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Abstract

Collaborative visual analytics that feature mixtures of spatial and nonspatial data occur across disciplines, and

are particularly common in bioinformatics, neuroscience and geospatial analysis. In this work we analyze, from

a human-centric perspective, data collected from the design and evaluation of three successful visual analysis

tools, spanning seven case studies. We focus on the importance of the users’ background to the design process,

and we discuss the importance of visual scaffolding to such collaborative, integrated spatial and nonspatial visual

analysis tools. Scaffolding is a psychology concept which denotes the support given during a learning process. We

further present evidence that spatial and nonspatial coordinated views can serve as a form of visual scaffolding

for expert-level, collaborative visual analyses.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Visual analysis processes
and workflows—Cognitive and perceptual aspects of visual analytics—Collaborative visual analytics

1. Introduction and Background

An increasing number of big data problems are collabora-
tive endeavors that feature mixtures of spatial and nonspa-
tial data. For example, a typical epidemiology study look-
ing at the effects of aging on brain function across large
groups of population may require collaboration among: 1)
public-health experts who formulate hypotheses, analyze de-
mographics, and recruit the subjects; 2) neurosurgeons and
biologists to analyze the subjects’ brain scans and physio-
logical measurements; 3) statisticians to design algorithms
for computing correlations among the various demograph-
ics and measurements; 4) high-performance computing spe-
cialists to run the algorithms at supercomputing centers; and
5) the visual analysis experts who help analyze and present
the results. The data in the same study may span both the
spatial domain — in the form of spatial fields such as brain
scans — and the nonspatial domain — in the form of demo-
graphic measurements or scores registered when assessing
the functional proficiency of a subject’s brain. The domain
experts often have complementary expertise, and collabora-
tive spaces are essential for the visual analysis process.

Collaborative visual analytics that feature mixtures of spa-
tial and nonspatial data occur in fact across disciplines,
and are particularly common in bioinformatics, neuroscience

and geospatial analysis [DH01, KKH02, Rhy03, RWK⇤99,
MPLB07]. In these applications, two paradigms are preva-
lent for integrating spatial and nonspatial data: overlays and
coordinated multiple views (also known as multiple linked
views). Overlays are predominantly used in geospatial anal-
ysis and augmented reality, while coordinated views are
prevalent in almost every type of visual analytics (includ-
ing geospatial). From the existing literature, however, it is
not clear under what circumstances one paradigm would be
preferable to the other—both paradigms can handle complex
data. Furthermore, coordinated views suffer from context-
switching and real estate problems, while overlays typically
do not [WBWK00].

One possible factor in the human-centered design
[KSDK11, MMAM14, GDJ⇤13, SP06, WKvD⇤08, TM04,
SMM12, Mun09] of these integrated visual analysis tools is
the user background and their familiarity with a particular
type of representation. In this work we take a deeper look
at the human component of these design processes. To this
end, we analyze post-hoc the data collected from the design
and evaluation of three successful, published visual analysis
tools, spanning seven case studies.

In our analysis, we consider the resulting designs from
the perspective of instructional scaffolding [NB78], a psy-
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chology concept which denotes the support given during the
learning process in order to promote deeper learning. In this
context, visual scaffolding is support that includes images
and words that can be seen. Visual scaffolding is commonly
used in education, for example in the instruction of English
as a second language.

2. Methods

We analyze the design process, as well as the adoption and
usage of three successful visual analysis systems. Each sys-
tem targets a separate domain: bioinformatics, epidemiol-
ogy, and astronomy. Each system integrates spatial and non-
spatial data, and all systems support inter-expert collabora-
tion. Each system has benefited from the regular participa-
tion in the design process of between five and twelve do-
main experts, and extended feedback from several off-site
research groups. In general, the experts had complementary
expertise.

The three systems were developed over a period of nine
months, respectively two years and three years. Each system
has been evaluated by the respective domain experts, and
each system has been adopted by the domain experts and
their respective labs as a research tool.

2.1. Design and Evaluation Process

We briefly describe the nature of each of the three systems
used in this analysis, as well as the process used to design
these systems.

