
Multi-projector digital dome systems are 
becoming commonplace, but real-time 
software to drive them is not. The 
majority of digital dome content is pre-
rendered, and existing real-time software 
is largely proprietary and expensive.
Real-time visualization is a valued goal 
as it enables a live planetarium show, an 
adap t i ve and i n te rac t i ve v i s i t o r 
experience, and rapid content creation. 
Additionally, real-time systems reduce the 
cost and complexity of back-end storage 
and distribution of pre-rendered video.
Driving planetarium domes in real-time is 
feasible today. The video game industry 
has driven commodity graphics hardware 
capability to incredible heights at 
affordable prices, and this trend will 
certainly continue for the foreseeable 
future. Complex visualizations once 
possible only with off-line rendering can 
today be rendered at interactive rates. A 
complete system to do so costs only  a 
few thousand dollars using off-the-shelf 
hardware.
But the freely available software, 
knowledge, and experience to support 
this hardware capacity  has yet to catch 
up. In a continuing effort to exploit 
opportunities enabled by powerful, new 
hardware, the staff of the Space 
Visualization Laboratory at the Adler 
Planetarium and Astronomy Museum has 
installed an inexpensive cluster of off-the-
shelf PCs in Adlerʼs full-dome theater. 
With this installation, we are working to 
implement solutions to the general 
problems of real-time multi-projector 
digital dome display, and to make them 
freely available, as Open Source 

software. We hope we can encourage 
and assist others in the creation of new 
dome software and in the adaptation of 
existing visualizations to dome display.
Toward this end, we discuss techniques 
for real-time dome rendering. We 
enumerate a number of solutions to its 
two major cha l lenges : spher ica l 
correction and edge blending. Noting the 
broad range of hardware in use today, we 
review the evolution of technology that 
made each technique possible.

Background
To render a real-time application to a 
dome display, we must quantify  the 
domeʼs configuration. We assume one or 
more projectors filling the surface of the 
dome. Each projector is connected to one 
of the video outputs of a PC  host, or 
cluster of hosts connected by a network. 
Along with the dome radius, we require 
the precise position and orientation of 
each projector relative to the dome, as 
well as the field-of-view of each. Finally, 
we need some knowledge of how the 
projector images overlap and how they 
are to be trimmed and blended with one 
another to obscure the seams between 
them.
Real-time 3D Graphics
To make this discussion accessible, letʼs 
review the fundamentals of real-time 3D 
graphics. In its most basic form, real-time 
3D imagery cons is ts o f ver t ices 
connected to form triangles, which are 
pixelated and colored, as in Figure 1.
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Figure 1: Real-time 3D elements: vertices, 
triangles, and pixels.
All real-time 3D graphics are composed 
of these few basic building blocks. While 
some rendered objects—stars, clouds, or 
galaxies—appear complex, these vertices 
and triangles can always be found 
underlying them.
The logical structure of a real-time 
graphics processing unit (GPU) is shown 
in Figure 2. An application enumerates 
vertices in 3D space. The Vertex 
Processing stage computes lighting 
values and screen positions for each. The 
Geometry Processing stage connects 
these vertices into triangular geometric 
primitives. The Primitive Rasterization 
stage breaks each pr imit ive into 
fragments (a.k.a pixels). Fragment 
Processing combines each fragment with 
a 2D image describing its color and 
texture. Finally, fragments are written to 
the frame buffer in video RAM (VRAM) 
and appear on-screen.

