maps are not assumed to have the same image size, they are assumed to have the same
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surface coverage. See Figure 4. Under these circumstances, the texture coordinate (s, t) of each

vertex is merely the pixel center (x, y) divided by the height map size to the range [1, 1].

(a) Height map (b) Color map

4: Registered color and height maps have identical surface coverage

This registration assumption is near universal in terrain rendering literature. In most cases,

color map application is taken for granted or relegated to an afterthought, barely worthy of

mention. This is not unreasonable given the relative efficiencies of geometry processing versus

texture processing.

2.2 Triangulated irregular networks

2.2.1 Motivation

Early research in terrain rendering focused on the task of geometry minimization. The goal

was to determine the minimum number of triangles necessary to represent a given land-form to

within some measure of precision. This goal was motivated by the computational cost of each
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individual geometry element. Circa 1995 a high-end graphics workstation could display a scene

consisting 10,000 triangles at 30Hz, so the 2M triangles of a 1K×1K regular grid were out of

the question.

2.2.2 Algorithm

The most widely-cited grid simplification approach is that of Garland and Heckbert (2).

A survey of similar algorithms compiled by the same authors accompanies that document (3).

The algorithm is greedy and proceeds iteratively, beginning with a flat plane approximating

the surface, and adding vertices and triangles as needed until a minimum error bound is met.

At each step, every point of the input grid is compared against the current surface approx-

imation. The point that deviates the farthest from the surface is added to the output, and

a Delaunay triangulation of the current set of output points is computed, giving the refined

surface approximation. This repeats until no point deviates farther than the desired error

bound.

As background, a Delaunay triangulation of points maximizes the minimum angle of each

triangle in an attempt to avoid thin sliver triangles.

Figure 5 shows an example output Delaunay triangulation consisting of 555 vertices from

an input grid 336× 459 in extent. The dots in this figure denote candidate points for potential

insertion, an optimization of the basic algorithm using a priority queue to reduce the cost of

searching the input data for the next refinement.
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5: A triangulated irregular network near Crater Lake, with many triangles in areas of high
detail

2.2.3 Impact

Triangulated irregular networks are very effective at minimizing the geometry cost of ren-

dering. The refinement algorithm succeeds in seeking out the areas of high detail in the input

land-form, and focusing geometry there. However, this happens at significant preprocessing

expense. Triangulated irregular networks are appropriate for static data sets rendered at a

predefined resolution, though they do not allow for dynamic data or run-time refinement.

2.3 ROAM

2.3.1 Motivation

When attempting to minimize geometry, there is a computational trade-off to be made.

From any given view point, an optimal triangulation of a surface places many small triangles

near the viewer, and a few large triangles farther away. This is referred to as level-of-detail,
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and is a basic tenet of real-time optimization. LOD algorithms attempt to ensure that each

on-screen triangle makes a similar contribution to the complexity of the scene, regardless of

that triangle’s position in virtual space. Unfortunately, updating the working geometry for

each frame adds an additional computational cost on top of the basic cost of rendering.

2.3.2 Algorithm

The canonical example of this type of system is Mark Duchaineau’s Real-time Optimally-

Adapting Mesh (ROAM) (4). The ROAM algorithm successfully manages level-of-detail and

visibility determination while exploiting frame-coherence, the frame-to-frame similarity in the

solution resulting from the assumed smooth motion of the viewer.

In Figure 6 we see an explanatory representation of the output of the ROAM algorithm.

The viewer is at the left, looking to the right, with light-colored triangles falling within the

field of view. The small triangles near the viewer indicate the satisfaction of the level-of-detail

criterion. In addition, the triangulation reflects the distribution of detail in the true surface

by simplifying planar neighborhoods using larger triangles, as would a triangulated irregular

network.

To accomplish this, ROAM begins by tessellating the height field using right triangles and

preprocessing these to determine a hierarchical bintree, Figure 7. Each node of this hierarchy

stores an error metric quantifying the deviation of the triangulation from the true surface over

the same area. Fine-grained nodes deep in the hierarchy approach the resolution of the height

field and have small error values. Coarse nodes near the root represent the surface at lower

levels of detail and have large errors.
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6: ROAM algorithm adaptive triangulation. The viewer is at the left, looking right.

7: A bintree, a recursive subdivision of right triangles

At run time, ROAM maintains a set of the bintree nodes giving a current triangulation. A

pair of priority queues track the largest and smallest error values of the current bintree node

set, biased by the on-screen size of each node. Each time the view point changes the highest

priority nodes are split (replaced by their bintree children) in order to maintain a minimum

error bound. The lowest priority nodes are merged (replaced by their bintree parents) in order

to maintain a consistent triangle count.
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The hierarchical nature of the geometry representation leads to an efficient visibility mech-

anism. A bintree node is tested against the planes defining the field of view. If the node is

entirely inside or outside of the view, then all of its children may be assumed to be inside or

outside respectively. If the node is partially visible, the test proceeds recursively to the children.

This approach is O(log n) in the extent of the height field.

2.3.3 Caveat: T-intersections

When tessellating a surface, care must be taken to ensure that adjacent triangles meet

only at their vertices. In 8a we see an erroneous configuration highly likely to occur during

adaptive tessellation. The fine-grained geometry does not meet the coarse-grained, leaving a

gap in the triangulation. Adjusting the vertex as in 8b would seem to fill the gap, but the

problem remains unresolved. When rasterized, interpolation along the long edge of the large

triangle is not guaranteed to touch the same set of pixels as the interpolation along the two

short edges. The result is a sparkle of random pixels along the edge. This condition is known

as a T-intersection.

(a) Unaligned (b) Aligned

8: T-intersections. Both aligned and unaligned are to be avoided
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From Figure 6, it is clear that ROAM solves this problem elegantly. It merely mandates that

spatially-adjacent bintree nodes be within one level of each-other in the hierarchy. Given this

restriction, the bintree ensures that no vertex can fall along the edge of an adjacent triangle.

2.3.4 Impact

The ROAM algorithm does an excellent job of maintaining a consistent triangulation in

real-time. However its preprocessing requirement mandates an in-core data source, limiting its

scalability. Performance testing presented in (4) was performed using a Silicon Graphics Onyx,

the most powerful 3D hardware of the day, and the algorithm achieved 6,000 triangles per frame

at 30Hz, given a 1K height field. While impressive at the time, these numbers would soon be

eclipsed.

2.4 Geomipmapping

2.4.1 Motivation

By the late 1990s, the consumer-grade graphics hardware industry had begun its rapid

advance. The increase in competition within the industry led to significant additional capability

and capacity, and the accompanying drop in hardware prices brought widespread adoption.

Real-time 3D algorithms adapted to take advantage.

A significant departure from previous hardware generations was the addition of hardware-

based geometry processing, commonly known as “hardware T&L.” This allowed processing such

as transformation matrix application and lighting computation to be off-loaded from the CPU,

to be performed instead by the graphics hardware itself.
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At the same time, with more video RAM available, efficiency could be improved by storing

geometry data in VRAM rather than main RAM. This would eliminate most per-frame geome-

try specification and reduce CPU-GPU communication, an increasingly problematic bottleneck.

Together, these influences caused CPU-centric vertex and triangle generation algorithms to

pass out of style. A brute-force off-loading of geometry to VRAM could easily outperform the

most careful geometric algorithm simply because a balance had shifted. It became cheaper to

render 100,000 triangles directly from VRAM than to select 10,000 optimal triangles to transfer

from main RAM.

Focus turned to the concept of batching, and a classic granularity trade-off emerged. We

define a batch as a static set of geometry, stored in VRAM, rendered as an atomic unit. A

large batch may make optimal use of the GPU, but its geometry may extend beyond the view

frustum, resulting in the processing of unseen data. A large number of small batches may allow

for effective visibility testing, but will reduce total throughput.

An influential analysis by Matthias Wloka of the trade-offs inherent in batching (5) resulted

in a best-practices target of only 300 batches per frame when rendering at 30Hz using a 2GHz

CPU. More batches would lead to a CPU bottleneck, and fewer would leave idle GPU. Of

course this number is expected to increase as CPU power (or more precisely, bus bandwidth)

increases, but it underscores the fundamental transition in the philosophy of the design of real-

time algorithms for the hardware of the day: previously, 6,000 rendered units was maximal, but

after a hardware advance 300 rendered units was maximal, and the complexity of each unit is

increased.
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2.4.2 Algorithm

Several distinct terrain rendering approaches have been proposed that address this transition

in similar fashion. These approaches will be collectively referred to here as Geomipmapping

algorithms (6). This name draws an appropriate parallel to the traditional mipmapping (7)

approach to texture level-of-detail.

9: A mipmap, a pyramid of images subsampled at powers of two

A mipmapped texture stores a series of source images subsampled to successive powers of two

(Figure 9). When the texture is referenced during rasterization, screen-space texture coordinate

derivatives determine which of these source images most closely matches the resolution of the

display, and the corresponding pixel from the optimal image is used, thus achieving a level-of-

detail optimization.
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10: The top three levels of a chunked LOD tree, a variation on geomipmapping. Each successive
layer covers the same area at 4× resolution.

Similarly, a geomipmapped geometry representation stores a quad-tree hierarchy of surface

batches (Figure 10). Each node of a geomipmap hierarchy batches a similar amount of geometric

detail, but a given child node covers a quarter of the surface area of its parent node. Taken

together, each individual layer of the hierarchy covers the full area of the surface, but does so

at four times the resolution of the layer above, using four times the number of nodes as the

layer above.

Rendering proceeds much like ROAM. The same O(log n) visibility optimization applies, and

active quad-tree nodes are selected based upon the geometry resolution they provide, scaled by

their distance from the view point.

Unlike ROAM however, frame coherence combined with the coarse granularity of the geom-

etry leads to a relatively static working set. This allows batches to be stored in VRAM, to be
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reused rather than re-specified at each frame. When an update becomes necessary, a batch is

uploaded in a single large transfer, maximizing bus efficiency.

The relative infrequency of batch upload allows data access to be extended downward.

A batch not found in RAM may be loaded from disk, giving a true out-of-core data access

mechanism. Geomipmapping algorithms gain significant scalability in this fashion.

The basic geomipmapping algorithm given by de Boer (6) defines each node as a uniform grid

of geometry, just as described in Section 2.1. A refinement of this technique, called “chunked

LOD” by Ulrich (8), optimizes the geometry using a bintree approach as in Section 2.3. Both

gain the efficiency of static batching, though “chunking” does imply a preprocess.

2.4.3 Caveat: seams and skirts

All geomipmapping algorithms encounter the same T-intersection challenge described in

Section 2.3.3. However, with coarsely-grained nodes, solutions lack the elegance of ROAM. In

Figure 11 we see part of two adjacent geomipmap nodes, with the T-intersections marked.

11: Adjacent geomipmap nodes with erroneous T-intersections.
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In the case of basic geomipmapping (6) a clean solution uses multiple distinct triangulations

of a given set of surface vertices. In Figure 12 we see a seam triangulation that avoids the

problem vertices. While this solution requires a separate seam triangulation for each of the

4 edges of the node, it can be made very efficient using vertex indices to avoid duplicating

geometry.

12: Adjacent geomipmap nodes with proper seaming, correcting T-intersections.

