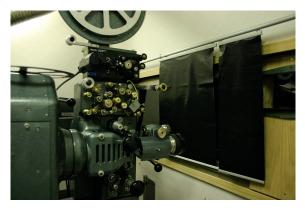
UltraGrid: from point-to-point uncompressed HD to flexible multi-party high-end collaborative environment

Jiří Matela (matela@ics.muni.cz)

Masaryk University

EVL. UIC. Chicago. 2008–09–03

Laboratory of Advanced Networking Technologies


- Founded in 2002
- Directed by Luděk Matyska and Eva Hladká

Major Research Areas

- Multimedia distribution and processing
 - algorithms for real-time distributed processing
 - high-end (HD, post-HD) interactive multimedia transmission
 - collaboration with industry

Major Research Areas

- Grid technologies
 - information services/monitoring (software development)
 - Logging and Bookkeeping Service for EGEE
 - infrastructure management (theoretical, practical)
 - scheduling (theoretical, practical)
 - 68 000 CPUs
 - 70PB of storage
 - 300 000 jobs per day

Major Research Areas

- Virtualization
 - Grid environments
 - network virtualization
- Collaborative environments
 - · collaboration with social sciences and psychology
- Active networks
 - user-programmable networks
- Security
 - authentication, authorization
 - frameworks for large scale collaborative/distributed environments

Collaboration

- EU projects
 - infrastrucutre: DataGrid, EGEE (I, II,...)
 - software development & computer science: GridLab, CoreGrid (NoE)
 - support actions: Ithanet, EuroCareCF
 - design study: EGI-DS
- Also number of national projects

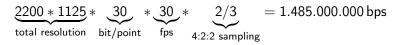
Collaboration

- Other EU collaboration
 - major partners e.g., INFN (IT), PSNC (PL), Koç University (TR)
- U.S. partners (e.g.)
 - Center for Computation & Technology, LSU
 - Electronic Visualization Lab, UIC
 - iCAIR, Northwestern University
 - Argonne National Laboratories
 - ResearchChannel, University of Washington
 - Dept. of Medicine, University of Michigan
- Asia partners
 - Academia Sinica

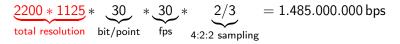
UltraGrid

• real-time transmission of high-resolution video

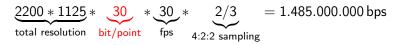
9/33


High-resolution

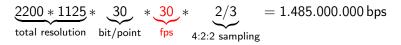
• HD, 2K, 4K, 6K resolutions


What is usually understood under uncompressed HD? (1920×1080 , 1.485 Gbps, transmitted over SDI, SMPTE 292M)

- Resolution: includes 1920 \times 1080 of effective resolution, but also adds up blanking lines, totaling 2200 \times 1125.
- Color depth: 10 bits/point/color plane ⇒ 30 bits/point
 - Computers are usually unable to render more than 8 bits/color plane.
- Frame rate: 24p, 25p, 29.97p, 30p, 50i, 59.94i, 60i
- Sampling: usually 4:2:2


What is usually understood under uncompressed HD? (1920 \times 1080, 1.485 Gbps, transmitted over SDI, SMPTE 292M)

- Resolution: includes 1920×1080 of effective resolution, but also adds up blanking lines, totaling $2200\times1125.$
- Color depth: 10 bits/point/color plane ⇒ 30 bits/point
 - Computers are usually unable to render more than 8 bits/color plane.
- Frame rate: 24p, 25p, 29.97p, 30p, 50i, 59.94i, 60i
- Sampling: usually 4:2:2


What is usually understood under uncompressed HD? (1920 \times 1080, 1.485 Gbps, transmitted over SDI, SMPTE 292M)

- Resolution: includes 1920 \times 1080 of effective resolution, but also adds up blanking lines, totaling 2200 \times 1125.
- Color depth: 10 bits/point/color plane \implies 30 bits/point
 - Computers are usually unable to render more than 8 bits/color plane.
- Frame rate: 24p, 25p, 29.97p, 30p, 50i, 59.94i, 60i
- Sampling: usually 4:2:2

What is usually understood under uncompressed HD? (1920×1080 , 1.485 Gbps, transmitted over SDI, SMPTE 292M)

- Resolution: includes 1920×1080 of effective resolution, but also adds up blanking lines, totaling 2200×1125 .
- - Computers are usually unable to render more than 8 bits/color plane.
- Frame rate: 24p, 25p, 29.97p, 30p, 50i, 59.94i, 60i
- Sampling: usually 4:2:2

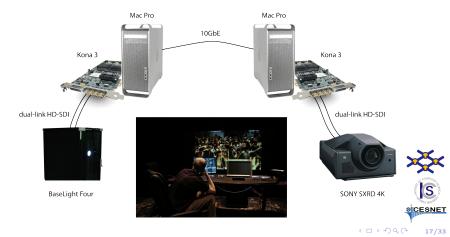
What is usually understood under uncompressed HD? (1920 \times 1080, 1.485 Gbps, transmitted over SDI, SMPTE 292M)

$$\underbrace{2200 * 1125}_{\text{total resolution}} * \underbrace{30}_{\text{bit/point}} * \underbrace{30}_{\text{fps}} * \underbrace{2/3}_{4:2:2 \text{ sampling}} = 1.485.000.000 \text{ bps}$$

- Resolution: includes 1920 \times 1080 of effective resolution, but also adds up blanking lines, totaling 2200 \times 1125.
- Color depth: 10 bits/point/color plane \implies 30 bits/point
 - Computers are usually unable to render more than 8 bits/color plane.
- Frame rate: 24p, 25p, 29.97p, 30p, 50i, 59.94i, 60i
- Sampling: usually 4:2:2