Figure 2: The real-time 3D rendering pipeline.
OpenGL
GPU functionality is exposed by an 
application programming interface (API). 
OpenGL is the most widely used of these. 
While its competitor, Microsoftʼs Direct3D, 
sees wider usage in PC and XBox-based 
game development, OpenGL is the only 
cross-platform graphics API available. 
Introduced in 1992, it sees widespread 
use not only in gaming, but in CAD, 
scientific visualization, and digital content 
creation across Windows, Linux, and Mac 
OS X.
The API specification is defined by the 
OpenGL Architecture Review Board 
(ARB) Working Group. As graphics 
hardware evolves, the ARB extends and 
revises the API.
The most significant change seen in 
nearly  400 extensions, 9 major revisions, 
and 16 years since the introduction of 
OpenGL has been the evolution from 
fixed functionality toward programmable 
functionality. Refer again to Figure 2. The 
ve r tex , geomet ry, and f ragmen t 
processing segments were once fixed 



hardware operations. Today, the API 
represents these as programmable units.
The OpenGL Shading Language (GLSL) 
is the ARB standard language for GPU 
programming. It allows the application 
developer to customize the action 
performed by the hardware. Program 
code written in GLSL is compiled by  the 
video driver and uploaded to the GPU, to 
serve as one of the three functional 
elements: vertex, geometry, or fragment 
processing.
This capability has exposed incredible 
flexibility and has initiated a fundamental 
shift in the design of real-time 3D 
algorithms. The programmable pipeline 
proves especially  useful in the realm of 
real-time dome rendering, as it allows the 
computational load of spherical correction 
and edge blending to be offloaded from 
the CPU to the GPU.

Spherical Correction
Real-time rendering is fundamentally 
l inear. Perspective projection and 
rasterization assume that the display is 
flat. A straight line connecting 2 points in 
3D space is rasterized as a straight line 
of pixels in the 2D frame buffer.
Unfortunately, when projecting an image 
onto a curved surface, this invariant is no 
longer guaranteed. A straight line appears 
straight only when viewed from the point 
of projection. In the most general case, 
both the point of projection and the 
desired point of view may  be positioned 
anywhere in the dome. If one or both of 
these do not lie at the center of the dome, 
then a correction must be made.
The process of correcting a single point is 
relatively intuitive. Imagine that the dome 
is positioned like a camera within the 
scene to be rendered. See Figure 3. With 
the view point at V, point A falls on the 
dome at I. But when displayed by a 

projector positioned at P, a point falling on 
the dome at I must instead be drawn at B. 
The challenge lies in expressing this in 
terms of the operations exposed by 
OpenGL. 

Figure 3: Spherical correction: given a 
projector at P, a viewer at V, an object is 
moved from A to B.
There are a number of approaches to this 
problem, each with different strengths 
and weaknesses. As with all real-time 
graphics algorithms, these approaches 
have evolved alongside the hardware that 
enabled them.
Vertex correction
The simplest means of spherical 
correction happens on the CPU. As the 
application submits each vertex to the 
GPU, it pre-distorts its position as 
described above. The application must 
cast a ray from the view point to the 
scene vertex, and intersect the ray with 
the surface of the dome. It then 
determines where that intersection point 
falls within the field of view of each 
projector, and submits that point to the 
GPU for rendering.
This technique received a significant 
boost in 2001 with the release of the 
NVIDIA GeForce 3, the first hardware 
capable of programmable ver tex 
processing. Vertex programming allowed 
the correction to be performed by the 
GPU, freeing the application to submit its 
geometry normally, and even to preload 



static geometry into VRAM. This author 
applied the technique to the point-based 
display of fluid flows on an Elumens 
VisionDome V4. A  real-time motion-
tracked view point and active stereo 
projection led to a deeply immersive 
virtual reality experience.
The flaw in this approach is that the 
correction is performed only at the 
vertices. Edges connecting these vertices 
are still linearly rasterized. So, this 
approach works well when rendering  
points or finely tessellated models, but 
fails for large triangles and long lines.
Primitive correction
Given spherically  corrected vertices, 
further action can be taken to account for 
the errors that occur during rasterization.
If the edge connecting two vertices is 
distorted, then the distortion will be 
greatest at the midpoint. Compute the 
distance between this midpoint and the 
spherically  corrected midpoint. If the 
distance is large, then subdivide the edge 
by cutting the triangular primitive in half.
Recursively apply the same algorithm to 
the edges of these sub-primitives, and 
halt when the magnitude of the distortion 
is tolerable. The result will be a re-
tessellation of the scene geometry, 
adapted to the dome and view position.
This was the approach taken by  Elumensʼ 
SPI API in 2001. The SPI API intercepted 
all calls to the OpenGL API and 
performed the adaptive subdivision 
automatically. While it worked correctly, it 
performed badly, as the quantity of 
geometry tended to explode and 
overwhelm the GPUʼs vertex capacity.
In 2006 this approach received new life 
with the release of the NVIDIA GeForce 
8800, the first hardware to expose 
programmable geometry processing. This 
allows the primitive subdivision process 