The chunked LOD (8) implementation must show extra caution, considering T-intersections

in the preprocess, as apparent in Figure 10,

Finally, a brute-force solution exists. Gap-filling skirt triangles may be generated at each

level-of-detail transition. Long, thin skirt triangles fill the type of gap depicted in 8a, and

degenerate (zero-area) skirt triangles eliminate edge sparkling in cases similar to 8b. Google

Earth (9) takes this approach.
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13: The OpenGL programmable pipeline. Contrast Figure 1. The vertex and fragment shader
phases are new. (Gray areas are fixed; white areas are user-controlled.)

2.5 Geometry clipmaps

2.5.1 Motivation

Hardware capability continued to increase, as did the flexibility of the APIs used to control

it. In 2001, with the release of the NVIDIA GeForce3 (10), hardware capability had reached a

point where the complexity of the necessary APIs became intractable. Traditional CPU code

would no longer suffice to comprehensively control the graphics hardware, and tools emerged

allowing the programmer to develop processes to run on the GPU itself. Just as the movement

of data toward the GPU transformed real-time thinking (as described in Section 2.4.1), so too

would the movement of instructions toward the GPU.

Figure 13 depicts the structure of this new type of GPU. Contrast this with the fixed-

function pipeline in Figure 1. Two areas have changed. The vertex transform and lighting
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stage has been replaced by the vertex shader, and the fragment texture/color/fog stage has

been replaced by the fragment shader. These programmable pipeline stages are the points at

which applications may inject custom processing in the form of “shaders,” scripts written in

GPU language. The vertex shader executes for each incoming vertex, and the fragment shader

executes for each outgoing fragment.

To some extent, custom vertex shaders still do transform and lighting, and custom fragment

shaders still do texturing, but applications are free to do as little or as much of these as

necessary. Beyond emulating previously fixed functionality, new illumination models and visual

effects become possible. Shadowing, surface relief, volumetric lighting, and skeletal animation

are just a few of the techniques to become common given this flexibility.

Early shader dialects resembled assembly language, though high level languages soon fol-

lowed. Support was fragmentary early on, with NVIDIA’s Cg (11) working only with NVIDIA

hardware and Microsoft’s High Level Shading Language (HLSL) (12) working only with Di-

rectX under Windows. In time however, the OpenGL Shading Language (GLSL) (13) arrived

as a cross-platform standard, enabling GPU programming across all hardware and under any

operating system.

A generalization of the input to the pipeline accompanies the generalization of its function.

Previously, applications were required to submit specific types of geometric data: vertices, nor-

mals, texture coordinates, etc. These have been replaced by attributes, generalized vector values

with meaning assigned by the application. The output of the vertex stage, which is the input

to the rasterizer, has also been abstracted. Where the fixed-function rasterizer computed the
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position, color, and texture coordinate of each fragment, the programmable pipeline allows the

definition of arbitrary varying variables to be interpolated across each triangle. These varying

variables are the primary means of communication from the vertex shader to the fragment

shader. Finally, uniform storage allows the application to express constant data to be used as

input to both the vertex and fragment stages.

This flexibility has triggered an avalanche of new ideas and techniques in the real-time

computer graphics world. New literature continues to proliferate, and results published decades

ago as photo-real techniques have been revisited and reformulated for real-time.

2.5.2 Algorithm

The geometry clipmap algorithm by Losasso and Hoppe (14) takes advantage of much of

this new GPU functionality. At its core, a geometry clipmap is similar to a geomipmap. It is

a hierarchy of batches, each representing a similar amount of geometry data, and each layer

covering four times the area of the layer above at a quarter the resolution.

However, a geometry clipmap is more dynamic then a geomipmap. A geometry clipmap

pyramid remains centered at the view point, moving with it, with VRAM geometry minimally

updated with each change of the view (Figure 14).

To support these updates efficiently, the VRAM vertex buffers are accessed toroidally. While

these buffers are fundamentally two-dimensional in layout, as is a common regular grid (Sec-

tion 2.1), they wrap around along both axes. The top, bottom, left, and right edges do not

necessarily coincide with the boundaries of the buffer or the stride of its rows, but instead are

dynamic. Mapping such a data buffer is non-trivial, requiring offsets and modular arithmetic
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14: A geometry clipmap: geomipmaps centered on the view point giving small triangles near
the viewer and large triangles in the distance.

not provided by the fixed-function pipeline. This necessitates the use of the programmable

pipeline.

As the view point moves, the data shift beneath it. Each change in the view discards some

number of rows and columns as they move out of range, and requires the loading of an equal

number of rows and columns as they come into view. It would be inefficient to actually move

the data within the buffer, so only the logical origin of torroidal the buffer is moved. The new

data are loaded into the same buffer locations vacated by the discarded data.

When such a move occurs, part of the triangulation of the vertices is invalidated. To repair

this damage, the vertex indices of the triangulation are recomputed by the CPU and uploaded to

VRAM. This is expensive and inelegant, and a later refinement by Asirvatham and Hoppe (15)

resolves the problem using vertex shader texture access. In this formulation, the x and y values
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of the vertices are constant in eye space, and the z values are dynamically referenced from the

height map, bound as a texture.

The inspiration for this toroidal update is acknowledged by the name. “Clipmap” refers

to a feature of SGI’s OpenGL Performer (16). Clip texturing was a hardware mechanism

that dynamically paged very large texture images from disk, usually based on view position.

This mechanism used toroidal access to efficiently pan the VRAM image cache. Geometry

clipmapping is a natural extension.

Note the similarity between the geometry clipmap output (Figure 14) and the geomipmap

T-intersection flaw (Figure 11). The geometry clip-map algorithm makes no significant advance

in the realm of T-intersection mitigation, and all of the potential solutions described in Sec-

tion 2.4.3 apply. Losasso’s implementation (14) does use vertex shading to perform a simple

morphing at level-of-detail transitions, but must rely upon degenerate triangle skirts to elimi-

nate the remaining edge sparkle. Transitions in texture level-of-detail are blended away using

fragment shading.

Losasso and Hoppe go to great pains to describe a land-form data compression method, and

they do demonstrate browsing a 1-arc-second data set of the entire continental US in real-time.

Despite this however, their implementation works strictly with in-core data. For this reason,

the geometry clipmap algorithm does not scale. This restriction is slightly surprising given the

authors’ adoption of the term “clipmap,” which initially referred specifically to an out-of-core

mechanism.
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15: OpenGL geometry shader pipeline. Contrast Figure 13. The geometry shader phase is
new. (Gray areas are fixed; white areas are user-controlled.)

2.6 Current hardware

2.6.1 GPGPU

The capabilities of real-time 3D graphics hardware continue to tend toward generality.

Among the most significant recent enhancements has been an increase in available frame buffer

formats. While frame buffers were previously limited to 32-bit pixels with each channel an 8-bit

unsigned byte, current hardware provides pixels as wide as 128 bits with each channel a 32-bit

IEEE floating point value.

Given the ability to both read from and write to such buffers, the practice of General Pur-

pose GPU programming (GPGPU) has emerged. With as many as 128 4-channel vector parallel

stream processors (on the NVIDIA GeForce 8800 Ultra (17)) total computational throughput

approaches a teraFLOP in a single workstation PC. Developers were quick to adapt the exist-
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ing practices of textured polygon rendering and programmable fragment shading to perform

arbitrary computation, having no relation to the creation of 3D scenes.

Software soon evolved to support this practice. NVIDIA’s Compute Unified Device Ar-

chitecture (CUDA) (18) and Stanford University’s BrookGPU (19) abandon the traditional

concepts of vertices and fragments to abstract the hardware’s processing capabilities. They

provide languages and APIs that map more straightforwardly onto the variety of problems

faced by users of high performance computing. Physical simulation, ray tracing, data encoding

and encryption, computer vision, and image processing are just of few of the many fields that

have benefited.

2.6.2 Geometry generation

Meanwhile, back in the world of 3D rendering, flexibility has also increased. New capability

focuses on the generation of geometry. Just as the vertex and fragment phases of the 3D

pipeline were made programmable in the last significant revision (Figure 13), now the primitive

assembly phase has been made programmable (Figure 15).

This geometry shading phase allows GPU code to modify the topology of incoming geom-

etry. Geometry shaders take incoming points, lines, and triangles and generate zero or more

primitives, optionally routing them to one of several target frame buffers. “Transform feedback”

allows this generated geometry to be sent back to VRAM output buffers, to be processed or

rendered later.

A similar functionality allows floating point frame buffers to be bound and rendered as vertex

buffers. Rather than drawing a distinction between color (r, g, b, a) and vector (x, y, z, w), buffer
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(a) Height (b) Color (c) Normal

16: A height map (SRTM), color map (BMNG), and normal map (SRTM), each showing the
same region.

contents are treated simply as data. By relaxing the restrictions on the meaning of the values

stored in VRAM, pixels may be used as vertices, taking advantage of pixel processing capacity

in the processing of geometry.

2.7 Realism

There are a number of simple effects that may be applied to all forms of terrain rendering

to heighten the level of realism in the final image. Here we discuss two of them.

2.7.1 Normal mapping

The first of these is known as normal mapping. During rendering, the illumination compu-

tation uses the normal vector of the surface, the vector toward the light source, and the vector

toward the view point to calculate the reflectance of the light, and thus the appearance of the

object. The resulting shading is a strong indication of the nature of the surface.
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Traditionally, the normal vector of a surface is determined by the surface geometry, and

is specified once for each vertex or triangle. However, if the normal vector is given instead

by a texture map, then the illumination calculation may be performed on a per-pixel basis,

rather than a per-vertex basis. This high-resolution shading gives the illusion of a great deal of

geometric complexity, regardless of the true number of vertices and triangles. The basic concept

of this dates back to the work of Jim Blinn in 1978 (20) and was known as “bump mapping”

prior to the adaptation of the technique to modern real-time hardware.

In the case of uniformly-projected terrain, a normal map may be easily computed from a

height map using a Sobel filter (21). The result of this is shown in Figure 16. The components

of a normalized vector fall in the range [−1, +1], so to store a normal in a color map it must be

offset and biased to the range [0, 1]. In this space the Z axis is (0.5, 0.5, 1.0). For this reason,

terrain (which usually faces up) produces roughly blue normal maps.

Real-time rendering using normal maps requires the use of fragment shading to shift the

normal back to its native range, transform it into the local coordinate system tangent to the

surface, and perform the illumination calculation on a per-fragment basis. The result of this

process can be seen at the center of Figure 17, in contrast with the top of that figure, which

lacks normal mapping.

2.7.2 Atmosphere rendering

Earth’s atmosphere has a profound effect on the appearance of its terrain. Light passing

through the atmosphere is randomly scattered and attenuated at various wavelengths due to

absorption by air molecules and dust particles, varying exponentially with altitude. Light is
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17: Effects for enhanced realism: basic illumination (top), per-pixel illumination (center),
atmospheric scattering simulation (bottom).
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scattered both in and out along the line of sight between any two points. This results in the

blue of the sky, the yellow of a sunset, and the desaturation of the color of objects seen at a

distance, known as “aerial perspective.”

Earth data such as NASA’s Blue Marble Next Generation (22) have had the contribution of

the atmosphere subtracted. So for realism, it is necessary to add it back in. True simulation of

atmospheric scattering is intractable, but a number of approximations have appeared. The most

effective real-time algorithm developed to date is Sean O’Neil’s GPU-based single-scattering

approach (23).

The simulation of in-scattering and out-scattering involves the evaluation of nested line inte-

grals. O’Neil’s implementation is iterative, using curve-fit approximation functions to eliminate

the inner integral, but necessarily stepping down the path of the light to evaluate the outer

integral.

This is a relatively expensive operation to perform, but the visual impact of it is striking.

