
VideoWall file:///Users/spiff/Desktop/untitled%20folder/VideoWall.html

1 of 9 7/10/07 7:28 PM

Final Report for NRL

Development of Display Environment for LASCO, EIT and SECCHI

Prepared by
Tae Jin Kim, Cole Krumbholz, Jason Leigh

Electronic Visualization Laboratory, University of Illinois at Chicago
July 10, 2007

 Background

Researchers in the Solar Physics Branch at Naval Research Laboratory (NRL) have been involved in observational
and theoretical studies of the solar atmosphere since the early years of the space age. They are viewing impressive
solar disturbances whose depth and violent nature are now clearly visible in the first true stereoscopic images ever
captured of the Sun. These new views, recently released by NASA, are providing scientists with unprecedented
insight into solar physics and the violent solar weather events that can bombard Earths magnetosphere with particles
and affect systems ranging from weather to our electrical grids.

Electronic Visualization Laboratory (EVL) has helped establish a solar imagery display environment, two
EVL-developed display systems capable of viewing and managing files on the scale of thousands of pixels per square
inch: a 9-panel tiled LCD wall ideal for viewing high-resolution 2D imagery, and an ImmersaDesk4 for viewing
high-resolution 3D imagery.

The tiled display consists of 9 cinema LCD displays with an overall resolution of approximately 8k by 5k pixels and
will be used to work with multiple HD quality video feeds, enabling multi-spectral analysis of synchronized image
streams from sensors on each satellite. The ImmersaDesk4, invented at the University of Illinois at Chicago (UIC)
Electronic Visualization Laboratory (EVL), is a tracked, 4-million-pixel display system driven by a 64-bit graphics
workstation. Its compact workstation design is comprised of two 30-inch Apple LCD monitors mounted with
quarter-wave plates and bisected by a half-silvered mirror enable circular polarization. It permits scientists to visualize
the stereo imagery in high resolution 3D. Multiple users can view the head-tracked 3D scene using lightweight
polarized glasses.
Solar physicists at NRL hope that this new technology will allow them to better visualize the three dimensional
structure of coronal mass ejections and evaluate the impact these events have on the earth's atmosphere.

What are LASCO, EIT and SECCHI?

LASCO (the Large Angle and Spectrometric Coronagraph) is a set of three "coronagraph" telescopes on-board
the SOHO satellite. A coronagraph is a special type of telescope that uses a solid disk ("occulter" or "occulting
disk") to actually cover up the Sun itself, completely blocking direct sunlight, and allowing us to see the
atmosphere around the outside of the Sun.
LASCO comprises of three telescopes (C1, C2 and C3), each of which looks at an increasingly large area
surrounding the Sun. For the first year-and-a-half of the SOHO mission, all three instruments worked perfectly.
However, in 1998 SOHO was accidentally "lost" in space after it received a bad command. The entire spacecraft
lost power and essentially froze solid for several weeks. Eventually -- miraculously! -- the SOHO team were
able to relocate the spacecraft, regain control and slowly power-up and thaw out the instruments. Sadly, the
LASCO C1 camera was lost as a result of this but the rest of spacecraft came through almost completely
unscathed! Eight years later -- and over ten years since launch -- LASCO C2 and C3 (and most of the rest of
SOHO!) continue to work extremely well, sending back images and data on a daily basis.

C2 C3
EIT (the Extreme ultraviolet Imaging Telescope) is another of the instruments on-board SOHO. Unlike LASCO
it is not a coronagraph, but instead takes direct images of the Sun using different filters that allow us to see
different layers of the Sun's outer atmosphere. An example of an EIT image can be seen opposite. Although they
are completely separate instruments, LASCO and EIT share a lot of the electronics on the SOHO spacecraft and
the NRL Solar Physics Branch are responsible for support for the camera and electronics of EIT, as well as
being the principal investigation team for the LASCO instrument.

VideoWall file:///Users/spiff/Desktop/untitled%20folder/VideoWall.html

2 of 9 7/10/07 7:28 PM

EIT
SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) is a suite of 5 scientific telescopes
SCIP, HI and SEB that will observe the solar corona and inner heliosphere from the surface of the Sun to the
orbit of Earth. These unique observations will be made in stereo from NASA's Solar Terrestrial Relations
Observatory STEREO. The STEREO mission was successfully launched at 8:52pm EDT on October 25, 2006
from Cape Canaveral in Florida atop a Delta II rocket.

