
Multi-projector digital dome systems are
becoming commonplace, but real-time
software to drive them is not. The
majority of digital dome content is pre-
rendered, and existing real-time software
is largely proprietary and expensive.
Real-time visualization is a valued goal
as it enables a live planetarium show, an
adap t i ve and i n te rac t i ve v i s i t o r
experience, and rapid content creation.
Additionally, real-time systems reduce the
cost and complexity of back-end storage
and distribution of pre-rendered video.
Driving planetarium domes in real-time is
feasible today. The video game industry
has driven commodity graphics hardware
capability to incredible heights at
affordable prices, and this trend will
certainly continue for the foreseeable
future. Complex visualizations once
possible only with off-line rendering can
today be rendered at interactive rates. A
complete system to do so costs only a
few thousand dollars using off-the-shelf
hardware.
But the freely available software,
knowledge, and experience to support
this hardware capacity has yet to catch
up. In a continuing effort to exploit
opportunities enabled by powerful, new
hardware, the staff of the Space
Visualization Laboratory at the Adler
Planetarium and Astronomy Museum has
installed an inexpensive cluster of off-the-
shelf PCs in Adlerʼs full-dome theater.
With this installation, we are working to
implement solutions to the general
problems of real-time multi-projector
digital dome display, and to make them
freely available, as Open Source

software. We hope we can encourage
and assist others in the creation of new
dome software and in the adaptation of
existing visualizations to dome display.
Toward this end, we discuss techniques
for real-time dome rendering. We
enumerate a number of solutions to its
two major cha l lenges : spher ica l
correction and edge blending. Noting the
broad range of hardware in use today, we
review the evolution of technology that
made each technique possible.

Background
To render a real-time application to a
dome display, we must quantify the
domeʼs configuration. We assume one or
more projectors filling the surface of the
dome. Each projector is connected to one
of the video outputs of a PC host, or
cluster of hosts connected by a network.
Along with the dome radius, we require
the precise position and orientation of
each projector relative to the dome, as
well as the field-of-view of each. Finally,
we need some knowledge of how the
projector images overlap and how they
are to be trimmed and blended with one
another to obscure the seams between
them.
Real-time 3D Graphics
To make this discussion accessible, letʼs
review the fundamentals of real-time 3D
graphics. In its most basic form, real-time
3D imagery cons is ts o f ver t ices
connected to form triangles, which are
pixelated and colored, as in Figure 1.

Real-time Digital Dome Rendering
Techniques and Technologies
Robert Kooima, Doug Roberts, Mark SubbaRao

Figure 1: Real-time 3D elements: vertices,
triangles, and pixels.
All real-time 3D graphics are composed
of these few basic building blocks. While
some rendered objects—stars, clouds, or
galaxies—appear complex, these vertices
and triangles can always be found
underlying them.
The logical structure of a real-time
graphics processing unit (GPU) is shown
in Figure 2. An application enumerates
vertices in 3D space. The Vertex
Processing stage computes lighting
values and screen positions for each. The
Geometry Processing stage connects
these vertices into triangular geometric
primitives. The Primitive Rasterization
stage breaks each pr imit ive into
fragments (a.k.a pixels). Fragment
Processing combines each fragment with
a 2D image describing its color and
texture. Finally, fragments are written to
the frame buffer in video RAM (VRAM)
and appear on-screen.

Figure 2: The real-time 3D rendering pipeline.
OpenGL
GPU functionality is exposed by an
application programming interface (API).
OpenGL is the most widely used of these.
While its competitor, Microsoftʼs Direct3D,
sees wider usage in PC and XBox-based
game development, OpenGL is the only
cross-platform graphics API available.
Introduced in 1992, it sees widespread
use not only in gaming, but in CAD,
scientific visualization, and digital content
creation across Windows, Linux, and Mac
OS X.
The API specification is defined by the
OpenGL Architecture Review Board
(ARB) Working Group. As graphics
hardware evolves, the ARB extends and
revises the API.
The most significant change seen in
nearly 400 extensions, 9 major revisions,
and 16 years since the introduction of
OpenGL has been the evolution from
fixed functionality toward programmable
functionality. Refer again to Figure 2. The
ve r tex , geomet ry, and f ragmen t
processing segments were once fixed

hardware operations. Today, the API
represents these as programmable units.
The OpenGL Shading Language (GLSL)
is the ARB standard language for GPU
programming. It allows the application
developer to customize the action
performed by the hardware. Program
code written in GLSL is compiled by the
video driver and uploaded to the GPU, to
serve as one of the three functional
elements: vertex, geometry, or fragment
processing.
This capability has exposed incredible
flexibility and has initiated a fundamental
shift in the design of real-time 3D
algorithms. The programmable pipeline
proves especially useful in the realm of
real-time dome rendering, as it allows the
computational load of spherical correction
and edge blending to be offloaded from
the CPU to the GPU.