Contrast the center of Figure 17 with the bottom. The output can be difficult to distinguish

from a photograph taken from space.

2.8 Terrain on the sphere

All mention of scalability thus far has been with regard to the quantity of data, and scal-

ability solutions focus upon data caching protocols. However, the scalability of the extent of

data raises new issues. All examples of real terrain are spherical and as extent broadens, the

underlying shape of a land-form diverges from the simple plane assumed by all algorithms

discussed to this point. Extending these algorithms to map from the plane to the sphere is
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(a) Google Earth (b) Mars Transporter

18: Polar distortion due to spherical projection: the stretched pixels caused by non-uniform
data sampling in Antarctica (a) and at the north pole of Mars (b).

relatively straightforward, involving basic trigonometry, and such an approach is common. No-

tably, Clasen and Hege adapt geometry clipmaps to the sphere(24), but at significant vertex

shading expense. New problems arise, and achieving truly efficient rendering of terrain data on

a planetary scale requires more careful analysis.

2.8.1 Spherical projection

Geographic data are commonly laid out following the familiar longitude/latitude grid known

as a cylindrical equal-area projection (Figure 19). Its equally-sized rectangles map easily onto

any of the rendering algorithms discussed previously. When mapped onto the sphere, the result

resembles the common globe (Figure 20).
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19: Earth longitude and latitude

While simple, this projection leads to a very non-uniform tessellation. All lines of longitude

converge at the poles, and the width of each rectangle reduces to zero there. However, the

width of each corresponding rectangle of data is a constant. The result is an over-sampling of

data and geometry toward the top and bottom of the data set. Near the poles, data elements

are squeezed longitudinally while retaining their height latitudinally, and the triangles of a

spherical tessellation are compressed to zero area.

20: Spherical projection: parallel lines of latitude and lines of longitude meeting at the poles.
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This over-sampling wastes storage and I/O bandwidth, and the visual impact of the anisotropic

scaling is difficult to overlook. The effect is that of a radial blur. Note the distortion in Google

Earth’s (9) depiction of Antarctica in 18a. The output fails to accurately represent the land-

form, and zooming the view only magnifies the error. This flaw is nearly universal among

planetary data rendering applications. Mars Transporter also suffers from it (18b) and this

flaw provided some impetus to the pursuit of this research.

The solution to the problem is to generalize beyond the spherical projection, both in the

layout of the data and tessellation of the sphere.

2.8.2 Stereographic polar projection

Spherically projected data are applicable in the region near the equator, and the majority of

NASA and USGS data are made available in this form. Notably, the Shuttle Radar Topography

Mission (SRTM) (25) provides useful data of the Earth within 60 degrees of the equator. The

Mars Orbiter Laser Altimeter (MOLA) (26) data set extends to 88 degrees above and below

the Martian equator, and fills the remaining gap using a stereographic polar projection. This

projection, as depicted in Figure 21, is critical to reliable data sampling at the poles.

A stereographic polar projection is defined as a Cartesian coordinate system slicing the globe

at a specific latitude. Just as spherically projected data are correctly scaled only at zero lati-

tude (the equator), stereographic polar projected data are correctly scaled only at the defining

latitude. Just as spherical data become unusable near the poles, polar data become unusable

near the equator. Together the two provide useful coverage of the entire globe. The Landsat
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21: Polar projection: a uniform grid applied over the difficult area at the poles.

Image Mosaic of Antarctica (LIMA) (27) is made available entirely in such a stereographic polar

projection.

2.8.3 Spherical tessellation

Where once we had uniform grids of data mapping onto uniform grids of geometry, we now

have a situation where both data and geometry are non-uniformly sampled, and where their

samplings do not necessarily coincide. This gives us the opportunity to choose a spherical

tessellation more appropriate for the problem at hand.

There exist many spherical tessellations of the sphere that do not follow lines of longitude

and lattitude. The most useful tessellations are inexpensive to generate, refinable to arbitrarily

granularity, and largely uniform.

The uniformity of a spherical tessellation can be judged visually, but also quantified. We

want the degree (the number of incident edges) of all vertices to be similar, the inner angles

of all faces to be similar, and the lengths of all edges to be similar. A uniform tessellation

minimizes the variation in all of these.
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Common practice in spherical tessellation uses subdivision of regular polyhedra. Polyhedral

subdivision proceeds recursively. Each face of the polyhedron is divided into similar sub-faces,

and each vertex is normalized to fall on the surface of the unit sphere. This is recursively

repeated for each sub-face, and the depth of recursion determines the final granularity. The

nature of the initial polyhedron determines the uniformity of the final tessellation.

22: A recursively subdivided cube, a relatively poor tessellation of the sphere.

Figure 22 shows a recursively subdivided cube. At each step, square faces are subdivided

into square quadrants. The original 8 vertices of the cube are still visible as nodes in the final

tessellation. The nodes are the points where the tessellation is least consistent. Much like

the poles of the standard spherical tessellation, this is where non-uniform sampling occurs. In

the case of the cube, the nodes have degree 3, while the all other vertices have degree 4. The

internal angles of the faces at the nodes are 120◦, but tend toward 90◦ at the center of the

original cube faces. Edge lengths on the subdivided cube are quite inconsistent.
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Despite lackluster uniformity, the subdivided cube does result in a tessellation consisting

entirely of quads, which is advantageous when considering planar terrain algorithms originally

devised to work with rectangles. Sean O’Neil used the subdivided cube when adapting the

ROAM algorithm to the sphere (28). Hwa et al (29) did the same, and used the resulting

quads to generate a tessellation of (nearly) right triangles, the basis for a unique texture tiling

approach based upon 45-degree rotations.

23: Triangle subdivision: bisect the edges and connect the vertices.

The next regular polyhedron is the octahedron, consisting of 8 equilateral triangles. To

subdivide a triangular face, each edge is bisected and the resulting vertices connected, as in

Figure 23. The octahedron and the result of three recursive subdivisions are shown in Figure 24.

The nodes have degree 4 and an angle of 90◦. Away from the nodes, degree is 6 and angles

tend toward 60◦. If the terrain level-of-detail algorithm does not rely upon quads, then better

uniformity can be achieved using triangles in this fashion. Microsoft Research’s Hierarchical

Triangular Mesh uses this structure to index data on the celestial sphere (30).
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24: A recursively subdivided octahedron, a passable tessellation of the sphere.

A perfect tessellation would have degree 6 and 60◦ angles across its entire surface. Unfor-

tunately, this is impossible (given the requirement that a tessellation be finite). The best that

can be done is to begin with the most complex convex regular polyhedron, the icosahedron,

with 20 equilateral faces.

Recursive subdivision of the icosahedron is shown in Figure 25. Vertex degree is 5 at the

12 nodes and 6 elsewhere. Angles vary from 72◦ to 60◦. Edges are nearly identical. This is

excellent uniformity, and the nodes of the tessellation can be difficult to point out without close

scrutiny. This construction is familiar to many 3D programmers, as it is the first non-trivial

example in Chapter 2 of The OpenGL Programming Guide (31).

R. Buckminster Fuller based much of his work on the icosahedron. His geodesic dome is a

cap of a recursively subdivided icosahedron. Fuller also set the historical precedent for mapping

the earth using the icosahedron. In 1946 he proposed the DymaxionTM Map as a method of

cutting the planar projection of the world in such a way that the edges of the map fall over

the oceans rather than the land. While his original design was based on the cuboctahedron, a
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25: A recursively subdivided icosahedron giving a sphere with very uniform tessellation

1954 refinement used the icosahedron, as seen in Figure 26 (32). It is coincidence that Earth’s

continents fall within the faces of the icosahedron, but the DymaxionTM Map is indicative of

the uniformity gains of a projection having 12 poles instead of only two.

2.9 Moving forward

It hopefully clear from the discussion in this chapter that the history of terrain rendering

is necessarily tied to the capabilities of the hardware available at the time. Terrain algorithms

are often the first to take full advantage of these capabilities as they arise.

In review, table Table I summarizes the literature discussed in this chapter. Check-marks

indicate whether each algorithm involves an extensive pre-process before rendering, a uniform

triangulation, adaptive level-of-detail, out-of-core data access, significant CPU load, and the

programmable GPU pipeline. Spherical adaptations are listed where they were found in the
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26: DymaxionTM Map, fitting the continents within the faces of the icosahedron.

literature, though it should be noted that any algorithm can be mapped to the sphere given a

proper spherical tessellation, usually cubic subdivision.

This table does not enumerate the concepts underlying terrain composition. As noted

previously, terrain literature focuses exclusively on the careful tessellation of height maps and

the basic application of registered color maps. Flexible approaches to the combination of

disparate terrain data sets in a common visualization are not to be found. This is the gap to be

filled by this research. It is a true opportunity to address real concerns in geodata visualization

that have yet to be formalized.

This work will build upon everything that has been presented in this chapter, taking full

advantage of the flexibility of modern hardware. We will see a new approach to planetary-scale

land-form data management, geometry generation, and real-time display that has only recently

been made possible by advances in hardware development.
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Algorithm Pre-process Uniform LOD Out-of-core CPU-heavy GPU Sphere

Regular Grid X

TIN (2) X

ROAM (4) X X X (28)

Geomipmap (6) X X X

Chucked LOD (8) X X X

Geoclipmap (14) X X X X X (24)

I: The terrain of terrain literature



CHAPTER 3

COMPOSITION ALGORITHM

This chapter describes in detail a GPU-centric real-time approach to generating and render-

ing planetary bodies composed of arbitrary quantities and types of height-map data, textured

and illuminated using arbitrary quantities and types of surface-map data. An implementation

of this approach has demonstrated all of the concepts presented here.

At the core of this approach lies the assertion that modern graphics hardware need not

draw a distinction between colors and vectors. As described in Section 2.6.1, commodity GPUs

support both reading from and writing to 4-component 32-bit IEEE floating point image buffers,

as well as the application of such image buffers as renderable geometry buffers. With the

distinction between color (r, g, b, a) and vector (x, y, z, w) blurred, a variety of highly efficient

image processing operations become applicable to both terrain geometry and terrain surface

maps.

The algorithm itself is described here. A number of composition operations enabled by it

are examined in Chapter 4. Finally, the performance characteristics of it are measured and

presented in Chapter 5.

3.1 Overview

For each frame, the display of a planetary body proceeds in three major phases.

1. Visibility determination (Section 3.2)

42
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27: The planet rendering pipeline, showing the interleaving of processing and data transfer
when displaying 2 planets

2. Geometry generation (Section 3.3)

3. Rendering (Section 3.4)

These phases form the three stages of a pipeline, as shown in Figure 27. They are distin-

guished from one another by the explicit data transfer of the output of one to the input of the

next. These data transfers may be performed in parallel with other processing. This leads to

efficiency gains when rendering multiple bodies. For example, if both the Earth and the Moon

are composed within a scene, then the visibility phase is executed for both, followed by the

geometry generation phase of both, and finally the rendering of both. Visibility determination

of the Moon proceeds while the the Earth’s visibility solution is in transfer, Earth’s geometry

is generated while the Moon’s visibility is in transfer, and so on. This reduces stalls in both

the CPU and GPU, giving increased throughput.
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The following sections describe each of these phases in detail. You’ll note a constant battle

with issues of numerical precision. Precision is among the focuses of this work. At a number of

points, both a naive approach and a more considered approach are presented and contrasted.

