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Abstract— We present the development, architecture, and
features of a new multi-device mHealth software platform to
support near real-time remote monitoring of metabolic health
and timely intervention in the treatment and survivorship of
cancer patients. Our platform, mEnergy, leverages a human-
centered design process, and integrates in a unified, web-based
framework consumer-grade hardware—Fitbit wearable sensor
devices, smartphones, and Withings smart scales. mEnergy can
aid oncologists in identifying early indicators of muscle-wasting
(sarcopenia) due to sleep disturbance, insufficient weight recov-
ery, or reduced/limited activity. The platform aims for a smooth
transition into clinical practice and increased adherence to
evidence-based recommendations, in particular in underserved
geographical areas. This toxicity-surveillance approach based
on mHealth technologies can improve treatment outcomes,
quality of life, and survivorship.

I. INTRODUCTION

Smart devices for mobile health (mHealth) offer unprece-
dented opportunities for remote and distributed toxicity mon-
itoring and timely intervention across health conditions [1]–
[3]. Such devices have great potential for medical appli-
cations in the context of reduced point of care access,
e.g., in rural areas, or when toxicities evolve faster than
follow-up care intervals, e.g., rapid loss of muscular mass
in cancer treatment. These smart devices can also have com-
plementary strengths: for example, in monitoring metabolic
health, smartwatches could detect breathing disturbances,
while smart scales could track trends over time in body com-
position. At the same time, the production and availability of
health smart devices are subject to vendor fluctuations. For
example, Fitbit currently offers competitive smartwatches but
has discontinued its smart scale product, an area in which
Withings is now a leader.

Unfortunately, integrating these hybrid health manufactur-
ers and device measurements into a single interface for the
purpose of remote surveillance and analysis by clinicians
poses significant challenges. These challenges include de-
vice reliability and affordability issues, system-level design
issues, and analysis and presentation issues. In terms of de-
vice reliability and affordability, relatively low-cost devices
from Fitbit and Withings can reliably detect sleep-related
disturbances [4], [5], or body composition fluctuations over
time [6], [7], but have yet to be successfully validated in
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the detection of specific medical conditions. Other mHealth
devices have been approved for the detection of specific med-
ical conditions (e.g., Apple watch [8] or Samsung Galaxy
watch [9] for apnea detection), but can be cost-prohibitive to
underserved patients or points of care [10]. Clinicians and
patients should be able to select the set of devices most
compatible with their constraints, and leverage their potential
integration through open authorization standards like OAuth
2.0, which enable applications to securely access the user
data. System design issues include accessing, harmonizing
and integrating data from these multiple mHealth sources.
Internet of Things (IoT) hubs [11] have been introduced
in the context of smart homes, where correlations among
measurements or devices are less important than in mHealth,
and varying data granularity and type are less of a chal-
lenge. In the style of these IoT hubs, mHealth applications
typically leverage a single device type [1], [12], proprietary
dashboards for multiple devices made by the same manufac-
turer [13], [14], a collection of one app per device manu-
facturer [15], or construct their own integrated device with
multiple sensors [16]. In these approaches, it is difficult to
jointly interpret multiple possibly correlated health biomark-
ers, where different factors measured by different devices are
in play. Last, the analysis and presentation of these integrated
mHealth data through graphical user interfaces or dashboards
needs to handle both (a) large amounts of data at multiple
granularities, leading to information-dense displays, and (b)
an audience with traditionally low data visualization literacy.

In this work, we demonstrate a unified web-based frame-
work for the integration of consumer-grade smart devices
from different manufacturers into a patient-specific, cross-
platform ecosystem. We instantiate this framework into an
interactive system designed to help radiation oncologists re-
motely monitor the metabolic health of head and neck cancer
survivors [17], with a focus on adaptive sleep disturbance,
weight recovery, and activity management. Sarcopenia, or
muscle wasting [18], [19], which is directly associated with
increased mortality and poorer clinical outcomes [20], affects
65% of head and neck cancer patients after radiotherapy
and is directly related to survival outcomes across multiple
datasets [21], [22], as well as correlated with multi-valent
consequential toxicity profiles [23]. While the mechanisms
responsible for sarcopenia are not elucidated [24], [25],
clinicians could prospectively assess and refer the patients,
if appropriate, to the appropriate remote intervention, all
included in the current standard of care: (1) referral for home
polysomnography (PSG) assessment for sarcopenia due to



