
LIMBO/VTK: A Tool for Rapid Tele-Immersive Visualization

Jason Leigh
jleigh@eecs.uic.edu

National Center for Supercomputing Applications
and the Electronic Visualization Laboratory

Paul J. Rajlich, Robert J. Stein
prajlich@ncsa.uiuc.edu, rstein@ncsa.uiuc.edu

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

Andrew E. Johnson, Thomas A. DeFanti
ajohnson@eecs.uic.edu, tom@eecs.uic.edu

Electronic Visualization Laboratory
University of Illinois at Chicago

Abstract

This “Late Breaking Hot Topic Paper” describes LIMBO/VTK a
tool that allows developers to quickly build collaborative visualiza-
tion applications for CAVE, ImmersaDesk as well as desktop work-
stations. LIMBO/VTK is based on two broadly used technologies:
CAVERNsoft, a library for supporting collaborative Virtual Reality;
and the Visualization Toolkit, an extensive library for supporting
3D graphics and visualization.

Keywords: Virtual Reality, VTK, VR, Collaborative, Distributive,
CAVE, CAVERN

1 Introduction

We define the term Tele-Immersion as the integration of audio and
video conferencing with collaborative virtual reality (VR) in the
context of data-mining and significant computation. When par-
ticipants are tele-immersed, they are able to see and interact with
each other in a shared environment. This environment persists even
when all the participants have left. The environment may control
supercomputing computations, query databases autonomously and
gather the results for visualization when the participants return. Par-
ticipants may even leave messages for their colleagues who can then
replay them as a full audio, video and gestural stream.

As an example CAVE6D is a tele-immersive extension of
CAVE5D[8], a tool based on Bill Hibbard’s Vis5D[2]. Vis5D is
a system for interactive visualization of large 5-D gridded data sets
such as those produced by numerical weather models. One can
make isosurfaces, contour line slices, colored slices, volume ren-
derings, wind trajectory tracings etc, of data in a 3-D grid, then
rotate and animate the images in real time. CAVE5D integrated
Vis5D with the CAVE[1] allowing those visualizations to be cre-
ated in VR. CAVE6D allowed multiple remotely located CAVEs,
ImmersaDesks and desktop workstations to collaborate in this vi-
sualization. Participants are able to jointly turn volume renderings
on or off, move wind trajectory tracings and turn animations on and
off. This marked a significant improvement over CAVE5D because
it allowed scientists from different research institutions to engage
each other in avirtual research laboratory where they could share
their insights on the data they were visualizing. This form of col-
laborative research is but only part of the goal of Tele-Immersion.

CAVERN (CAVE Research Network) is a collection of partici-
pating industrial (such as General Motors) and research institutions
equipped with CAVEs, ImmersaDesks, and high-performance com-
puting resources all interconnected by high-speed networks for the
purpose of supporting Tele-Immersive- engineering and design; ed-
ucation and training; and scientific visualization and computational
steering.

In 1992 there was a single CAVE in Chicago, in 1998 there are
over 80 CAVE and ImmersaDesk installations around the world.
One of the problems facing this growing community is how to best
provide a mechanism to support long term collaborative work. This
is a challenging problem because, unlike traditional multimedia ap-
plications, tele-immersion requires a tight, realtime coordination of
a broad range of networking, database, user-interface, visualization,
and virtual reality technologies. The goal is to create the illusion of
co-presence amongst participants who may be physically located
at geographically distant locations around the world. Developing
tele-immersive applications can therefore be a daunting task as it
requires expertise in all of these areas of computing.

A temptation and common mistake, made by application devel-
opers building tele-immersive applications for the first time, is to
first build a non-collaborative application and then attempt to retro-
fit it for tele-immersive capabilities. It is important to provide tools
that encourage application developers to envision Tele-Immersive
scenarios at a high-level so that they can determine how such capa-
bilities would be most useful in their own applications. However, a
high-level set of tools does not help those trying to retrofit legacy
applications. A high-level library of well-integrated tools often as-
sumes a specific software design that may be incompatible with the
software that is being retrofitted.