3.2 Visibility

The visibility phase is executed by the CPU. The primary goal of this phase is to perform the

initial subdivision of the icosahedron (Section 2.8.3) in order to seed the geometry generation

phase. This subdivision is not the final spherical tessellation, it is merely a gross determination

of visibility and granularity.

3.2.1 Patch enumeration

We begin with the basic icosahedron. Throughout the run time, we maintain a frame-

coherent hierarchy giving the current faces of a subdivision of that icosahedron, referred to

as surface patches. This hierarchy is a tree structure with a constant number of leaves. The

management of this tree proceeds similarly to the ROAM algorithm (Section 2.3), but while

ROAM is concerned with the maintenance of a continuous triangulation free of T-intersections,

we are concerned only with a coarse patch triangulation. Thus, we have the luxury of ignoring

T-intersections until after refinement (Section 3.4), and our hierarchy maintenance algorithm

is simplified accordingly.

As the view varies from frame to frame, those patches that move into the view frustum

are added to the tree, and those that move out of the view are pruned. We seek a set of

visible patches numbering as near as possible to (though not larger than) a constant np, and

we maintain this set with a simple priority algorithm. Patches are sorted by the solid angle
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that each subtends from the current view. If the set of patches is too small, the largest patch

is subdivided, as in Figure 23. If the set of patches is too large, the smallest set of four sibling

patches is collapsed. The result is a coarse set of approximately np visible patches. These

appear as in Figure 30.

In the circumstance where the target display is stereoscopic or tiled, the view volume may

consist of multiple overlapping or disjoint frusta. A patch passes if it falls within any part of

the view volume, thus the visibility phase need be executed only once regardless of the number

of view points or view ports.

This process is equivalent to the visibility test of the geomipmapping algorithm given in

Section 2.4.2. In both cases, it is a coarse visibility test, selecting potentially visible geometry

batches rather than culling on a per-triangle basis.

3.2.2 Horizon

In addition to the culling planes defining the view volume, a horizon plane enables additional

patch culling opportunities. This plane is independent of the structure and orientation of the

view volume, depending only on the view point and planet. Figure 28 shows the cone of

occlusion of the user’s view, tangent to the planet’s surface. The horizon plane is computed

using the right triangle defined by the planet’s radius r and the viewer’s distance from the

center of the planet d. The horizon plane normal is the normalized vector from the planet

center to the view point, and the horizon plane distance from the center of the planet is r2/d.

Any patch behind this plane falls within the planet’s occlusion cone. As d approaches r the
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horizon plane culls the majority of the sphere. In practice, the horizon is the most effective,

and thus first-tested, culling plane.

28: The horizon plane. The viewer at distance d from the center of a planet of radius r, cannot
see the dark area.

3.2.3 Patch bounds

Testing a patch for visibility is more complex than simply checking a triangle against culling

planes. The surface of the planet within the triangle’s bounds is not planar. Terrain data will

eventually be mapped within that area, and we must determine whether the geometry of this

terrain is or is not visible.

As shown in Figure 29, the three sides of a triangular area on a sphere are segments of

geodesics (“great circles” cutting the sphere into equal halves). Let these geodesics define three

planes cutting through the center of the sphere. These planes form a wedge-shaped volume.

The terrain within this volume has some minimum and maximum altitude, which give radius
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extrema. The three planes and two radii define a surface shell, a tight bound on the terrain

within the patch. We may determine the visibility of the terrain within the patch by testing

the patch’s bounding shell.

29: A triangular surface shell, a terrain bounding volume defined by three planes and two radii

3.2.4 Output

The final result is a depth-first traversal of all of the visible patches tessellating the sphere.

Rendered, they appear as Figure 30. These patches are uploaded to VRAM as the initial “seed”

input to the GPU process that generates land-form geometry. The number of patches np will

determine the number of rendered batches, so its value may be set around 300, as recommended

in Section 2.4.1.
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30: The output of the visibility/granularity phase, a rough triangulation of the visible portion
of the sphere

This upload is performed by loading the three vectors defining the corners of each patch

into 2D floating point texture maps, as suggested in Section 2.6.2. There are three such texture

maps, one storing the position of the corner, another storing its normal, and a third storing its

spherical latitude and longitude. The layout of these is shown in Figure 31. These buffers are

asynchronously transferred using the OpenGL pixel buffer object extension (33).

31: The geometry generation seed of np patches, each with 3 vertices [a, b, c], encoded as a
3 × np RGB texture
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3.2.5 Caveat: precision

The mean radius of the Earth is 6,372,797 meters. Unfortunately, a 32-bit IEEE float-

ing point value provides only around 7 digits of precision (34). A modern GPU works with

32-bit floats internally, so the processing of Earth terrain occurs at or near the limit of the

computational precision of the GPU.

This means that surface features on the scale of a meter cannot be reliably represented in a

coordinate system with its origin placed (quite reasonably) at the center of the planet. To do so

results in geometry dominated by numerical precision artifacts on one-meter scales. However,

there is a clear motive to enable the presentation of detail on the scale of a meter and below,

as this is the scale of human experience.

To resolve this problem, patches are generated not in object space (the coordinate system

of the planet), but in eye space (the coordinate system of the viewer). This coordinate system

has its origin at the user’s eye, with the X axis pointing to his right and the Y axis pointing up.

As the user navigates the universe, he remains motionless and the universe moves and rotates

about him.

The advantage of this follows from the nature of an IEEE floating point variable, and the

distribution of the possible values that it may take. Floats concentrate their effectiveness near

zero, and the granularity of representable small values is high. A float can represent very large

values, but the gaps between representable large values are wide.
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So, by generating the geometry of planets in eye space, we gain the ability to represent land-

forms with high precision near the user, relative to his scale. Distant landforms are necessarily

generated with lower precision, but the quantization is too far away to be visible as error.

Complicating this is the assumption that the user is in constant motion due to his interaction

with the scene. Eye-space is always changing. Thus, generated planetary geometry must be

regenerated at each rendered frame.

It would seem ridiculous to ignore the advantages of a frame-coherent tessellation, but

experience has shown that it is not. The geometry generation algorithm presented in the next

section has little impact on run-time performance. Because geometry generation occurs in

VRAM, and is performed entirely by the GPU, the full potential of GPU stream processing is

brought to bear. Modern 3D hardware is more than capable of discarding and regenerating the

entire scene with each new frame.

3.3 Geometry generation

The goal of the geometry generation phase is to produce a high-resolution triangular tessel-

lation of the sphere, accurately representing the terrain of the input land-forms, with optimal

level-of-detail.

The input, described in the previous section, gives a low-resolution triangulation of the

smooth sphere, with each triangle of roughly the same visual size in eye space. So, the task of

the geometry generation phase is to perform a subdivision of the input mesh, and a displacement

of this subdivision’s vertices using height data.
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(a) Input (b) Depth 1 (c) Depth 2 (d) Output

32: Vertex indices and intermediate subdivision steps for a recursion of depth 2

Geometry generation is a GPGPU process, as described in Section 2.6.1. Floating point

textures act as vector data buffers, and GLSL shaders operate upon these, writing their output

to color render targets to be used in subsequent operations.

3.3.1 Subdivision

Triangle subdivision is generally a recursive process, as described in Section 2.8.3. To map

this process onto the GPU, we must formulate it iteratively. To do this, first note that the

number of vertices nv produced by the subdivision of a triangle to recursive depth d is

nv(d) =
(2d + 1)(2d + 2)

2

Here are the vertex counts for several small values of d, commonly used when doing real-time

subdivision.
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d nv(d)

0 3

1 6

2 15

3 45

4 153

5 561

6 2145

7 8385

For clarity, the figures in this section show a subdivision depth of 2, with 15 vertices per

patch. In practice, the depth is usually 4 or 5. This value adjusts the batch granularity as

described in Section 2.4.1. A high value results in fewer patches emitted by the visibility phase,

larger batches, and less-effective view culling. A small value places a greater load on the CPU

but results in precise visibility. This allows the balance of the algorithm to be tuned to the

hardware. Older hardware, such as the NVIDIA GeForce FX or ATI Radeon 8500 run smoothly

at a depth of 3, while a GeForce 8800 can manage at 6. As we will see, nv translates into a

texture buffer width, which has a maximum of 4096 on recent hardware, and 8192 on current

hardware, giving an upper bound on the selection of d.

With the exception of the three initial vertices defining a triangle (v0, v1, v2), every vertex

vi is the combination of two other vertices vj and vk. A breadth-first order enumeration of the
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nv vertices has the property that i > j and i > k for any such related vertices vi, vj , and vk.

Figure 32 depicts this relationship graphically, with arrows indicating dependence.

At start-up, the j and k indices for each i are generated using such a breadth-first traversal

and stored in a constant look-up table, as in Figure 33. This table is stored in VRAM as a

2-channel 16-bit texture, thus encoding the recursive subdivision relationship in a form easily

accessible by a GLSL shader.

33: Vertex index dependence look-up table, encoding the relationship depicted in Figure 32.

3.3.2 Iteration

Now begins the iterative process of subdivision. The initial input is the texture buffer

depicted in Figure 31, with np rows, one row per patch. The output is a similar texture buffer,

but with the number of columns expanded from three to accommodate the final vertex count

nv.

Patches are processed in parallel. Each step of the iteration computes one level of depth d,

adding nv(d)− nv(d− 1) vertices (columns) to the output for each patch (row). The process is

depicted in Figure 34. At step i the output texture is bound as render target and a rectangle is
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drawn from pixel [nv(i−1), 0] to pixel [nv(i), np], causing the GLSL fragment shader to execute

for each of the new vertices being generated.

34: The vertices calculated at each depth step of the iterative parallel subdivision process

The fragment shader looks to its fragment coordinate to know which vertex index it is

generating. It refers to the index dependence look-up table to determine the indices of the

vertices this depends upon, and it uses these values as texture coordinates to look up the input

vertices themselves in the input texture. It then performs its computation (described below)

and writes the resulting vertex to its fragment in the output texture.

Note, iterative GPGPU processes must often utilize a technique known as “ping-ponging”.

A GPU cannot both read from and write to a single buffer simultaneously, as to do so would

introduce data dependencies that undermine parallelism. So in circumstances where the output

of a computation should overwrite its input, a pair of buffers A and B is used. One iteration
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reads from buffer A and writes to buffer B, the next iteration reads from B and writes to A,

and so on. The iterative subdivision process is an example of this.

As noted, there three distinct subdivided attributes: vertex position p̄, normal n̄, and

spherical coordinate (θ, φ). These attributes are computed as follows.

3.3.3 Normal computation

Normal subdivision is performed as expected.

n̄i =
n̄j + n̄k

||n̄j + n̄k||

However, a trick is introduced. The output image is a 4-channel floating point buffer and

the as-yet-unused 4th channel is used to hold the angle separating the input normals. This will

be used during position computation.

w = acos(n̄j · n̄k)

3.3.4 Lat/lon computation

Under ideal circumstances, it would not be necessary to compute the latitude and longitude

coordinates of each vertex by recursive subdivision. Normally, one would not even bother to

store spherical coordinates, preferring to simply compute them from the vertex normal at render

time:

φ = asin(n̄y)
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θ = atan2(−n̄z, n̄x)

However, this method is imprecise and unstable. Generating spherical coordinates in this

fashion leads to surface mapping errors on the order of hundreds of meters on the scale of the

Earth, with a total failure of interpolation across the International Date Line. We can do much

better using the haversine geodesic midpoint method to subdivide the coordinates of the input

triangles.

bx = cosφk · cos(θk − θj)

by = cosφk · sin(θk − θj)

φi = atan2
(

sinφj + sinφk,
√

(cosφj + bx)2 + b2
y

)

θi = θj + atan2(by, cosφj + bx)

While more expensive, this method produces reliable spherical coordinates even at sub-

meter scales. It also works correctly with coordinates outside of the range ±π, which greatly

simplifies mapping data across the International Date Line.