SECCHI

Dataset for LASCO, EIT and SECCHI

The number of images for each sensor is currently between about 10 and about 790. It means that whole images
for a specified sensor are buffered, and then displayed sequentially on the videowall
each image is up to 2K by 2K pixels

 Download and Compile

The source code for this software is managed by subversion software, a revision control system.

svn root : https://svn.sourceforge.net/svnroot/gpip/branches/apps/viewer

svn co https://svn.sourceforge.net/svnroot/gpip/branches/apps/viewer

The directories of source code
|---- config : the lua config files used to configure the viewer for your particular tiled display

|---- gpip : the GPIP library

|---- imgbuffer : manage image files

|---- scripts : the control scripts that determine the viewer's behavior.

|---- shaders : the programmable shaders used by GPIP

|---- utils : font, and common list

|---- viewer : contains main logic (solarvision.c/h) and the lua scripting engine (config.c/h)

|---- window
current installed softwares and libraries
mpich v1 http://www-unix.mcs.anl.gov/mpi/mpich1/index.htm

sdl v1.2.9 http://www.libsdl.org

lua v5.0.2 http://www.lua.org

freetype v.8.3 http://www.freetype.org

cfitsio v3.006 http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html

libpng v3.1.2.8

libjpeg v6.0.1

For GUI Server

luasocket v2.0.1 http://www.cs.princeton.edu/~diego/professional/luasocket/home.html

VideoWall file:///Users/spiff/Desktop/untitled%20folder/VideoWall.html

3 of 9 7/10/07 7:28 PM

For GUI Client

python v2.4.2 http://www.python.org/index.php

wxPython v2.8 http://www.wxpython.org/index.php
compile

cd $SOURCE_ROOT/viewer
make

run
mpirun -np node_number -machinefile node_file executable_file -f configuration_script -f
application_script -d data_directory -t data_type
option -f
load any lua script, configuration_script and application_script is written by lua script.
option -d
data type list
general image : -d general
lasco image : -d lasco
secchi image : -d secchi
[example] mpirun -np 4 -machinefile ../config/teiburu.dat ../viewer/viewer -f ../config/teiburu.lua -f
singlemov.lua -d /data/lasco/c3 -t lasco

 software overview

The goal is to pretend that the tiled display is actually one large seamless display.
This is done by creating one large virtual canvas, drawing images and text onto that canvas, and rendering a
piece of the canvas into each monitor's viewport.
The configuration file written by Lua script is used to define the size of the size of the virtual canvas and the
position/size of each monitor's viewport. During each rendering pass the virtual canvas is updated, and then for
each display the canvas is drawn, but cropped according to that display's viewport.
This is a typical approach for rendering multiple views using a graphics library like OpenGL.
This software design is grouped into four major components.

GPIP : Graphics Processor enhanced Image Processing library using the GPU and programmable
shaders to speed up image processing tasks.
imgbuffer : a component for managing a large set of image files and paging images into memory for video
playback.
A configuration and scripting front end that uses the Lua scripting language.
viewer : the main logic that puts these pieces together.

About how GPIP works:
GPIP manages image processing pipelines (procs) composed of operations performed on global image buffers
(globs).
Generally when using gpip you define a proc, add operations, add arguments to those operations using globs,
and then arrange the output on the screen. The operations are defined inside shaders that use the GLSL shading
language to perform the appropriate image processing logic.
Though the library provides a mechanism for fast image processing, it requires that the user understand how to
write GLSL shaders.
For example, to set up a box filter on an image, first create a GLSL shader (just a fragment shader) that takes a
texture input image, and then for each pixel writes out the average value for that region of adjacent pixels. Then
in GPIP create a proc, and add that shader as an operation. Then define the arguments for that operation, in this
case there is a single argument, which is an input image, or glob. If we wanted to add additional operations,
those operations could use the previous result as input, or other proc results, or more global image buffers
(globs).