Fig. 1: System Architecture. As part of a clinical study, patients are provided with a Fitbit smartwatch and a Withings smart
scale, with credentials issued by their care team, to track daily health data at home. The data is synchronized with the
respective cloud servers via the patient smartphone. The care team can then access the data remotely through the platform
interface. The interface uses the issued login credentials to gain access, then makes application programming interface (API)
calls to retrieve and visualize the data.

sleep disturbance [26]–[28], (2) tele-nutrition consultation
for sarcopenia due to insufficient weight recovery, (3) home
health/rehab referral for sarcopenia due to reduced/limited
activity.

Sarcopenia detection is traditionally performed through
evaluation of computed tomography (CT), magnetic reso-
nance imaging (MRI), or dual x-ray absorptiometry (DEXA)
imaging results when already being taken for other diag-
nostic purposes [29], as traditional height-weight formulas
have been shown ineffective at discriminating post-therapy
muscle loss [30]. However, this method does not allow
continuous monitoring during treatment, as these scans are
generally done at infrequent intervals. Other approaches in-
clude bioelectrical impedance (BIA) [31], ultrasound, hand-
grip strength, and measurements of deuterated creatine in
urine. Of these approaches, BIA has been shown to be
comparable to CT scans [31] and hand-grip strength [32],
and is uniquely available in commercial home-monitoring
devices. Our framework instantiation demonstrates integra-
tion of consumer-grade devices: a BIA smart scale (Withings
Body+) with a smartwatch that measures peripheral capillary
hemoglobin oxygen saturation (SpO2) via photoplethysmog-
raphy (Fitbit Sense 2), which serves as a proxy for respiration
and can identify hypopneic events during sleep.

II. METHODS

This work reflects an interdisciplinary remote collabora-
tion among three research teams. The core teams consisted
of radiation head and neck oncologists at the MD Anderson
Cancer Center at the University of Texas, a data mining
expert at the University of Iowa, and human-centered data
scientists at the University of Illinois Chicago (UIC). The
team met weekly to identify project goals, and to discuss
progress in the data collection, authentication, and the sys-
tem’s design. Because our approach leverages consumer-
grade hardware on the patient side, and the platform is

to be used by clinicians only, our design process did not
include patient input. We adopted an Activity-Centered De-
sign (ACD) approach [33], an extension of Human-Centered
Design, due to its higher success rate in interdisciplinary
collaboration settings. The UIC Institutional Review Board
approved all experimental procedures involving human sub-
jects in this work.

Requirements for our system were identified through in-
terviews with our clinical collaborators and refined through
feedback in regular meetings where designs and system
prototypes were shared with the team. The following re-
quirements related to sarcopenia risk were identified: (1)
Monitor insufficient weight recovery during treatment and
after through body composition trends over 3-12 months; (2)
Monitor sleep disturbance by evaluating indicators of apnea
such as night-time SpO2, heart rate and sleep quality over
time; (3) Monitor reduced or limited activity; (4) Support
analysis of correlation among these factors, including pa-
tient reported outcomes (PROs) that could help differentiate
between apnea, sarcopenia, and chemo-radiation effects: fa-
tigue, sleep quality, pain, and drowsiness [34]–[37].

Non-functional requirements included visual scalability
and a low learning curve [38], 24/7 remote accessibility, and
secure access to the patient data.

A. Data, Processing, and Implementation

Our framework integrates data generated by a subject via
PROs, a Fitbit Sense 2 smartwatch and a Withings Body+
scale. The devices generate daily readings of weight, muscle
mass, fat mass, and bone mass over time (Withings Body+),
respectively daily ratings of sleep efficiency scores, total time
spent in each sleep stage, minutes spent at each activity level,
daily calories burned, and steps over time, as well as intraday
oxygen saturation, intraday heart rate and sleep stages during
sleep at minute intervals (Fitbit Sense 2). The data includes
demographic and clinical information such as gender, age,