3.3.5 Position computation

Position subdivision is particularly picky, as it is especially prone to numerical imprecision.

The common process is to scale the normal by the average of the input radii, and offset from the

center of the planet (as we are working in eye-space rather than object-space). Unfortunately,

multiplication by a large radius value may consume more precision than can be represented by
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a 32-bit float. Once again, geometry on the scale of a meter becomes dominated by numerical

precision artifacts. We need a method that linearizes at small scales, and does not make explicit

reference to the radius of the planet.

35: Precise position subdivision without reference to radius

See Figure 35. We take the angle between the input normal vectors (as found during normal

computation) and compute its tangent using a constant look-up table stored as a 1D texture

map. We compute x, half the distance between p̄j and p̄k, and multiply it by the tangent giving

y. From there we offset the midpoint of p̄j and p̄k along the current normal n̄i by the distance

y.

As the input normals tend toward equality, the computation of their angle reliably tends

toward 0◦ with little noise. Thus, the table look-up reliably tends toward y = 0, and the

position offset reduces to the midpoint of the input points. Each step preserves its precision,

and the stability of the operation as a whole actually increases as the scale decreases.
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We now have everything we need to begin applying height map data to the tessellated

sphere.

3.3.6 Displacement

Height maps are naturally images. Given that the surface of the planet is now represented

in VRAM as an image, surface displacement is simple image composition, an operation the

GPU is most adapted to perform efficiently.

The newly-generated position, normal and spherical coordinate buffers are bound for read-

ing. An nv×np position accumulation buffer is bound as render target. Height maps are loaded

as textures, usually formatted as 16-bit single-channel luminance. They are bound one-by-one,

and a render pass for each is made. A rectangle covering the accumulation buffer is drawn,

triggering the execution of a GLSL shader for each fragment.

At each fragment, the height map texture coordinate must first be determined. For spher-

ically projected data, this is the value in the spherical coordinate buffer. For polar projected

data, this is the value in the normal buffer, offset and biased as per the projection.

In addition to the texture coordinate, a texture quality value may be computed comparing

the effective resolution of the projected height map data versus the resolution of the tessellation

at the current vertex. A significant mismatch indicates badly projected data, such as a vertex

near the pole of a spherical projection, or near the equator of a polar projection. This gives a

weighting factor used to penalize bad data. This will be discussed in greater detail in Section 4.1.

Once the texture coordinate and quality are known, the height map is sampled. The dis-

placed position of the vertex is the base sphere position plus the normal scaled by the height



59

value. The quality factor gives the weighted average of this displaced position and the current

accumulated position, resulting in a refined accumulated position. As some GPUs are incapable

of blending floating point render targets, this process ping-pongs a pair of accumulation buffers,

as described above.

The fundamental effect of this process is that the input height map data, regardless of

projection and resolution, are naturally re-sampled to the optimal tessellation mesh computed

previously. Overlapping height maps are blended. Under-sampled height maps are interpolated

by the GPU’s linear magnification filtering hardware. Over-sampled height maps are down-

sampled by the linear minification hardware. Any discontinuity between superimposed height

maps of different resolution are obscured by being re-sampled to a common mesh. And any

low-quality height data at the extremes of the projection are automatically weighted away in

deference to the more appropriately projected height data composed with it.

This per-frame resampling of height map data may appear wasteful of GPU resources, but

since it is expressed in terms of common texture mapping operations, it is no different than the

per-frame resampling of texture data applied to an ordinary 3D mesh. As such, the overhead

of data resampling is minimal, as demonstrated in the performance analysis of Section 5.1.4.

This approach to height map accumulation affords an opportunity to satisfy the last criterion

for continuity. Lindstrom et al (35) enumerate three aspects of continuity of terrain level-of-

detail under view point motion. In summary, they are (i) geometry morphs between discrete

levels of detail instead of popping, (ii) adjacent blocks of geometry align without gaps, and

(iii) the number of triangles tessellating a given area varies smoothly. In our method, (iii) is
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satisfied during the visibility and granularity phase (Section 3.2), and (ii) is satisfied during

rasterization (Section 3.4), but (i) remains.

However with this approach, height geometry displacement is expressed in terms of image

composition and performed by pixel processing hardware. Thus, morphing between geometric

levels of detail is equivalent to blending between images. Just as height map resampling is

accomplished by the GPU’s built-in bilinear texture filtering capability, so too may level-of-

detail continuity be satisfied using the GPU’s trilinear mipmapping capability. The mipmap

bias is the fractional part of the level-of-detail detail coefficient, as used in existing approaches

to geomorphing (36). At the time of this writing, this advanced terrain sampling operation

is untested and the current implementation does reveal popping artifacts. Recognizing the

necessity of continuous LOD in any modern approach to terrain rendering, we must place

trilinear filtered geometry among the most important areas for future work.

3.3.7 Output

We now have the final vertices of the geometry representation stored in a 32-bit floating

point texture. In wire-frame, they appear as Figure 36. Contrast this with the input tessellation

in Figure 30, showing the planet from the same view point.

In the next phase, we will wind these into triangles and rasterize them. Before we may do

so, they must be moved from their image buffer to a vertex buffer. As before, this transfer is

performed asynchronously within VRAM using the OpenGL pixel buffer object extension. The

spherical coordinate buffer, normal buffer, and accumulated position buffer are concatenated

onto a single vertex buffer suitable for rendering.
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36: The output of the geometry generation phase, a fine triangulation with height displacement

Note that the normal buffer does not represent the normals of the displaced vertices, but

remains useful to us when later computing polar-projected texture coordinates.

3.3.8 Aliasing and Error

The height map displacement process does not enforce a constraint that the vertices of the

source data fall upon the vertices of our triangulation. This is a significant departure from one

of the basic assumptions made in the field of terrain rendering. As discussed in Chapter 2, most

terrain rendering approaches utilize a regular grid of data applied to a regular geometric grid

of right triangles, but the goal of supporting arbitrarily projected data precludes this. This has

a two-fold impact. First, it allows aliasing to occur when data is resampled to our triangular

mesh. Second, it adds complexity to the analysis and mitigation of error.
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The analysis of error is a key aspect of terrain rendering research. Note that the refinement

processes of both the triangulated irregular network approach of Section 2.2 and the ROAM

approach of Section 2.3 are defined in terms of error mitigation.

While existing planetary-scale terrain rendering literature does discuss the mapping of spher-

ically projected data onto subdivided polyhedra, little attention has been paid to the effects of

the non-uniformity of such mappings on aliasing and error. A thorough analysis of the error

that may arise here is necessary before the technique can be embraced as a reliable tool. This

analysis is left for future work.

3.4 Rendering

The first step toward rendering the vertices generated by the previous phase is to wind them

into triangles. We immediately face the same T-intersection challenge described in Sections 2.3.3

and 2.4.3. In this case, there exists a straightforward approach to the elegant solution of

Figure 12.

3.4.1 Patch winding

As with ROAM, we mandate that adjacent patches must be within one level in depth. So

a patch of depth d has neighbors only of depth d, d − 1, and d + 1. When considering a patch

of depth d, the d + 1 neighbor case may be ignored because this patch is of depth d− 1 relative

to that patch, thus only edges adjoining d to d − 1 need special treatment.

If a patch of depth d lies adjacent to a patch of depth d − 1 then the adjacent edge must

be wound at half resolution. A patch may lie adjacent to a coarser patch along zero, one, two,
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or three sides. The one and two-side cases have three possible orientations, for a total of eight

possible edge windings. Figure 37 shows all necessary triangulations of a patch of depth three.

37: All possible windings (modulo rotation) of a patch of depth three adjacent to zero or more
patches of depth two

The eight cases are enumerated and stored in VRAM using OpenGL element buffer objects.

Element buffers are lists of indices referring to elements within a vertex buffer. Because the

vertex buffer is bound independently from the element buffer, these eight element buffers may

be used with all np patches, and the penalty for over-specifying elements is negligible.

Patch neighborhoods are implicit. During rendering, a context-aware depth-first traversal

of the set of active patches is performed. The context of the traversal is the neighborhood of the

current patch. As is common in tree traversal, if a patch’s child reference is empty then that

patch is a leaf to be rendered. In the context-aware traversal, if a patch’s neighbor reference is

empty then that patch is adjacent to a lower-resolution patch (the neighbor traversal has “fallen

off the end” of the tree). The non-null neighbors are counted and the appropriate element buffer

is selected from the eight. The vertex buffer and element buffer are bound and rendered.
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3.4.2 Deferred texturing

As VRAM quantities have increased and off-screen rendering has become efficient, the

tactic of deferred shading has become common. Originally developed under the name “G-

buffering,” (37) a deferred shading renderer uses a pair of off-screen render targets in a render-

ing pre-pass which rasterizes objects without illuminating them. One render target receives the

diffuse color and the other receives the surface normal at each pixel.

Illumination is performed on-screen. The volume of influence of each light source is rendered,

and a fragment shader executes for each pixel of that volume. The shader references the color

and normal from the off-screen buffers, and accumulates the illuminated surface in the frame

buffer.

The advantage of deferred shading is that the complexity of the scene is isolated from the

complexity of the illumination. Given n objects and m light sources, traditional rendering

requires that each object be rendered with each light source, which is O(n · m). The deferred

approach renders all objects in the off-screen pass, and all light sources in the on-screen pass,

which is O(n + m), an efficiency gain for large m.

When composing disparate surface maps, it is advantageous to generalize this concept. We

do not require many light sources per planet, we require many image maps, and we do not

want to re-render our planet for each. So the initial deferred texturing pass begins by rendering

the triangulated geometry of the planet and writing the texture coordinates themselves to an

off-screen 4-channel 32-bit floating point render target as (θ, φ, n̄x, n̄z). See Figure 38.
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Note, this is the only time 3D geometry is drawn, and all other rendering is performed in

screen space.

38: The texture coordinate buffer showing θ in red and φ in green (scaled by 100 for visibility)
for each point on the surface of the planet.

3.4.3 Surface map accumulation

Just as height maps of arbitrary projection and type are adaptively composed as images

during geometry displacement (Section 3.3.6), so too are surface maps composed during ren-

dering.

The bounding volume of a given surface map is rendered to an off-screen buffer, triggering

a shader at each fragment. For a given fragment, the texture coordinate is taken from the

buffer produced in the previous step. Spherically projected surface maps derive their texture
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coordinate from θ and φ while polar projected surface maps use n̄x and n̄y, computing n̄y =

√

1 − n̄2
x − n̄2

z if necessary.

In addition to these, the depth buffer gives the distance to the fragment, which may be

combined with the view projection matrix to determine its eye-space 3D coordinate. This coor-

dinate may be transformed in a variety of ways enabling, for example, a perspective-projected

surface map such as a landscape photograph to be correctly and adaptively applied.

Texture quality is computed as before, and the surface map is biased and blended with

the accumulation buffer. Figure 39 shows the accumulated normal maps of the scene shown in

Figure 36. Figure 40 shows the accumulated diffuse color maps.