Bioinformatics: The first system is a visual mining and
analysis tool to help identify protein mutations across fam-
ily structural models, and to help discover the effect of these
mutations on protein function (Figure 1) [LWC⇤14]. Dis-
tributed data sources for 3D structure and nonspatial se-
quence information are seamlessly integrated into a common
visual interface. Multiple linked views and a computational
backbone allow comparison at the molecular and atomic lev-
els, while a trend-image visual abstraction allows for the
sorting and mining of large collections of sequences and of
their residues.

Epidemiology: The second system is a visual framework
for the integration, comparison, and exploration of corre-
lations in spatial and nonspatial geriatric data [MMH⇤13].
These data are in general high-dimensional and span both the
spatial, volumetric domain — through magnetic resonance
imaging volumes — and the nonspatial domain, through
variables such as age, gender, or walking speed. A linked-
view design geared specifically at interactive visual compar-
ison integrates spatial and abstract visual representations to
enable the users to effectively generate and refine hypothe-
ses in a large, multidimensional, and fragmented space. The
software was described as their “dream tool” by users.

Astronomy: The third system is a “Scientific Google Sky”

which assists the visual integration, mining and interactive
navigation of large-scale astronomy observations [LCO⇤14].
The system seamlessly integrates spatial data — in the form
of multi-modality sky images collected through telescopes
—, with nonspatial data — in the form of spectral distribu-
tions. Several astronomy research groups have adopted the
system, and use it to more easily and quickly identify pat-
terns and outliers in their data. The researchers were eager
to use the tool in classrooms.

Requirements: To characterize the domain data and
tasks, we utilized ethnographic observation, interviews,
focus groups, and critiques of existing visualization
tools [Mun09]. Usability and user experience requirements
were also determined: learnability, ease of installation, and
ease of use. From the scaffolding perspective, we also con-
sidered the users’ backgrounds and expertise.

Visual encoding: In the encoding stage we utilized partic-
ipatory parallel design, guided by regular feedback, in which
the data types and tasks were mapped to multiple visual and
interaction encodings—as long as the encodings were appro-
priate for the data and tasks earlier determined. The design
stage employed whiteboard sketches, as well as paper and
lightweight to fully-developed interactive prototypes.

Evaluation: For each system, the domain experts have
been given access to both lightweight and fully developed
prototypes at regular intervals during the design and devel-
opment of the system. We observed the use of the system
in the context of group meetings, where we noted collabo-
rative hypothesis generation and discussion of observations.
From the scaffolding perspective, the users were provided
with compelling tasks (identified during the domain charac-
terization), as well as with templates and guides in the form
of demonstrations and tutorials.

3. Results

In each case, the result of the participatory design process
was a coordinated multiple views solution. Analyzing the
encoding process and its series of prototypes, we note that
the spatial-data experts posed initially significant resistance
to nonspatial abstractions. The nonspatial experts posed re-
sistance to the spatial representations, and in particular re-
sisted design attempts at overlaying. The more unfamiliar
the visual representation, the more resistance was posed, and
the more support was necessary — sometimes in the form of
toy case studies to demonstrate the benefits of that particu-
lar representation for the expert’s precise domain. Overlays
were never embraced. In the longer run, some of the linked
visual abstractions were found to be intuitive and rather es-
sential in better understanding the data. However, visual sup-
port from familiar visual representations (such as volume
renderings and hierarchies) was essential in this training pe-
riod.

All experts involved in the evaluation of these system have
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Figure 1: A visual mining and analysis tool to help identify protein mutations across family structural models. The system

integrates spatial information regarding molecular and atomic structures with a trend-image visual abstraction that allows for

the sorting and mining of large collections of sequences and of their residues.

stated that having different ways (abstract and spatial) of see-
ing the data was particularly helpful. They also commented
that the visualization tools could be very useful for non-
expert users, who are not very familiar with the domain, as
using the tools would improve such users’ understanding.

In terms of use, the domain experts have adopted each
final prototype, and the systems are now used regularly by
their teams. For the purpose of this analysis, for each system
we asked the experts to complete a total of seven case stud-
ies, using each time the “think aloud” approach. The seven
case studies were distributed as follows: two epidemiology
cases involving 3 experts, three astronomy cases involving 5
experts, and two bioinformatics cases involving 4 experts.