To address this issue, a software infrastructure called CAV-
ERNsoft is under development. CAVERNsoft supports the
rapid creation of new Tele-Immersive applications, and eases the
retrofitting of previously non-collaborative VR applications with
Tele-Immersive capabilities. A full discussion of CAVERNsoft is
beyond the scope of this short-paper. This can be found by reading
the following papers: [5, 4, 3]. This paper will describe the lessons
learned in adapting the Visualization Toolkit to a multi-pipe VR
environment and the work in CAVERNsoft to provide a re-usable
software tool called LIMBO that offers application developers a
template for building tele-immersive applications. In addition it
describes the integration of LIMBO with the Visualization Toolkit



(VTK) to support the rapid development of collaborative scientific
visualization applications.

Although this work was initially targeted at CAVE and Im-
mersaDesk users, a CAVE Simulator is available that will run
on desktop Silicon Graphics workstations. This allows non-
CAVE/ImmersaDesk owners to also benefit from the results of this
work.

2 Adapting the Visualization Toolkit for
Virtual Reality

The Visualization ToolKit (VTK) is a freely available C++ class li-
brary that supports 3D graphics and visualization [6, 7]. VTK was
used because of its flexibility and wide array of supported visual-
ization algorithms. The entire system consists of more than 400
classes, so the range of options for visualization are wide and var-
ied. The core computational objects are compiled C++ code. These
objects can be accessed using wrappers for scripting languages such
as Tcl/Tk, Java, and Python.

The Visualization Toolkit is based on the data-flow paradigm and
works by creating what is referred to as a VTK pipeline. A basic
pipeline consists of three objects: a Source for data, a Filter to con-
vert that data into geometry, and a Mapper to map the geometry to
graphics. An object called a vtkActor contains a reference to the
Mapper object and is the access point for any particular graphical
object.

One particular aspect of VTK’s design that contributes to its
power is that it incorporates an implicit control of execution. This
means that whenever something changes in one of the stages of the
pipeline, the changes will automatically propagate down through
the pipeline the next time output is requested from the Mapper.
This methodology makes visualization applications easy to write
and maintain.

In the process of integrating VTK with the CAVE environment,
we found that VTK was not designed to be able to render the same
geometry multiple times simultaneously to different graphics pipes.
Specifically, geometry in VTK is stored in a data structure called
vtkPolyData. This structure cannot be traversed by multiple pro-
cesses simultaneously.

Our solution to this problem is to compute geometry using VTK
and render using IRIS Performer. Doing so allows an application
developer to harness all of the visualization algorithms of VTK and
all of the rendering advantages of Performer, such as multi-process
rendering to multiple views. Performer is a Silicon Graphics ren-
dering library that also provides other features not found in VTK
such as scenegraphs and intersection testing.

However, making VTK work together with Performer is not triv-
ial. The library that was developed to allow these two toolkits to
work together is called vtkActorToPF. Specifically, the code trans-
lates any vtkActor into a corresponding pfGeode in Performer. A
vtkActor represents a graphical object in VTK. This includes geom-
etry as well as surface properties and color information. A pfGeode
is the analogous structure in Performer.

Using vtkActorToPF, the developer will build a VTK pipeline
and a Performer scenegraph. Whenever the VTK pipeline re-
executes and vtkActors change, the new geometry in these vtkAc-
tors will be translated and plugged into corresponding pfGeodes
living in the Performer scenegraph. The Performer scenegraph is
automatically rendered every frame (Figure 1.)

The vtkActorToPF code distribution includes the vtkActorToPF
function and the vtkActorToPFTranslator. The function will trans-
late any vtkActor into a corresponding pfGeode. However, if used
alone, this function needs to be called explicitly whenever the
vtkActor changes. When using the class, a translator object has
a handle to a particular vtkActor as well a handle to a particular

pfScene

pfDCS

pfGeode pfGeode

source

mapper mapper

filter

filter filter

actor

translator
(vtkActorToPFTranslator)

(vtkActor)

VTK pipeline Performer scenegraph

flow in vtk pipeline edge in scene graphreference

Figure 1: Relationship between a VTK pipeline and a Performer
scenegraph.

pfGeode. Whenever the vtkActor changes, the pfGeode is automat-
ically re-translated. This approach preserves the implicit control of
execution model that VTK uses. By instantiating translator objects,
any changes in the VTK pipeline will automatically propagate into
the Performer scenegraph.