Spherical Correction
Real-time rendering is fundamentally
l inear. Perspective projection and
rasterization assume that the display is
flat. A straight line connecting 2 points in
3D space is rasterized as a straight line
of pixels in the 2D frame buffer.
Unfortunately, when projecting an image
onto a curved surface, this invariant is no
longer guaranteed. A straight line appears
straight only when viewed from the point
of projection. In the most general case,
both the point of projection and the
desired point of view may be positioned
anywhere in the dome. If one or both of
these do not lie at the center of the dome,
then a correction must be made.
The process of correcting a single point is
relatively intuitive. Imagine that the dome
is positioned like a camera within the
scene to be rendered. See Figure 3. With
the view point at V, point A falls on the
dome at I. But when displayed by a

projector positioned at P, a point falling on
the dome at I must instead be drawn at B.
The challenge lies in expressing this in
terms of the operations exposed by
OpenGL.

Figure 3: Spherical correction: given a
projector at P, a viewer at V, an object is
moved from A to B.
There are a number of approaches to this
problem, each with different strengths
and weaknesses. As with all real-time
graphics algorithms, these approaches
have evolved alongside the hardware that
enabled them.
Vertex correction
The simplest means of spherical
correction happens on the CPU. As the
application submits each vertex to the
GPU, it pre-distorts its position as
described above. The application must
cast a ray from the view point to the
scene vertex, and intersect the ray with
the surface of the dome. It then
determines where that intersection point
falls within the field of view of each
projector, and submits that point to the
GPU for rendering.
This technique received a significant
boost in 2001 with the release of the
NVIDIA GeForce 3, the first hardware
capable of programmable ver tex
processing. Vertex programming allowed
the correction to be performed by the
GPU, freeing the application to submit its
geometry normally, and even to preload

static geometry into VRAM. This author
applied the technique to the point-based
display of fluid flows on an Elumens
VisionDome V4. A real-time motion-
tracked view point and active stereo
projection led to a deeply immersive
virtual reality experience.
The flaw in this approach is that the
correction is performed only at the
vertices. Edges connecting these vertices
are still linearly rasterized. So, this
approach works well when rendering
points or finely tessellated models, but
fails for large triangles and long lines.
Primitive correction
Given spherically corrected vertices,
further action can be taken to account for
the errors that occur during rasterization.
If the edge connecting two vertices is
distorted, then the distortion will be
greatest at the midpoint. Compute the
distance between this midpoint and the
spherically corrected midpoint. If the
distance is large, then subdivide the edge
by cutting the triangular primitive in half.
Recursively apply the same algorithm to
the edges of these sub-primitives, and
halt when the magnitude of the distortion
is tolerable. The result will be a re-
tessellation of the scene geometry,
adapted to the dome and view position.
This was the approach taken by Elumensʼ
SPI API in 2001. The SPI API intercepted
all calls to the OpenGL API and
performed the adaptive subdivision
automatically. While it worked correctly, it
performed badly, as the quantity of
geometry tended to explode and
overwhelm the GPUʼs vertex capacity.
In 2006 this approach received new life
with the release of the NVIDIA GeForce
8800, the first hardware to expose
programmable geometry processing. This
allows the primitive subdivision process

to be offloaded to the GPU, again freeing
the application to manage its geometry
normally and eliminating the performance
bottleneck.
Fragment correction
Common practice in dome rendering
focuses on fragment-level spherical
correction techniques. These approaches
post-process the rendered image of the
scene. The output of the scene rendering
pass is used as the input to a spherical
correction rendering pass. In practice,
this means that an output frame buffer
must be converted to an input texture.
Throughout the history of OpenGL there
have been multiple techniques to
accomplish this conversion. Early
applications simply copied the pixel data
in the frame buffer into the texture buffer.
This approach suffered from poor
performance due to the data copy.
The solution to these performance woes
would be the ability to render directly into
a texture map. The P-Buffer and render-
to-texture specifications provided this
capability in 2001, though differences
between windowing APIs precluded
cross-platform compatibility. After much
deliberation, the OpenGL ARB finally
approved the frame buffer object
specification in 2005, which continues to
provide an optimal, cross-platform
solution today.
Fixed-function Fragment Correction
The oldest and most common fragment-
level spherical correction method
p reda tes the ava i l ab i l i t y o f t he
programmable pipeline. It relies only on
the availability of cube map textures, a
mechanism approved by the ARB in 1999
and widely supported by the hardware of
that day, including SGIʼs high-end
workstations and NVIDIAʼs consumer-
grade GeForce 256.

A cube map texture consists of 6 square
images corresponding to the 6 faces of a
unit cube centered at the origin. While the
pixels of a normal 2D texture are indexed
using a 2D position (u, v), the pixels of a
cube map are indexed using a 3D vector
(x, y, z). This vector is cast from the origin
and strikes the cube on one of its 6 sides.
The intersection gives a 2D reference into
one of the 6 images, which is then
indexed normally.
If we logically embed the geometry of a
dome within the volume of such a cube,
as in Figure 4, then the cube map lookup
mechanism begins to resemble the
reverse of the approach to spherical
correction shown in Figure 3.