Data bandwidth - continuation

- HD 1.16 Gbps
- 2K 1.24 Gbps
- 4K 4.94 Gbps
- 4K (4096×3112) 7.12 Gbps
- 6K 15.94 Gbps


UltraGrid – real-time transmission and latency

- End-to-end (including camera, network and display)
- Frame is shot by video camera, captured, transmitted and displayed
- Uncompressed HD: 85 ms
 - Centaurus II capture card
 - Linux
 - 10GE Myrinet card
- DXT-Compressed HD: 95 ms
 - At least 4 CPU cores
 - Otherwise same configuration
- E.g. professional digital camera has shutter lag 40ms
 - time between you pressing the shutter release button and the camera actually starts taking the shot CESNET

S

UltraGrid – usage example

- partnership with a movie industry: CinePost
- experimental use of UltraGrid for remote cutting and color adjustment

UltraGrid – usage example

- partnership with a movie industry: CinePost
- experimental use of UltraGrid for remote cutting and color adjustment

<□ ▶ ∽ Q (? 18/33

CoUniverse: Motivation

- Orchestration of large number of components
 - data: producers, consumers, distributors
 - starting, stoping, (re)configuring, monitoring
 - underlying infrastructures: networks, $\lambda\text{-services},$ computing elements
 - reservations, allocations, monitoring
 - handling alternative resources
- Ever changing environment
 - monitoring, adaptation, managing alternatives

CoUniverse: Motivation

- Real-time multimedia applications
 - bandwidth of data streams comparable to capacity of links
 - automagic additivity assumption no longer works
 - many application can't automatically adapt to networking conditions
 - either need to be told explicitly what to do
 - or use an alternative application
 - encapsulation of applications, that can't be modified themselves

CoUniverse: Architecture

- Universe
 - collaborative space of limited size
 - equivalent of "venue" in other systems, though with slightly different motivations (size of scheduling, allocations, monitoring, etc.)
- Multiverse
 - information service
 - registration and lookup of universes

CoUniverse: Architecture

- Control plane vs. data plane
 - optimized for different purposes
 - control plane has robustness and resilience as primary focus
 - based on peer-to-peer overlay network with aggressive monitoring and rerouting
 - data plane has performance (bandwidth, latency) as primary focus
 - uses native network including some specialized features like multicast (application-level, network-level, optical-level), dedicated circuits (λ -services, SONET circuits)

CoUniverse: Architecture

Components

- network composed of network nodes and network links
- applications organized into application groups
 - encapsulation of non-modifiable applications
 - integration of applications that can be modified
- application group controller (AGC)
 - steers application groups
 - dynamically elected, any node can take this role (conceptually, though there might be some policy-based limitations)
 - takes care of stream scheduling, plan preparation and distribution
 - reacts to changes in the Universe (on any level)

CoUniverse: Implementation

- Java-based prototype implementation
 - JXTA 2.4 for control plane
- Scheduler implementation
 - implemented constraint-based scheduler, that works fine for smaller communities (uses Choco solver)
 - implemented simple scheduler for application groups, that don't use bandwidth comparable to link capacities
 - working on a scheduler using combination of heuristics and constraint-based verification
- Application modules
 - UltraGrid + various videoconferencing applications
 - generic application wrapper (e.g., microscope image streaming applications, etc.)

CoUniverse: Implementation

- Monitoring
 - network node monitoring, application monitoring, network link monitoring (on application level, not ping)
 - currently working on more advanced monitoring (we don't want magic-closed MonALISA)

CoUniverse: Implementation

- Network visualization
 - visualization of the resulting plan, active streams, nodes applications
 - integration of data from monitoring in progress
- https://www.sitola.cz/CoUniverse/

IltraGrid

CoUniverse

JPEG 2000

CoUniverse: Demos

- GLIF 2007
- SC|07
- planned demonstration Internet2 Fall MM 2008, SC|08

28/33

JPEG 2000

- Superior low bit-rate performance
 - Offers superior performance at very low bit-rates (0.25 b/pixel)
- Lossless and lossy compression
- Progressive transmission by pixel accuracy and resolution
 - Compressed stream can be organized by pixel accuracy
 - Resolution as original, more data received more quality image displayed
 - Compressed stream can be organized by resolution accuracy
 - Quality as original, more data received bigger resolution image displayed

UltraGrid

CoUnivers

JPEG 2000

JPEG 2000

• Half data image example - somebody cut the wire

UltraGrid

CoUnivers

JPEG 2000

JPEG 2000

• Half data image example - somebody cut the wire

JPEG 2000 – implementation

- 3 basic steps
 - RGB <-> YUV color space conversion (optional)
 - YUV 4:2:2 sampling saves 1/3 of bandwidth
 - Discrete Wavelet Transform DWT
 - DWT is the mechanism behind the progressive resolution transmission capability
 - Bit plane coding

My implementation on GPU using CUDA

Measured on HD image using GeForce G280 GPU

- RGB <-> YUV color space conversion (optional)
 - 0.5ms using CUDA
 - 6ms SSE2 assembler instructions using 128bit registers
- Discrete Wavelet Transform DWT
 - 2ms using CUDA unoptimized version, can be improved
 - 255ms on CPU, using C highly unoptimized version
- Bit plane coding
 - not implemented

Laboratory of Advanced Networking Technologies

Thank you for your attention! *Q?/A!*

matela@ics.muni.cz