The vtkActorToPFTranslator object achieves this effect by regis-
tering a callback with Performer that is associated with the transla-
tor’s pfGeode. Each time the scenegraph is traversed, the callback
is made when the pfGeode is reached. The callback checks to see
if the vtkActor has changed since the last translation and will re-
translate if necessary.

Using the vtkActorToPFTranslator class, the developer instan-
tiates a translator object for each vtkActor in the VTK pipeline.
For each vtkActor a corresponding pfGeode is created and added to
the Performer scenegraph. Once these objects are created, the two
toolkits work together seamlessly and the translation is transpar-
ent. The translation itself is very quick compared to the execution
time of the VTK pipeline. Since the translation is done only when
portions of the VTK pipeline re-execute, there is little loss in inter-
activity as compared to a standard VTK application.

3 A Tele-Immersive Visualization Frame-
work

LIMBO is an application framework or template that provides the
basic capabilities of Tele-Immersion. LIMBO can be launched by
connecting to a persistent LIMBO server or by connecting to an-
other LIMBO client application. Other clients may join in at any
time by either connecting to the server or latching onto another
known client. Participants are depicted by virtual representations
(or avatars) which have their head and hand tracked so that they
are able to convey natural gestures such as nodding and pointing.
Participants are able to fly through the space using a joystick and
interact with the space using buttons on a spatially tracked point-
ing device called a wand. A separate tool may be used to deposit
three-dimensional objects (possibly scientific data-sets, mechanical
engineering parts, architectural structures, etc) in the shared space.
Each participant can pick, move, and delete any of the objects. As
the environment is persistent, participants may exit and re-enter the
environment at any time. Finally participants are able to speak to
each using a virtual intercom system.

LIMBO/VTK merges LIMBO with vtkActorToPF to allow ap-
plication developers to use the rich set of visualization tools



built into VTK to generate sharable three-dimensional objects in
LIMBO. The provided example in the LIMBO/VTK distribution
consists of a tele-immersive environment to load and generate iso-
surface visualizations of volume data. VTK is used to load the vol-
ume data and generate the polygons of the isosurface. A user may
instantiate a persistent copy of the isosurface at any time by press-
ing one of the wand’s buttons. This persistent copy is distributed
amongst all the remotely connected participants who are then able
to pick and move the objects for inspection. Other participants may
also join in changing the isosurface threshold to produce more per-
sistent instantiations. Figures 2, 3, 4, 5 show participants actively
engaged in LIMBO/VTK.

All data distribution between LIMBO clients is supported by
CAVERNsoft. CAVERNsoft is a novel integration of network-
ing and active database techniques to produce a distributed shared
memory whose data objects possess three key capabilities neces-
sary for supporting Tele-Immersion: Firstly the data objects may
be shared via a variety of networking interfaces (unreliable UDP,
reliable TCP, and multicast) with customizable networking Qual-
ity of Service (ability to specify a desired bandwidth, latency and
jitter). Secondly the data objects can be made persistent by com-
mitting to a built-in database. Lastly the data objects can trigger
user-defined actions whenever the data is updated.

LIMBO shares avatar data using an unreliable UDP channel.
Since avatar data is transmitted frequently the loss of a packet is ac-
ceptable as it is soon followed by another. Each new packet of data
will trigger an action to render the appropriate change in the cor-
responding avatar. VTK actors in LIMBO/VTK are translated into
Performer pfGeodes that are then exported as 3D objects in Per-
former’s binary model format. The 3D models are then distributed
to all the participating clients via reliable TCP channels. On re-
ceipt LIMBO uses CAVERNsoft’s database capabilities to render
the 3D objects persistent. Absolute data (position and orientation
data) about each of the instantiated objects are broadcasted via a re-
liable channel only when the objects are manipulated. This data is
also stored in the database so that objects always remain in the cor-
rect location in the space even when participants exit and re-enter
the environment.

In addition to sharing VTK visualizations, LIMBO can be used
to share and visualize 3D models in any of the currently popular
formats: Inventor, VRML1, DXF, OBJ, etc. This allows external
applications to generate visualizations of their data and deposit it
inside LIMBO for collaborative visualization.

4 Closing Remarks

VtkActorToPF allows the Visualization Toolkit and IRIS Performer
to work together. This facilitates the quick development of interac-
tive visualization applications for virtual environments such as the
CAVE. The vtkActorToPF library alone can be downloaded from
http://hoback.ncsa.uiuc.edu/group/vtkActorToPF/.