For the analysis of the system usage, we divided virtu-
ally each interface into spatial and nonspatial sections. We
then analyzed the case study output, with respect to the ex-
perts’ background, in terms of the virtual sections the experts
referred to in their analysis, and of the timing of these ref-
erences. Approximately half of the experts had expertise in
the spatial domain (molecular structure, brain gray matter
and white matter structure, stellar object locations on sky),
and half had primarily nonspatial expertise (gene sequences,
brain function, spectral data). There was no significant do-
main expertise overlap among the experts working on a par-
ticular case — e.g., a structural biologist (whose expertise
covers 3D spatial protein structure) may be superficially fa-
miliar, but not conversant, with the genomics terminology
— where nonspatial information such as gene sequencing is

essential. Both spatial and nonspatial representations were
used for common feature and outlier detection.

Our post-hoc analysis finds that, without exception, ex-
perts who specialized in spatial structures started their anal-
yses by focusing on the spatial sections of the interface,
and then gradually worked up towards the nonspatial sec-
tions to further strengthen or refute their observations (Fig-
ure 2 left). In contrast, without exception, experts who did
not specialize in spatial structures started their analyses with
the nonspatial representations — as long as these representa-
tions were basic, familiar visual representations such as pixel
rows, plots, trees, or networks —, and gradually worked up
towards the spatial representations, to see if the spatial layout
might give them additional information (Figure 2 right). In
general, the multi-view approach allows experts to use any
view to form a base, exploratory belief, and the other views
to strengthen or refute that initial belief.

4. Discussion and Conclusion

The design experience across these systems points to the
benefits of coordinated multiple views in the context of spa-
tial and nonspatial integration, in particular when domain
experts have complementary expertise. Our experience has
been that a familiar representation (a “scaffold”) was es-
sential in orienting the user, and that prototyping attempts
at overlaying information over that familiar representation
were not successful. Linking information to that familiar
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Figure 2: Two visual analyses in a visual framework for the integration, comparison, and exploration of correlations in

spatial and nonspatial geriatric data. Left: a typical analysis lead by a neurosurgeon starts with the familiar brain imaging

representation, and then progresses towards the nonspatial representations. Right: a typical analysis lead by an epidemiologist

starts with the familiar nonspatial representation of brain function clusters, and progresses towards the less familiar spatial

representation of the brain. In general, the multi-view approach allows experts to use any view to form a base, exploratory

belief, and the other views to strengthen or refute that initial belief.

representation through linked views was, however, success-
ful. The separation into multi-views allowed the experts to
gradually build up confidence in the tool. Despite initial re-
sistance to certain nonspatial representations, the approach
made the learning-curve less steep and facilitated early adop-
tion of a tool.

The usage analysis indicates that users with different
backgrounds may employ a spatial and nonspatial visualiza-
tion application differently. This may be particularly impor-
tant for the design of collaborative meeting environments,
in which users contribute complementary expertise. In our
work the disadvantages of context-switching between the
views were clearly outweighed by the user familiarity with
a particular type of analysis (spatial or nonspatial). Finally,
linking the views allowed the user to harness and expand
their previous analysis experience.

While arguably the participatory design process influ-
ences the subsequent usage of the system, the design of
collaborative visual spaces for expert problems is difficult
and dangerous in the absence of regular feedback from do-
main experts. Use analyses are further hampered by the typ-
ically small numbers of domain experts available in any
given domain of expertise. However, we note that “large
scale studies” on the equivalent of rare “rocket scientists”
are likely unfeasible, as are eye-tracking studies — which
require expert-user commitment to the study. Furthermore,

collaborative visual analyses that require complementary ex-
pertise in spatial and nonspatial data involve typically do-
main experts, and not novice users. Last but not least, visual
scaffolding, just like any scaffolding, should be ultimately
removed; it is not clear how that could be accomplished in
problem-driven visualization, once the users’ “dream tool”
has been deployed and adopted.

While the domain experts are already motivated by com-
pelling tasks, and visualization researchers sometimes offer
templates and guides in the form of demonstrations and tu-
torials, further visual guidance in the form of familiar repre-
sentations appears to be necessary. Linked view designs can
effectively serve as “visual scaffolding” in the context of col-
laborative, integrated spatial and nonspatial visual analysis.

In conclusion, our analysis supports a multi-view design
of visual tools that seek to integrate spatial and nonspatial
information. While the information would thus be somewhat
fragmented, our evidence points to the benefits of separating
the views.
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