39: The normal accumulation buffer
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40: The diffuse color accumulation buffer

There is limitless potential in this phase. It is here that color space transformations may be

made, isolated channels from unregistered data sets may be combined, and time-varying data

may be interpolated. All of these may be done without regard to the underlying geometric

complexity of the scene. Because all composition is performed in a homogeneous texture space

at the native resolution of the output device, no discontinuity will appear.

3.4.4 Output

Given accumulations of all relevant surface quantities mapped onto terrain geometry in

screen space, the production of the final on-screen image is trivial. Figure 41 shows the com-

position of all data processed thus far. Geometry is colored and illuminated using the diffuse

and normal buffers, and atmospheric scattering is applied. Other effects may be included here,

such as high-dynamic-range tone mapping, spherical correction for dome display, and image

interleaving for autostereo display.
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Figure 42 reviews each of the steps described in this section. All six images show the same

field of view, in the order of pipeline execution.

41: All buffers composed and illuminated with atmosphere.
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42: A review of the composition process. From the top-left: the CPU-generated patches, the
GPU-displaced tessellation, the deferred texture buffer, the normal accumulation buffer, the
diffuse accumulation buffer, and the final image.



CHAPTER 4

COMPOSITION OPERATIONS

The true value of this approach to the display of height map and surface map data is that it

provides a number of opportunities for on-the-fly data manipulation. Having established that

arbitrary juxtaposition, weighting, and blending of both height and surface data are possible

in real-time, a number of useful techniques follow immediately. The following sections describe

some of these. In all cases, the displayed figures were rendered by the implementation of this

approach.

In an effort to make the display of the effects this method concrete and clear, this chapter

employs the false-data example planet shown in Figure 43. All of these figures in this chapter

were rendered using the implementation of the approach. The false data exaggerate the issues

of sampling and scale that this work focuses upon. This planet was generated using 3D simplex

noise (38), giving a magnified height field. As an entity independent of data sampling, the

simplex noise planet was “observed” using a variety of projections and resolutions in order

to model the variance among data sets of real planets. A color map with a high-contrast,

low-resolution contour line was generated from the sampled height maps, and is drawn without

linear filtering so that non-uniform data sampling is made apparent in the shape of the rendered

texels.

70
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43: The 3D simplex noise planetary height map with normal and diffuse color maps, used for
all subsequent figures.

4.1 Projection Quality Adaptation

4.1.1 Background

Planetary data are most often presented using spherically projected images. The x axis of

the image maps directly onto longitude, and the y axis maps directly onto latitude. Image axes

map onto the sphere as in 44a. The Shuttle Radar Topography Mission (SRTM) (25) data set,

a 1-arc-second height map of the Earth, is a common example of a spherical data set. The

Shuttle’s orbit limits the extent of this data set to approximately 60◦ above and below the

equator, and the spherical projection is optimal.

However, consider Blue Marble Next Generation (BMNG) (22), the familiar mosaic of color

Earth imagery. It too is spherically projected, but extends all the way to the poles. Let us
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review Section 2.8.1: Spherical projection suffers at the poles, where all lines of longitude, and

thus all columns of image data, converge. Pixels become compressed along the x axis, while

retaining their size along y. The visual effect of this is a radial blur centered at the pole. This

anisotropic sampling also imposes a significant data access penalty, as large quantities of source

data (the entire width of the source image) must be accessed when rendering the pole. This

taxes VRAM utilization and may cause data caches to thrash. Bad polar sampling is extremely

common in planetary data visualization.

(a) Spherical pro-
jection

(b) Polar projec-
tion

44: Common planetary projection types.

The correct solution for polar rendering is to use polar-projected source data, as in 44b,

where the sampling of the source most closely matches the sampling of the rendered image.

The Landsat Image Mosaic of Antarctica (LIMA) (27) is an example of a high-resolution data

set presented with polar projection. In particular, geoscientists at the Antarctic Geospatial
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Information Center (AGIC) at the University of Minnesota have specific need for the means to

interactively compose large quantities of high-resolution localized data near Earth’s south pole

and to visualize these data in the context of Earth as a whole.

To render an entire planet with uniform sampling, both spherical and polar projections

are required. Planetary data sets providing both of these are rare, but the Mars Orbiter Laser

Altimeter (MOLA) (26) data set is one example. It provides spherical projection of Mars height

data up to 88◦ from the equator, filling the gap at each pole using data with polar projection.

45: The spherical projection of the diffuse color of the example planet. The marked region
corresponds to Figure 48.

Given both spherical and polar data, we can produce uniform sampling planet-wide using

terrain composition. To make this process concrete, let us return to the example planet. Fig-

ure 45 shows the spherical projection of its surface color map. While the examples here show

only the color map, the uniform handling of height and surface data enabled by this method
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extend this discussion to terrain geometry as well as any other surface mapped quantities,

including the normal maps used to produce these figures.

(a) Spherical (b) Polar

46: The south pole of the example planet, showing spherical (a) and polar (b) data mapped
onto the sphere, contrasting the data sampling uniformity of each.

46a shows the south pole. The small contoured region there is stretched across the entire

bottom of Figure 45. We see the extremely non-uniform sampling resulting from the direct

mapping of that image onto the sphere. Texels are compressed longitudinally, but not latitudi-

nally. Optimal output texels should be square to properly represent the square samples of the

source data.

So, let us introduce the polar projection of the surface color map, as shown in Figure 47.

46b shows this image mapped onto the sphere. Contrast the uniformly-shaped pixels of 46b

with the stretched pixels of 46a.
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(a) North (b) South

47: Polar projection of the diffuse color of the example planet. The marked region corresponds
to Figure 46.

While polar data map cleanly at the pole, sampling suffers elsewhere. Contrast the unifor-

mity of the spherical data near the equator, shown in 48a, with the non-uniform polar data at

the same location in 48b.

4.1.2 Implementation

To produce a uniform sampling across the entire planet one must blend the spherical, north

polar, and south polar data sets. This blending follows immediately from the accumulation

mechanism described in Section 3.4.3. The only open question is choosing the weights of that

blend. There are alternative approaches here.

The figures in this document use an extremely straightforward approach: cubic interpola-

tion over distance. Figure 49 shows each of the three weighted terms separately, with their

composition shown the right. In general, the weights need not add up to one. While (x, y, z)

vector or (r, g, b) color data are accumulated in the red, green, and blue channels of the buffer,
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(a) Spherical (b) Polar

48: A region near the equator, showing spherical (a) and polar (b) data mapped onto the
sphere, contrasting the data sampling uniformity of each.

the weights are accumulated in the alpha channel. The sum of the weights is then used to

normalize the RGB value upon final rendering.

49: The cubic-weighted contributions of spherical, north polar, and south polar projected
height and color data to the final planet.

The straightforward blending over distance in this example depends upon the use of spherical

and polar projection. Arbitrary projections including orthogonal and perspective projection
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may also be accommodated using a more powerful weighting function based upon screen-space

derivatives.

Let (u, v) be the texture coordinate computed as a function of the inputs (θ, φ, n̄x, n̄z) taken

from the deferred texture buffer (Section 3.4.2). GLSL defines functions dFdx and dFdy giving

the derivative of any GLSL variable with respect to the x and y axes of the target frame buffer,

computed using forward or backward differencing. The sampling uniformity of a texel k may

be computed as the ratio of the magnitudes of the gradients along each texture axis.

k =

√

dFdx(u)2 + dFdy(u)2

dFdx(v)2 + dFdy(v)2

The following function computes a weighting value α in [0, 1] where texels mapping to

squares in the output give 1 and texels mapping anisotropically to n× 1 or 1×n in the output

give 0.

α = 1 −

∣

∣

∣

∣

log k

log n

∣

∣

∣

∣

The n parameter is a configurable quality coefficient. Setting n = 2 gives an extremely

aggressive isotropy bias that allows only square pixels to make significant contribution to the

accumulation. Depending on the degree of source data over-lap, this may or may not be

desirable. It will favor data viewed face-on and bias data mapped, for example, to the side of

a mountain. For this reason, a less aggressive bias is usually preferable.
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This weighting function is independent of the nature of the projection, and thus it may be

used to blend arbitrarily projected data values on the basis of the quality of their projection

on a per-texel basis. Applied during the surface accumulation phase (Section 3.4.3) it produces

effects such as that shown in Figure 49 automatically.

Applied during the geometry displacement phase (Section 3.3.6), it enables the adaptive

composition of height values, giving high quality geometry planet-wide. However, a bit of

extra work is required. The layout of the geometry image buffer is logical, rather than spatial,

so neighboring vertices are not adjacent in the buffer, the GPU’s automatic finite difference

derivatives are not valid, and texture coordinate derivatives must be explicitly computed during

geometry generation.

4.2 Data Overlay

4.2.1 Background

Terrain visualization frequently requires the overlay of unregistered height and surface maps

of differing resolution and boundary. For example, one might need to view a high-res LIDAR

height map of a fault in the context of the terrain where it lies.

My collaborators include astronomers at Chicago’s Adler Planetarium. As the Public

Outreach and Education center for NASA’s Lunar Reconnaissance Orbiter Camera mission

(LROC), the Adler will receive 62TB of half-meter lunar imagery, from launch in early 2009

through the next year. Our goal is to bring these data to the public via real-time 3D inter-

active experiences using the Adler’s “Moon Wall” tiled display and StarRider 55-foot digital

dome theater. To create a unique public interaction with these data, Adler astronomers wish
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to provide it as fresh as is possible. To form a coherent whole, gaps in coverage must be sealed

with pre-existing lunar data, such as the Clementine and Lunar Orbiter data sets.

These examples follow straightforwardly from terrain composition. To show this, we may

generate a projection of the sample planet similar to raw LROC output. A narrow strip runs

across the planet, as though it followed the ground trace of a satellite in an inclined orbit. The

color map appears in Figure 50. It is outlined in place in 51a.

50: A strip of local high-resolution data, as collected by a satellite in an inclined orbit.

4.2.2 Implementation

Height and surface maps are accumulated normally, but care is taken to clamp to the

border of the overlaid input. Source fragments falling outside of the image are either discarded

or masked away. 52a shows a close-up view of the border of the overlaid strip. Contrast the

sampling of the contour line, and note the discontinuity. If this abruptness is undesirable,

then a blend function may be produced procedurally in the accumulation fragment shader, or

encoded in the alpha channel of the image, as shown in 52b. This masking is fully generalized,

and overlaid data need not have rectangular boundary.
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(a) With boundary indi-
cated

(b) Composed normally

51: A strip of local high-resolution data composed with global low-resolution data.

This technique may be optimized by confining rendering to the boundary of the overlaid data

in the target buffer. When accumulating surface maps, one need draw only the screen-space

shape filling the boundary. If this boundary is complex or expensive to compute, a screen-space

rectangle or eye-space bounding volume will suffice. This results in fewer fragment operations

than a full-screen pass. Similarly, when accumulating height maps, one need render only to

those scan-lines encoding the surface patches touched by the overlay.

4.3 Level-of-detail and Paging

Planetary-scale data sets continue to grow in extent and increase in resolution. Most data

sets in use today far exceed the size of the available RAM or video RAM of the hardware

used to display them. To accommodate out-of-core data in real time, a caching mechanism

must be used. Caching mechanisms handle data in pages, where a page is an atomic accessible

subset of the data. A 2D data set such as a height or surface map is divided along a uniform

grid, giving square pages. The reassembly of these data pages into a uniform on-screen whole
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(a) Unblended (b) Blended

52: A close-up view of the border of the high-resolution strip of local data. Pixel size indicates
sampling and resolution. The insets magnify the area of interest.

follows immediately from the height map and surface map composition capability of the terrain

composition algorithm.