Fig. 2: Visual analysis of multi-device health data. (A) Demographics and PRO information panel showing demographics
and patient-reported outcomes (B) Navigation panel to view data on a yearly, quarterly, monthly, or weekly basis as well
as a custom range. (C) Body composition panel: (C.1) Sarcopenic trend over time. (C.2) Muscle mass ratio and fat mass
ratio trends for the selected month, with the option to track weight trends. The panel indicates that the subject has a healthy
body composition pattern and no significant muscle loss. (D) Sleep Analysis Panel: (D.1) Sleep quality showing the overall
sleep quality score for the selected time period. (D.2) SpO2/HR view showing oxygen saturation level (SpO2), with red
indicating possible sleep disturbance events and heart rates (HR) in black during a selected day/night, and dotted horizontal
lines showing average daily SpO2 and HR. The color-coded background reflects different sleep stages. The subject is
experiencing multiple sleep disturbance events, a potential indication of apnea events. (E) Activity Panel: (E.1) Activity goal
completion view showing overall activity goal completion percentage. (E.2) Activity view displaying the detailed activities
over time. We see reasonable activity levels which do not explain the fatigue reported by the subject. The most likely
explanation of the fatigue and drowsiness being reported is thus apnea.

height, initial reported weight, and current weight. Patient-
reported symptoms (sleep, fatigue, pain, and drowsiness) can
be input into the interface.

To assess body composition and identify if the patient is at
risk for sarcopenia or sarcopenic obesity, we track temporal
trends in lean mass index (LMI) and fat mass index (FMI),
using the following standard formulas [39]:

FMI =
Fat Mass Weight(kg)
(Height ∗ Height)(m2)

(1)

LMI =
Weight ∗

(
1− Fat Ratio

100

)
(kg)

(Height ∗ Height)(m2)
(2)

where Fat Mass Weight represents the total weight of fat in
the body, and Fat Ratio is the proportion of fat in the body.

To facilitate subject-specific monitoring, our framework
instantiation was created using JavaScript, and incorporates
the D3.js and React libraries. To ensure the security of
user data, we implemented OAuth 2.0 for access, requiring
user authentication and permission prior to accessing and
visualizing personal data.

III. RESULTS

Our multi-device platform leverages commercially avail-
able wearable sensor technologies and smart scales, smart-
phones, and web APIs to collect and visualize in a secured
web-based visual interface real-time data related to activity,
sleep, and body composition (Fig. 1).

A. System Components and Architecture

The system comprises four components: (a) a wearable
sensor device supporting activity, heart rate, and sleep mon-
itoring (Fitbit Sense 2); (b) a smart scale supporting weight
and body mass monitoring (Withings Body+); (c) a smart-
phone capable of running the Fitbit and Withings mobile
apps; and (d) a web-based graphical interface.

We selected the Fitbit and Withings Scale due to their
popularity, affordability, and user-friendly design for tracking
activities and weight. The Fitbit has been utilized in numer-
ous studies to analyze sleep patterns and heart rate and is a
well-established device in activity tracking in biomedical re-
search [1], [12]. Similarly, the Withings smart scale has been



Fig. 3: Example sleep analysis. (A) The subject reports experiencing fatigue and drowsiness. (A) The sleep view shows
sleep efficiency scores for a selected month, with color representing sleep scores. Grey indicates the current selected date.
The subject has overall good sleep efficiency, with above 89% on average. (B) The sleep stages view shows the distribution
of sleep stages over time, indicating the total minutes spent in each stage, which is color-coded according to the sleep stage.
The subject spent less time waking, confirming healthy sleep patterns.

validated for studying weight changes [6], [7]. Additionally,
these devices are affordable and easy to use at home. Both
Fitbit and Withings devices connect to mobile applications
via Bluetooth, which allows users to wirelessly upload their
daily data and explore them within the apps. Synced data
are automatically uploaded to the respective cloud servers
anytime a user accesses the app.

The web-based platform, currently hosted at
hnc.evl.uic.edu, offers a user-friendly interface to access and
explore health monitoring data, including body composition,
sleep analysis, and activity patterns over time. In a typical
clinical study, patients are provided with a Fitbit smartwatch
and a Withings scale, with credentials issued by their care
team (Fig. 1). The patients then track daily health data
at home, which is uploaded to the cloud via the patient’s
smartphone. The care team can then access and explore the
data remotely through the platform interface. The platform
uses the issued login credentials to access the data securely.
Once access is granted, the platform then makes web API
calls to retrieve the data. To enhance security, data queried
is removed upon session termination and not stored.