Figure 4: The surface of a dome embedded
within a cube map.
We begin by rendering the scene once
for each side of the cube. See Figure 5.
The perspective projection for each
rendering is centered at the view point,
and encompasses the target cube face.
Note that the view point need not be at
the center of the dome. An offset view
point merely entails the application of an
off-axis projection. Once rendered, the
image of the scene is moved from the
output frame buffer to the cube map
texture buffer, as described above.

Figure 5: Five sides of a cube map showing
Adlerʼs Mars Transporter Exhibit. The
dimmed areas fall outside of the dome view.
Finally, to generate the spherically correct
on-screen image for display by a given
projector, we simply render a mesh of
tr iangles representing the curved
geometry of the dome itself, as seen from
the perspective of that projector. The 3D
position of each vertex of the dome gives
the desired cube map texture look-up
vector. The resulting image appears
correct from the defined view point.
Programmable Fragment Correction
While the cube-map-based fixed-function
approach works well, it does require
multiple scene rendering passes to fill
multiple sides of the cube map. An
optimal implementation renders only
those cube map sides that are visible to a
given projector, but this can still entail as
many as 3 passes over the scene. Also,
the correction is performed for each
vertex of the dome mesh and the result is
linearly interpolated during rasterization.
While this error is independent of scene
complexity, a low-resolution mesh can
produce divergence on the scale of
multiple pixels.

Given fragment programming capability,
the texture look-up may be handled more
delicately. A single 2D texture per
projector will suffice in all cases, and the
correction may be performed per-
fragment rather than per-vertex. Such
hardware has been available since 2003,
and includes the NVIDIA GeForce FX and
ATI Radeon 9000 series.
For a given projector, the scene is
rendered once using a perspective
projection centered at the view point, and
encompassing the section of the dome
visible to that projector. To distort this
image for dome display, a single screen-
filling rectangle is drawn. The fragment
program treats this rectangle as a set of
rays cast through all on-screen pixels.
The intersection of each ray with the
dome is computed given the position and
radius of the dome sphere. Given this 3D
point, the original scene renderingʼs
perspective projection is applied in
reverse, and the result is a 2D pixel
reference in the rendered scene image.
This approach is extremely close to
optimal in performance. Image quality
depends only on the potential sampling
mismatch between off-screen and on-
screen fragments. Oversampling the off-
screen buffer hides most issues.

Edge Blending
Figure 6 (top) depicts two images, shown
in cyan and yellow, projected onto a
dome. The area of overlap, shown in
green, receives illumination from both
projectors, and will appear doubly bright.
In order to present images of uniform
brightness across the entire surface of
the dome, care must be taken to obscure
this discontinuity between projected
images. We must be aware of the area of
overlap, trim each projected image, and
blend from one image to the next, as in

Figure 6 (bottom). The means for doing
this follow from the mechanism chosen to
perform the spherical correction.

Figure 6: A pair of overlapping projections
(top) properly trimmed and blended (bottom).
The fixed-function cube map method
renders to the screen using a polygonal
mesh representing the geometry of the
dome. Under these circumstances, we
may simply subdivide the dome mesh
along projector edges. The material
properties of the mesh geometry may be
specified such that the cube map texture
is modulated to fade to black, as in Figure
7 (left).
Alternatively, a screen-filling image mask
texture may be used to modulate the
cube map image, as in Figure 7 (right).
This approach has the advantage of per-
p ixe l con t ro l over t r imming and
brightness, and may also be applied to
vertex and primitive-based spherical
correction methods. However, both of
these blending approaches require
relatively static masks, and can be
difficult to tune interactively.

Figure 7: Blended dome mesh (left) and
blending image mask (right).
The f ragment program spher ica l
correction approach allows masking and
blending to be generated procedurally.
The 3D dome surface position of each
fragment gives the spherical position (θ,
Φ). With these, the image may be
modulated by an arbitrary function over θ
and Φ, usually a smoothed step function.
The blends may have any gradient, and
the parameters of the gradient function
may be tuned interactively.

Conclusion
The problems of real- t ime dome
rendering are not insurmountable, as
evidenced by the variety of solutions
enumerated here. Each of these has a
straightforward implementation, using
mechanisms that port easily between
Windows, Mac OS X, Linux, and others.
The range of applicable algorithms allows
for an optimal solution to be selected for
any application type or hardware
platform. Most any OpenGL programmer
should be capable of producing a working
implementation given access to only a
few hundred do l lars in graphics
hardware.
A vast array of real-time visualization
tools are already freely available for a
wide variety of display types. We hope
that the rapid decrease in the cost of
dome-capable hardware will result in a
proliferation of dome-ready real-time
software.