The LIMBO/VTK integration allows developers to build collab-
orative visualization applications without having to be experts in
networking, databases and virtual reality. LIMBO/VTK is built
on top of the CAVERNsoft Tele-Immersion architecture, IRIS Per-
former and the CAVE library. This allows remote participants to
collaborate synchronously and asynchronously on CAVEs, Immer-
saDesks and desktop workstations.

LIMBO will continually be improved as our CAVERNsoft effort
develops new modules for Tele-Immersion. Future modules will
include video conferencing tools. There is an effort currently un-
derway to develop a virtual annotation module for LIMBO to allow
participants to record synchronized audio and gestures of avatars
while interacting in the environment.

CAVERNsoft, LIMBO and LIMBO/VTK can be downloaded
from http://www.evl.uic.edu/spiff/ti . VTK can be

Figure 2: Inside the sample LIMBO/VTK world a user is able to
extract isosurfaces from a volume data-set by setting different iso-
surface threshold values. Then a separate copy of the object can be
created and moved.

Figure 3: Another participant enters the shared space.



Figure 4: The participant will be able to generate his/her own set of
isosurfaces or load in a completely separate 3D model. A Caffeine
molecule is seen in the distance.

Figure 5: LIMBO and LIMBO/VTK can support several partici-
pants at the same time (network bandwidth permitting.) Each par-
ticipant may bring in, move, and delete objects at will. Here one
participant is speaking to another using the intercom.

obtained fromhttp://www.kitware.com/vtk.html . The
CAVE and CAVE Simulator library can be obtained by contacting
http://www.vrco.com .

Acknowledgements

Major funding is provided by the National Science Foundation
(CDA-9303433.) The virtual reality research, collaborations, and
outreach programs at EVL are made possible through major fund-
ing from the National Science Foundation, the Defense Advanced
Research Projects Agency, and the US Department of Energy;
specifically NSF awards CDA-9303433, CDA-9512272, NCR-
9712283, CDA-9720351, and the NSF ASC Partnerships for Ad-
vanced Computational Infrastructure program. The CAVE and Im-
mersaDesk are trademarks of the Board of Trustees of the Univer-
sity of Illinois.

We would also like to thank Randy Heiland for his early contri-
butions to the development of the vtkActorToPF translator.

References

[1] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. De-
Fanti. Surround-screen projection-based virtual reality: The
design and implementation of the CAVE. In James T. Kajiya,
editor,Computer Graphics (SIGGRAPH ’93 Proceedings), vol-
ume 27, pages 135–142, August 1993.

[2] Bill Hibbard and Brian Paul. Vis5D
http://www.ssec.wisc.edu//

~

billh/vis5d.html, 1998.

[3] Andrew E. Johnson, Jason Leigh, Thomas A. DeFanti, and
Daniel J. Sandin. CAVERN: the cave research network. InPro-
ceedings of 1st International Symposium on Multimedia Virtual
Laboratories, pages 15–27, Tokyo, Japan, March 1998.

[4] Jason Leigh, Andrew E. Johnson, and Thomas A. DeFanti.
CAVERN: a distributed architecture for supporting scalable
persistence and interoperability in collaborative virtual envi-
ronments. Journal of Virtual Reality Research, Development
and Applications, 2(2):217–237, 1997.

[5] Jason Leigh, Andrew E. Johnson, and Thomas A. DeFanti. Is-
sues in the design of a flexible distributed architecture for sup-
porting persistence and interoperability in collaborative virtual
environments. InProceedings of Supercomputing’97, San Jose,
California, Nov 1997. IEEE/ACM.

[6] William J. Schroeder, Kenneth M. Martin, and William E.
Lorenson. The design and implementation of an object-
oriented toolkit for 3D graphics and visualization. InIEEE
Visualization, pages 93–100, 1996.

[7] William J. Schroeder, Kenneth M. Martin, and William E.
Lorenson.The Visualization Toolkit. Prentice Hall PTR, 1996.

[8] Glen H. Wheless, Cathy M. Lascara, A. Valle-Levinson, D. P.
Brutzman, W. Sherman, W. L. Hibbard, and B. Paul. Virtual
chesapeake bay: Interacting with a coupled physical/biological
model. IEEE Computer Graphics and Applications, 16(4):52–
57, July 1996.