B. Data Visualization Design

We designed the interface based on constructive and
detailed feedback from our collaborators using a parallel
prototyping approach [40]. The interfaces comprises four
views: 1) the demographics and PRO information panel
displays the subject demographics and self-reported out-
comes (Fig. 2.A); 2) the body composition panel assists in
identifying sarcopenic obesity (Fig. 2, C.1, C.2); 3) the sleep
analysis panel aids in exploring sleep data and identifying
sleep disturbances (Fig. 2, D.1, D.2); and 4) the activity panel
assists in exploring daily activities (Fig. 2, E.1, E.2).

The top navigation panel (Fig. 2.B) provides options for
exploring data on a yearly, quarterly, monthly, or weekly
basis. Users can also select a custom range to explore the
data. Selecting a date range will trigger relevant web API
calls to retrieve the corresponding data. By default, the
system displays data from 30 days to the current date.

1) Demographics and PRO Information Panel: The infor-
mation panel (Fig. 2.A) displays demographics such as name,
age, height (meters), initial weight (kg), and current weight
(kg). Patient-reported outcomes such as sleep, fatigue, pain,
and drowsiness can be input on a scale of 0 to 10, with
0 representing the best state and 10 indicating the worst.
Logging out will clear all the data stored in the session
storage for enhanced security.

2) Body Composition Panel: The body composition panel
comprises two charts. The left chart illustrates the Lean Mass
Index (LMI) versus the Fat Mass Index (FMI), highlighting
the risk of sarcopenia (Fig. 2.C.1). The chart is divided into
four quadrants based on LMI and FMI values: Sarcopenic
Obese, Low Lean Mass, High Lean Mass, and Obesity.
We mark patients at risk of sarcopenia when their LMI is
below 16.7kg/m2 for males, 13.8kg/m2 for females, and the
average between the two (15.25kg/m2) when user-reported
sex is unspecified, based on reports in the literature [41].
Obesity, including sarcopenic obesity, is determined based on
FMI above 9kg/m2 for males, 12.6kg/m2 for females, and
the average between the two (10.8kg/m2) [42]. By default,
the chart displays the current condition as a dot marker. The
chart can also show the trend over time, where the overall
LMI versus FMI trend for the selected period is shown with
dots and links. Each dot represents the FMI and LMI values
aggregated weekly, color-coded from light green to green,
with green indicating the most recent data. Links are utilized



Fig. 4: Daily activity monitoring in the Activity Panel. (A) Activity calories view showing the number of calories burned
each day over a month. (B) Steps view showing the daily step count throughout the month, color coded based on the steps.
The black line illustrates the step goal established by the subject.

to depict the trend over time. Hovering over each dot reveals
information about FMI, LMI, and weight.

The right chart displays body composition over time,
enabling the observation of weight, muscle mass ratio, and
fat mass ratio trends (Fig. 2.C.2). These trends can be
explored weekly or monthly, where the daily weight trend
over time is graphed, while selecting quarterly or yearly
aggregates the data per month. Each chart dot represents
a specific day or month and is color-coded based on the
attribute. The current date is highlighted as grey. Selecting
a date in this panel will update the data shown in the other
panels. Data and attribute values for each dot show as details
on demand.

3) Sleep Analysis Panel: The sleep analysis panel allows
clinicians to assess a patient’s sleep quality and investigate
various sleep stages and efficiency during a selected time
period based on the data retrieved from Fitbit Sense 2. This
panel facilitates exploring oxygen saturation level (SpO2)
and heart rates (HR) during a selected day/night, as indicators
of sleep disturbance. The panel comprises two charts side
by side. On the left, it displays the overall sleep quality
score based on the aggregated sleep efficiency score for the
selected time period retrieved from the Fitbit (Fig. 2.D.1).
The right chart is multi-tabbed and shows SpO2/HR, sleep
stages, and sleep efficiency. The chart shows the changes
in Spo2 saturation and HR in detail (Fig. 2.D.2). Due to
limitations associated with retrieving intraday data from
Fitbit via the web API, we explore the sleep data for a
selected day. In this view, the per-minute SpO2 and HR
data are visualized using line charts, with average SpO2 and
HR values represented as dotted lines to indicate variability.
The HR is displayed in black, while the SpO2 is color-