4.3.1 Background

Data pages have a number of properties. The most significant characteristic of a page is

its size. A given data set may divided into a large number of small pages, or a small number

of large pages. Page size selection reveals the same type of trade-off as geometry batching

(Section 2.4.1), and as such it is a choice necessarily guided by performance testing.

Small pages (approaching a single pixel in the limit) allow the application to access precisely

the data that it requires, with low latency. However, if these pages are too small then the run-

time overhead of page acquisition becomes a bottleneck.
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Large pages (approaching the size of the full data set in the limit) utilize bandwidth effi-

ciently, but if they are too large then latency is high and both bandwidth and local storage go

to waste, undermining the effectiveness of the cache hierarchy.

Because data is displayed at a variety of scales, a mipmapped approach (Section 2.4.2) to

paging is necessary. If the planet is seen from afar then only low-resolution sub-sampled pages

need be accessed. Just as with mipmapping, each level of the page “pyramid” gives four times

the resolution (two-by-two) of the previous, with four times the total size, and thus four times

the number of pages.

Finally, pages must have information about their neighbors. If the available data resolution

does not meet the application’s required resolution, then pixel values are interpolated by linear

magnification filtering. If interpolation beyond the edge of a page should be required, then

pixels of the adjacent page are needed. Rather than mandate that page be loaded, the edge

pixels of all neighboring pages are appended. So a 1000 × 1000 pixel page has a true size of

1002 × 1002, as it includes one line of pixels from each of the four pages adjacent to it.

Large NASA and USGS data such as SRTM (25) and BMNG (22) are distributed in page

form. SRTM pages are 1◦ square, inclusive, giving 3601 × 3601 pages for 1-arc-second US

data and 1201 × 1201 for 3-arc-second International data. BMNG pages are 21600 × 21600.

Testing with current hardware has shown an optimal page size around 500 × 500. OpenGL

texturing prefers a power-of-two size, and this gives a useful page size of 512 × 512. Clearly,

both SRTM and BMNG pages are far too large for real-time use, and they must be merged and
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re-sliced. This process is straightforward, and can be performed by a variety of off-the-shelf

tools, including Global Mapper (39).

4.3.2 Implementation

The implementation of the data paging mechanism uses a variant on the technique developed

by Lefohn et al (40) to reference very high-resolution shadow maps. In this approach, texture

coordinates do not map directly onto texels, instead they map onto a mipmap index texture

which contains references into a tile cache texture.

The cache texture behaves as a normal 2D image. It is an n×m atlas of all currently-loaded

data pages. Given a page size p, its size is p · n× p ·m. The maximum texture size of the GPU

places an upper bound on n and m. Current hardware supports textures as large as 8192 pixels

square, and recent hardware supports 4096 pixels. In the case of p = 512 we select n = 16 and

m = 8, for a total of 128 cache lines. The parameters n and m serve to balance quality versus

performance, as needed.

The index texture behaves as a normal, unfiltered 2D mipmap. Rather than giving color

(r, g, b), this texture gives coordinates (r, c, l). These are the cache texture row r in [0, n) and

column c in [0, m) of the page of data for the given texture coordinate, with the level-of-detail

l of that page. The l parameter is used to recognize the presence of a lower-resolution page to

serve as proxy while the page of the desired resolution is being loaded. This virtual texture look-

up process is performed by a GPU fragment shader, which may implement any mipmap access

policy. The figures and performance measures shown in this document use a fragment shader
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implementation of trilinear mipmapping, which produces an optimal sampling of referenced

data based upon texture coordinate derivatives.

The CPU maintains the state of both the index and cache textures. Each data set in use

is represented by a quad-tree of page references. A rectangular data set will result in a full

quad-tree, but fullness is not necessary. The National Elevation Database (41), which depicts

U.S. territories all over the world at a resolution of one arcsecond, is an example of a sparse

quad-tree.

Each page of this quad-tree has a rectangular shell bounding volume similar to that shown

in Figure 29. The solid angle subtended by this shell at the current view point, combined

with the resolution and solid angle of the display itself, allows the ratio of texels per pixel

to be computed for each page. If this ratio meets a cutoff, then the corresponding page is

asynchronously uploaded to the cache texture using a pixel buffer object. The page’s cache

location is uploaded to the index texture in both its correct position, and any applicable proxy

positions.

When a data set is applied, it is rendered as a single rectangle. During surface map rendering,

a screen-sized rectangle is drawn. In the case of height map accumulation, the rendered rectangle

covers the geometry accumulation buffer as shown in Figure 34.

Figure 53 shows a view of the southwest United States with NED overlaid atop BMNG

and SRTM, a total of 115GB of color, normal, and height data. In Figure 54 we see the

16×8-page RGB color cache used to render the scene. Note that both diffuse color and normal

maps are 8-bit 3-component images, and they share this cache. Figure 55 shows the same
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view, with each page colored by its depth in the mipmap hierarchy. The smooth gradiation in

color indicates the distance-appropriate transition in data resolution resulting from tri-linear

mipmapping computed using screen-space derivatives. In the performance analysis of Chapter 5

we will take a detailed look at this mechanism in action using this same 115GB of tri-linearly-

mipmapped real-world data.

53: A view of the U.S. showing the NED, BMNG, and SRTM data sets, totaling 115GB.
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54: The 16 × 8 page cache used to render Figure 53 showing both diffuse color and normal
map data pages.

55: Figure 53 with each page of data colored by mipmap hierarchy depth, showing the smooth
output of tri-linear mipmapping.



CHAPTER 5

IMPLEMENTATION AND RESULTS

5.1 Performance Measurement

In an effort to quantify the performance of the terrain composition algorithm and understand

the variance in performance with different quality settings, let us define a benchmark. A scripted

4800-frame animation begins with a wide view of the Earth, moves in to a close-up view of

Mount Rainier, and the moves back to the wide view along the same path. See Figure 56. Each

execution of this benchmark begins with an empty data cache, and data are loaded as needed

during the move in. On the move out, much of the needed data remains in the cache. This

allows us to contrast the performance of the system under both I/O intensive and non-intensive

circumstances. All frame time measurements are averaged over 10 frames, giving 480 data

points per run.

The test configuration involves multiple gigapixel-scale data sets, paged and cached as de-

scribed in Section 4.3, using a data overlay composition as described in Section 4.2. The base

layer is the Shuttle Radar Topography Mission (SRTM) (25) data set covering the Earth at a

resolution of 30 arcseconds, giving 3.5 gigapixels of 16-bit height data. The National Eleva-

tion Database (NED) (41) is overlaid atop this. NED covers all U.S. territory at a resolution

of one arcsecond, giving 17 gigapixels of 16-bit height data. A 24-bit normal map is derived

from each of these, enabling per-pixel illumination. Finally, the Blue Marble Next Genera-

87
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56: Frames 100 (a), 1600 (b), 2200 (c), and 2400 (d) of the 4800-frame benchmark animation.

tion (BMNG) (22) data set provides 24-bit RGB color covering the Earth at 30 arcseconds, for

another 3.5 gigapixels.

In total, this is 115GB of raw data. Each of these data sets was prepared using Global

Mapper. The raw data were received from AGIC in the form of Global Mapper project files,

which were loaded and exported as tiles. Some difficulty was encountered when Microsoft

Windows’ filesystem limitations were exceeded. The maximum number of files allowed in a

single directory was insufficient. To resolve this, Global Mapper was used to export 5100×5100

tiles, which were then further subdivided to 510 × 510 by a custom Linux command-line tool.

Tile boarders were then added to these, and the mipmap hierarchy was generated by another

custom command-line tool. In the event that the number of tiles does not exceed Windows’

limits, Global Mapper would generate the borders and mipmaps itself. This process produced
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189, 000 mipmapped tiles, each 512 pixels square. These tiles were compressed to the PNG

form, consuming 38GB of disk space.

The input data types allowed by this process include 8, 16, and 32-bit signed and unsigned

integers, as well as floating point values. Images may have between one and four channels. Any

image data type loaded and stored by Global Mapper is straightforwardly adaptable to this

implementation. Global Mapper does allow a variety of vector data types which the terrain

composition algorithm does not consider, though the implementation trivially allows such data

to be rendered with its output.

5.1.1 Baseline performance

The primary test hardware is a dual AMD Opteron 250 at 2.4GHz with 4GB of RAM and

an NVIDIA GeForce 8800 GTX. The baseline run of this configuration has a resolution of

1024 × 768, a refinement depth d = 4, a patch seed count np = 256. Data caches allow for 128

pages of 16-bit height data and 128 pages of 24-bit color and normal data. Results are shown

in Figure 57.

As expected, we see many page faults on the move in, and only a few on the move out.

There is a clear correlation between frame time and page fault count, indicating the imperfect

independence of the render thread from data loader threads due to communication overhead.

On the move out we see level performance around 6ms per frame. This demonstrates the

algorithm’s consistent throughput and performance independent of proximity to the planet.
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57: Baseline performance at 1024 × 768 (d = 4, np = 256) measured over time. Frame time
(ms) is shown in black and page fault count in green. Marked frames (a), (b), (c), and (d) refer
to Figure 56. Note the generally level trend, with disturbances correlating frame time with
page faults.

Note that all graphs presented here use the same vertical scaling, where the top of the

graph represents a 30Hz refresh rate, and the middle of the graph represents a 60Hz refresh

rate. Figure 57 shows performance comfortably better than 60Hz throughout the run.

5.1.2 Variance with resolution

Now let us vary the resolution of the display without varying the complexity of the geometry.

The results are shown in Figure 58. Decreasing the display resolution to 320 × 240 (shown in

blue) greatly reduces both fragment processing overhead and data demand. This reveals the

combined overhead of the visibility and granularity phase (Section 3.2) and geometry generation

phase (Section 3.3). We see performance level at 5ms. This is the major fraction of the 6ms

performance at 1024 × 768 (again in black), but it is fortunately a constant dependant only

upon geometric complexity.
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The primary impact of increasing the display resolution to 1920 × 1080 (Figure 58 in red)

is a higher demand for data. In this case, we see rough performance on the move out due to

the reloading of low-resolution overview pages ejected during the high-resolution Mount Rainier

close-up.

We can still see a consistent minimum frame time of around 10ms in this circumstance, due

to fragment processing overhead. Given the assumption of 5ms of geometry overhead inferred

from the 320× 240 results, we see the increasing fragment cost match the geometry cost at this

resolution. As resolution increases from here, the balance tends toward fragment processing.

The important case of stereoscopic rendering sees a benefit here. A stereo display entails

the rendering of the scene once for each of the user’s two eyes. This effectively doubles the

resolution of the display, and we would see the frame time roughly double with this added

fragment load. However, because of the proximity of the user’s eyes, and the resulting overlap

between the two views, there is a great deal of data coherence between the two renderings. The

data demand for two eyes would match that for a single eye, and the increase in resolution due

to stereoscopic rendering would not incur the same I/O penalty as an equivalent doubling in

monoscopic resolution.

5.1.3 Variance with geometry

Now let us vary the parameters that determine geometric complexity while holding the

display resolution constant at 1024 × 768. First, double the number of seed patches from

np = 256 to np = 512 while holding the refinement depth d constant. This has the effect of
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58: Frame time (ms) measured over time at 1024 × 768 in black, at 320 × 240 in blue, and
1920× 1080 in red. Frame time varies with pixel count, and increased resolution incurs greater
data demand.

doubling the number of rendered vertices from 39, 168 to 78, 336 (Section 3.2). We see this

doubling borne out in Figure 59 with the frame time graph translated upward.