to be offloaded to the GPU, again freeing 
the application to manage its geometry 
normally and eliminating the performance 
bottleneck.
Fragment correction
Common practice in dome rendering 
focuses on fragment-level spherical 
correction techniques. These approaches 
post-process the rendered image of the 
scene. The output of the scene rendering 
pass is used as the input to a spherical 
correction rendering pass. In practice, 
this means that an output frame buffer 
must be converted to an input texture.
Throughout the history of OpenGL there 
have been multiple techniques to 
accomplish this conversion. Early 
applications simply copied the pixel data 
in the frame buffer into the texture buffer. 
This approach suffered from poor 
performance due to the data copy.
The solution to these performance woes 
would be the ability to render directly into 
a texture map. The P-Buffer and render-
to-texture specifications provided this 
capability in 2001, though differences 
between windowing APIs precluded 
cross-platform compatibility.  After much 
deliberation, the OpenGL ARB finally 
approved the frame buffer object 
specification in 2005, which continues to 
provide an optimal, cross-platform 
solution today.
Fixed-function Fragment Correction
The oldest and most common fragment-
level spherical correction method 
p reda tes the ava i l ab i l i t y  o f t he 
programmable pipeline.  It relies only on 
the availability of cube map textures, a 
mechanism approved by the ARB in 1999 
and widely supported by the hardware of 
that day, including SGIʼs high-end 
workstations and NVIDIAʼs consumer-
grade GeForce 256.



A cube map texture consists of 6 square 
images corresponding to the 6 faces of a 
unit cube centered at the origin. While the 
pixels of a normal 2D texture are indexed 
using a 2D position (u, v), the pixels of a 
cube map are indexed using a 3D vector 
(x, y, z). This vector is cast from the origin 
and strikes the cube on one of its 6 sides. 
The intersection gives a 2D reference into 
one of the 6 images, which is then 
indexed normally.
If we logically embed the geometry of a 
dome within the volume of such a cube, 
as in Figure 4, then the cube map lookup 
mechanism begins to resemble the 
reverse of the approach to spherical 
correction shown in Figure 3.

Figure 4: The surface of a dome embedded 
within a cube map.
We begin by rendering the scene once 
for each side of the cube. See Figure 5. 
The perspective projection for each 
rendering is centered at the view point, 
and encompasses the target cube face. 
Note that the view point need not be at 
the center of the dome. An offset view 
point merely entails the application of an 
off-axis projection. Once rendered, the 
image of the scene is moved from the 
output frame buffer to the cube map 
texture buffer, as described above. 

Figure 5: Five sides of a cube map showing 
Adlerʼs Mars Transporter Exhibit. The 
dimmed areas fall outside of the dome view.
Finally, to generate the spherically correct 
on-screen image for display by a given 
projector, we simply render a mesh of 
tr iangles representing the curved 
geometry of the dome itself, as seen from 
the perspective of that projector. The 3D 
position of each vertex of the dome gives 
the desired cube map texture look-up 
vector. The resulting image appears 
correct from the defined view point.
Programmable Fragment Correction
While the cube-map-based fixed-function 
approach works well, it does require 
multiple scene rendering passes to fill 
multiple sides of the cube map. An 
optimal implementation renders only 
those cube map sides that are visible to a 
given projector, but this can still entail as 
many as 3 passes over the scene. Also, 
the correction is performed for each 
vertex of the dome mesh and the result is 
linearly interpolated during rasterization. 
While this error is independent of scene 
complexity, a low-resolution mesh can 
produce divergence on the scale of 
multiple pixels.