coded based on the saturation level. Saturation levels in
healthy adults range from 94% to 98% [43], and a decline
of 3% to 4% from the baseline can indicate potential apnea
events [44]. Hence, we considered SpO2 levels below 91%
as potential sleep disturbance events, and are shown in red.
Darker blue color indicates a saturation level lower than
the average daily SpO2, and lighter blue color represents
a healthy saturation level. This view also highlights the
time the patient spent in different sleep stages, color-coded
according to each stage. Additionally, hovering over the
stages reveals the exact time and minutes the patient spent in
that stage. The sleep stage view details the time, in minutes,
that the patient spent in the four sleep stages identified by
Fitbit: REM, Light, Deep, and Wake (Fig. 3.B), while the
sleep efficiency view shows the efficiency scores (Fig. 3.A).
This panel is linked with other panels, and selecting a day
will highlight the corresponding data in other panels.

4) Activity Panel: The activity panel view shows the
completion of activity goals and detailed activities within
the specified time range retrieved from Fitbit. Similar to
previous panels, this panel also comprises two charts. The
left chart displays the overall goal completion percentage,
aggregated based on the selected time range (Fig. 2.E.1).
The right chart illustrates the detailed activities over time
using multi-tabbed views. For the selected time range, it
provides total activity calories (Fig. 4.A), overall activity
counts (Fig. 2.E.2), and the number of activities at each level:
lightly active, fairly active, and very active, along with the
total step count over time (Fig. 4.B), color-coded according
to their values. Similarly, this panel is linked with others,
and selecting a day will update the other panels.



IV. DISCUSSION AND CONCLUSION

We described the architecture and features of an mHealth
software platform to support the near real-time remote
monitoring and timely intervention in the treatment and
survivorship of cancer patients [45], [46]. For example,
head and neck chemo and radiation therapy can result in
fatigue and drowsiness [47]–[51], but not necessarily late
sleep disturbances, while sarcopenia results in fatigue but not
drowsiness or sleep disturbances, and apnea may present with
all three symptoms. Integration of multiple consumer-grade
devices and measurements in a unified interface can allow
radiation oncologists to analyze correlations among multiple
factors, to disambiguate among possible causes for patient
symptoms, and prescribe in a timely fashion appropriate
standard-of-care interventions.

While the standard of care provides potential interdisci-
plinary interventions to reactively mitigate serious cancer
treatment toxicities like sarcopenia, timely detection and
insight into the source of such toxicities are essential and
could engender earlier intervention or (p)rehabilitation. How-
ever, cancer follow-up treatment is currently focused on
survival, with follow-up checkpoints aligned with survival
milestones. Advanced smart device technologies can enable
the remote, distributed monitoring of survivorship toxicities,
helping broaden the reach of timely interventions. Daily data
from these devices can help the early detection of potentially
severe patient conditions, and the implementation of a timely
treatment plan.

The design of our platform is informed by a human-
centered design process and a decade-long collaboration
with radiation oncologists at a large national cancer center,
with the explicit goal of supporting a smooth transition into
clinical practice. While this work describes the development,
architecture, and main features of mEnergy, data collection
and an extensive analysis of such data and of its clinical
value are beyond the scope of this paper. In future work, we
will evaluate this platform in clinical practice.

Our architecture leverages open-access protocols and
APIs, allowing expansion and integration of alternative de-
vices and treatment factors in a modular fashion. While
consumer-grade devices are subject to market fluctuations,
as well as API modifications, these devices nevertheless use
the same open standardized protocol (OAuth 2.0) that we
leverage in our platform, and API changes require minimal
changes in our software. This is a strength of our approach.

In conclusion, our software platform mEnergy supports
the near real-time remote assessment of metabolic energy
disorders in cancer patients. This platform can aid on-
cologists in identifying early indicators of muscle-wasting
(sarcopenia) due to sleep disturbance, insufficient weight
recovery, or reduced/limited activity. This approach paves
the way towards a toxicity surveillance environment based
on consumer-grade mHealth technologies that can improve
the treatment outcomes, quality of life, and survivorship of
patients. Our instantiation of this platform for head and neck
cancer care integrates consumer-grade smart technology to

facilitate near real-time remote monitoring and assessment.
The overall approach can transfer to other conditions such
as monitoring of sarcopenia in older adults.
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