Orthogonally to this, increase the refinement depth from d = 4 to d = 5 while holding the

seed patch count np constant. This has the effect of increasing the number of vertices 3.6 times,

from 39, 168 to 143, 616 (Section 3.3). Again, we see the impact of this clearly in Figure 60.

If we infer from Figure 58 that 1ms of the frame time may be attributed to the overhead of

rendering 1024 × 768 pixels, then the remaining 17ms of d = 5 frame time is quite close to 3.6

times the 5ms of d = 4 frame time.

It is worth noting that an increase in d quickly increases the vertex count, but does so

without CPU cost. In contrast, when doubling np, we double the CPU’s geometry load in

addition to doubling the vertex count. This incurs twice the visibility processing and twice the



93

0 500 1000 1500 2000 2500 3000 3500 4000 4500

5

10

15

20

25

30

Rendered Frame Number

F
ra
m
e
 T
im
e
 (
m
s)

(b)(a) (d)(c)

59: Frame time (ms) measured over time at 1024 × 768 with seed patch count np = 256 in
black and np = 512 in orange. Doubling the geometry doubles the frame time.

number of rendering batches. CPU monitoring shows the load of the rendering thread to be

negligible. However, one can imagine a circumstance where careful manipulation of np and d

may tune the CPU-GPU balance and improve throughput.

5.1.4 Variance with data

The data caching mechanism ensures that the total size of a given data set does not impact

general performance. However, data layering does incur overdraw, so performance does vary

with the total number of data sets composed. To quantify this, we run the benchmark without

the NED data set overlaid. This removes both the NED height map contribution from the

terrain geometry and the NED normal map contribution from the normal buffer accumulation.

Figure 58 showed that fragment processing is not a serious bottleneck at 1024 × 768, so to

see a distinction, we perform this test at 1920 × 1080. Figure 61 shows this result in blue. As
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60: Frame time (ms) measured over time at 1024× 768 with patch subdivision depth d = 4 in
black and d = 5 in pink. The 3.6× increase in geometry is seen in the frame time.

expected, the SRTM-only frame time is reduced and performance is more consistent due to the

lower data demand.

To see the impact of height map overdraw, apply the NED height map atop the SRTM

without the NED normal map. This is shown in Figure 61 in green. While these results are

rougher due to data demand, the overall trend is not significantly slower than the SRTM-only

performance. This indicates that the costs of height data resampling and geometry displacement

are negligible.

Finally, to see the impact of surface map overdraw, apply the NED normal map atop the

SRTM without the NED height map. This is shown in red. Surface map overdraw incurs the

rendering of another full-screen rectangle, which results in an overall increase in frame time of

2ms.
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61: Frame time (ms) measured over time at 1920×1080 with SRTM only in blue, SRTM+NED
height in green, and SRTM+NED normal in red. Additional data incurs only minor penalty.

5.1.5 Performance Qualities

These results reveal a balanced pipeline at the baseline configuration. Frame time increases

with either an increase in geometry complexity or an increase in display resolution. This balance

is in contrast with many of the approaches to terrain rendering presented in the literature.

Triangle-pinching CPU-based algorithms in the style of ROAM (4) tend toward a geometric

bottleneck, and well-batched GPU-based algorithms such as geomipmapping (6) lead to a pixel

bottleneck. By offloading geometry processing to the GPU, this approach provides a mechanism

to distribute the terrain processing cost more uniformly.

However, the situation becomes more complex when we look to the practice of multi-GPU

rendering. PC motherboards with multiple PCI Express slots accepting more than one video

board are common, as are single-slot video boards with multiple GPUs. These configurations re-
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quire special attention, as independent GPUs have separate local VRAMs. Intermediate results,

such as generated geometry buffers and deferred shading buffers, may require synchronization.

It would be careless to overlook these issues, so Figure 62 displays the results of early testing

of the algorithm in a multi-GPU environment. The baseline GeForce 8800 GTX is shown in

black, as above. Along side it we see the performance of an NVIDIA GeForce 9800 GX2, which

leaves a number of questions unanswered.
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62: Multi-GPU performance comparison: single-GPU shown in black, multi-GPU in single
mode in red, alternate-frame in green, split-frame in blue. The pathological response warrants
further investigation.

The performance of the 9800 with its multi-GPU capability disabled is shown in red. Frame

time is longer by a consistent amount, indicating similar I/O response but decreased rendering

throughput. Green shows the 9800 in alternate frame rendering (AFR) mode. In AFR mode,
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one GPU renders odd-numbered frames, while the other renders even-numbered frames. Despite

the fact that the algorithm introduces no inter-frame data dependencies, the performance is

radically altered. Blue shows the 9800 in split frame rendering (SFR) mode. In SFR mode,

one GPU renders the top half of each frame, while the other renders the bottom half. Due to

the amount of intra-frame data dependency, one would expect this mode to perform the worst,

and it does.

However, both AFR and SRF modes suffer from pathologically bad I/O response time.

The results of the first half of the benchmark are effectively unusable. Frame time eventually

levels off at 23ms per frame late in the non-I/O-intensive second half of the benchmark. This

performance degradation could be explained by the synchronization penalty, but we would

expect this to begin around frame 2500. Its slow crawl from 23ms up to and beyond 30ms

during this period remains unexplained.

In the context of standard forward rendering, the current hardware industry trend toward

multi-GPU configurations is clearly beneficial. However, given the tendency of modern GPU

algorithms to utilize render-to-texture and other data-dependent techniques, the results shown

here are troubling. With a conflict between the functionality that the software uses, and the

functionality that the hardware provides, an important area for future work is revealed. Until

such issues are resolved, we must utilize the parallel rendering capability of the implementation

to treat multiple GPUs as wholly separate renderers, each with an independant framebuffer.



98

5.2 Displays and installations

The parallel-rendering implementation of the scalable terrain composer has been adapted

to a variety of displays and has seen use in a number of demonstrations. Each of these uses the

BMNG (22) surface map atop the SRTM (25) height map, both at a resolution of 86400×43200.

63: The 60-panel VarrierTM at Calit2

The first installation, shown in Figure 63 used the 60-panel VarrierTM autostereoscopic

virtual reality display (42) at Calit2 on the campus of UCSD.

This display is driven by 15 rendering nodes, each with a pair of NVIDIA GeForce 7900GTXs

driving four 1600 × 1200 panels, giving a total resolution of 50 megapixels per eye.

This is a challenging system, as each render node must handle eight distinct view frusta and

7 megapixels of sub-pixel autostereo interleaving (43).
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64: The StarCAVE at Calit2

Also at Calit2 is the StarCAVE, a 15-screen cylindrical polarized passive stereo VR display,

shown in Figure 64. Driven by 15 render nodes, each with an NVIDIA Quadro 5600 driving

two projectors at 1920 × 1080, this system has high pixel throughput, and runs very well.

The Space Visualization Lab at Chicago’s Adler Planetarium has also supported the devel-

opment and use of this software. The Mars Transporter is on exhibit at the Adler Astronomy

Museum, and as the usability of the terrain composer improves it will act as a drop-in replace-

ment, significantly expanding the quality, scope, and flexibility of that experience. Until that

time, the implementation is on display on the SVL’s prototype Transporter, shown in Figure 65.

A much more ambitious demonstration has also been developmented at the Adler. SVL staff

have installed a small cluster of 3 render nodes driving the six inputs to the DeFiniti theater, a
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65: The Transporter prototype in the Space Visualization Lab at the Adler Planetarium

55-foot digital dome seating around 200. Each node has a pair of NVIDIA GeForce 8800GTXs

each driving one 1600 × 1200 projector.

The challenge lies in pre-distorting the rendered image to map correctly onto the spherical

surface of the display, and blending adjacent images to obscure the seams between projectors.

A GPU-based solution to this problem has been developed and tested in place, as shown

in Figure 66. The performance penalty of spherical correction and blending is found to be

negligible.

Calit2’s OptIPortable display has taken this software on the road. 12 render nodes, each

with an NVIDIA GeForce 8600GT drive 15 panels at 1920×1080. This was demonstrated in the

SDSC/Calit2/EVL booth at Supercomputing ’07, as shown in Figure 67. It was also demon-

strated in the NSF booth at the 2008 meeting of the American Academy for the Advancement

of Science, Figure 68.
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66: The DeFiniti theater at the Adler Planetarium

67: The OptIPortable at Supercomputing ’07
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68: The OptIPortable at AAAS ’08



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This work has demonstrated a mechanism for the real-time manipulation and display of

very large scale terrain height and surface data. Beyond simply rendering terrain, this mech-

anism affords opportunities to combine data in powerful ways, bringing together disparate

planetary-scale data sets smoothly and efficiently, and adapting to produce a uniform compos-

ite visualization of them.

This discussion has detailed a number of areas where future work is required. In particular,

the analysis of error and the effects of the non-uniform sampling of height data are critical to

the acceptence of the algorithm as a reliable tool. In addition, while the generality of terrain

composition provides a path to an elegant implementation of geomorphing, this has yet to

implemented. Finally, the adaptation of this highly-data-dependent technique to multi-GPU

environments will be increasingly significant as this hardware trend continues.

Despite these remaining issues, the established ability to perform arbitrary manipulation

and blending of planetary data has unlimited application. A number of further composition

operations have been proposed, and remain to be explored.

In particular, the effects of time-varying data will be tested. The ability to apply alpha

blending to height and surface data provides a means of interpolating between data sets rep-

resenting different points in time, both in geometry and in imagery. In this way, a smoothly-

animated approximation of time-varying data may be presented without popping from step to

103
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step. The twelve monthly versions of Blue Marble Next Generation are a prime example of a

data set that would benefit from this. The challenge arrises due to the doubling of data needed

to represent both the beginning and the end of the interpolation.

Also, layered data will be explored. This too is primarily a data scalability issue, but with

display and user interface issues involved. A straightforward presentation of layered data would

have upper layers occlude lower layers, so informative and efficient mechanisms for presenting

multiple simultaneous layers must be implemented. Meanwhile, an affordance by which the

user selects and peels away layered data must be devised. Examples of such layered data sets

include the ice surface and land of Antarctica, and the bathymetry beneath the surface of the

oceans.

Our partnerships with the Antarctic Geospatial Information Center (AGIC) and the Adler

Planetarium and Astronomy Museum will continue to drive the investigation into these types

of operations. Their access to new large-scale data sets will raise new requirements, leading to

as-yet-unforeseen formulations of terrain composition.
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Many inter-related planetary height map and surface image map data sets exist, and more

data are collected each day. Broad communities of scientists require tools to compose these data

interactively and explore them via real-time visualization. While related, these data sets are

often unregistered with one another, having different projection, resolution, format, and type.

I present a GPU-centric approach to the real-time composition and display of unregistered-but-

related planetary-scale data. This approach employs a GPGPU process to tessellate spherical

height fields. It uses a render-to-vertex-buffer technique to operate upon polygonal surface

meshes in image space, allowing geometry processes to be expressed in terms of image process-

ing. With height and surface map data processing unified in this fashion, a number of powerful

composition operations may be universally applied to both. Examples include adaptation to

non-uniform sampling due to projection, seamless blending of data of disparate resolution or

transformation regardless of boundary, and the smooth interpolation of levels of detail in both

geometry and imagery. Issues of scalability and precision are addressed, giving out-of-core

access to giga-pixel data sources, and correct rendering at sub-meter scales.