Given fragment programming capability, 
the texture look-up  may be handled more 
delicately. A single 2D texture per 
projector will suffice in all cases, and the 
correction may be performed per-
fragment rather than per-vertex. Such 
hardware has been available since 2003, 
and includes the NVIDIA GeForce FX and 
ATI Radeon 9000 series.
For a given projector, the scene is 
rendered once using a perspective 
projection centered at the view point, and 
encompassing the section of the dome 
visible to that projector. To distort this 
image for dome display, a single screen-
filling rectangle is drawn. The fragment 
program treats this rectangle as a set of 
rays cast through all on-screen pixels. 
The intersection of each ray with the 
dome is computed given the position and 
radius of the dome sphere. Given this 3D 
point, the original scene renderingʼs 
perspective projection is applied in 
reverse, and the result is a 2D pixel 
reference in the rendered scene image.
This approach is extremely  close to 
optimal in performance. Image quality 
depends only on the potential sampling 
mismatch between off-screen and on-
screen fragments. Oversampling the off-
screen buffer hides most issues.

Edge Blending
Figure 6 (top) depicts two images, shown 
in cyan and yellow, projected onto a 
dome. The area of overlap, shown in 
green, receives illumination from both 
projectors, and will appear doubly bright. 
In order to present images of uniform 
brightness across the entire surface of 
the dome, care must be taken to obscure 
this discontinuity  between projected 
images. We must be aware of the area of 
overlap, trim each projected image, and 
blend from one image to the next, as in 

Figure 6 (bottom). The means for doing 
this follow from the mechanism chosen to 
perform the spherical correction.

Figure 6: A pair of overlapping projections 
(top) properly trimmed and blended (bottom).
The fixed-function cube map  method 
renders to the screen using a polygonal 
mesh representing the geometry of the 
dome. Under these circumstances, we 
may simply subdivide the dome mesh 
along projector edges. The material 
properties of the mesh geometry may be 
specified such that the cube map texture 
is modulated to fade to black, as in Figure 
7 (left).
Alternatively, a screen-filling image mask 
texture may be used to modulate the 
cube map image, as in Figure 7 (right). 
This approach has the advantage of per-
p ixe l con t ro l over t r imming and 
brightness, and may also be applied to 
vertex and primitive-based spherical 
correction methods. However, both of 
these blending approaches require 
relatively  static masks, and can be 
difficult to tune interactively.



Figure 7: Blended dome mesh (left) and 
blending image mask (right).
The f ragment program spher ica l 
correction approach allows masking and 
blending to be generated procedurally. 
The 3D dome surface position of each 
fragment gives the spherical position (θ, 
Φ). With these, the image may be 
modulated by an arbitrary function over θ 
and Φ, usually a smoothed step function. 
The blends may have any gradient, and 
the parameters of the gradient function 
may be tuned interactively.

Conclusion
The problems of real- t ime dome 
rendering are not insurmountable, as 
evidenced by the variety  of solutions 
enumerated here. Each of these has a 
straightforward implementation, using 
mechanisms that port easily between 
Windows, Mac OS X, Linux, and others. 
The range of applicable algorithms allows 
for an optimal solution to be selected for 
any application type or hardware 
platform. Most any OpenGL programmer 
should be capable of producing a working 
implementation given access to only a 
few hundred do l lars in graphics 
hardware.
A vast array of real-time visualization 
tools are already freely available for a 
wide variety of display  types. We hope 
that the rapid decrease in the cost of 
dome-capable hardware will result in a 
proliferation of dome-ready real-time 
software.