VideoWall file:///Users/spiff/Desktop/untitled%20folder/VideoWall.html

4 of 9 7/10/07 7:28 PM

how these pieces work together

 Configuration

The configuration is written by lua script, used to configure the viewer for your particular tiled display.

add host
add_host(hostname, width, height, fullscreen)
adds a new computational node. Hosts can be specified by hostname or hostname:display. Multiple hosts can
exist on a single physical computer if that computer is configured with multiple displays.
add tile
add_tile(hostid, vx, vy, vw, vh,va, wx, wy, ww, wh)
adds a new monitor. Multiple tiles can exist on a single host if that host's display is spread across more than one
physical monitor. The view of the tile into the virtual canvas is specified by vx, vy, vw, vh. The orientation of
the tile is specified by va. The actual window that the tile occupies in host display coordinates is specified by
wx, wy, ww, wh.

VideoWall file:///Users/spiff/Desktop/untitled%20folder/VideoWall.html

5 of 9 7/10/07 7:28 PM

 Application Script

Application script is used for displaying images of LASCO, EIT and SECCHI. It specifies the directory and type of
those images, the position of a video on virtual canvas.
function return description

VideoWall file:///Users/spiff/Desktop/untitled%20folder/VideoWall.html

6 of 9 7/10/07 7:28 PM

add_sequence() sequenceid creates a new sequenced set of images.
The sequence may have more than one
set of images, but will only have one
timeline. The images are time-stamped,
and when multiple image sets are
attached to a particular sequence, they
will be synchronized to the same
timeline

[example] sequence = S.add_sequence();

add_stream(sequenceid, data_directory,
data_type)

streamid creates a new set of time-stamped
images. All files in the given directory
path will be added to the stream. Each
file in the directory should be a secchi
or lasco image with the appropriate
time- stamp embedded in the filename

[example] sensor.stream = S.add_stream(sequence, sensor.dir, dir_type)

add_video(streamid) videoid add_video() creates a video from a
stream of images. The stream argument
must be provided by a previous call to
add_stream()

[example] sensor.vid = S.add_video(sensor.stream)

load_sequence(hostid, sequenceid) prepares a sequence for viewing on a
particular host. Currently only one
sequence can be loaded on a given host.
Images from sequences not loaded on a
host will not be visible to that host's
tiles.

[example] S.load_sequence(host[i], sequence)

set_window(videoid, x, y, width ,
height, angle);

 maps the video to a rectangle within the
virtual canvas. The rectangles origin is
specified by wx, wy and its width and
height are specified by ww, wh. The
rectangle will be rotated about its origin
by wa degrees

[example] S.set_window(sensor.vid, x - w/2, y - w/2, w , w, 0);

set_diff_ramp(ramp_file) set_diff_ramp() specifies the image file
that contains the colormap to be applied
to all running difference images. It
should be a 256 pixel wide image with
each pixel along the x axis providing a
3 channel color value for greyscale level
corresponding to the pixels x
coordinate.

[example] S.set_diff_ramp("../ramps/cole_bwmid.jpg");

add_diff (videoid); creates a running difference video from
another video. The video argument
must be provided by a previous call to
add_video()

[example] sensor.dif = S.add_diff (sensor.vid);

add_text(string, x, y) create a string and places it at a desired
position

[example] S.add_text("This is sun", 2560 + 1000, 1600 + 1000)

set_hide_video(videoid, 0 or 1); hides video, set by the function,
add_video

[example] S.set_hide_video(sensor.vid, 0);

set_targ_fps(fps_value,
movie_direction);

 sets the desired frames per second and
movie's direction (forward or
backward)

VideoWall file:///Users/spiff/Desktop/untitled%20folder/VideoWall.html

7 of 9 7/10/07 7:28 PM

[example] S.set_targ_fps(targ_fps, dir);

set_targ_colormap(offset_value,
scale_factor)

 sets or adjusts colormap's offset and
scale factor

[example] S.set_targ_colormap(cmap_offset, cmap_scalef);
set_mouse(mouse_x,mouse_y, 0 or 1) sets the desired position of virtual

mouse on the virtual canvas

[example] S.set_mouse(mouse_x,mouse_y, 1);

 Stereo view - ImmersaDesk4

The ImmersaDesk4 (IDesk4) is built from 2 Apple 30" 2560 x 1600 LCD panels mounted with quarter-wave plates in
front of the LCD panels to achieve circular polarization.

x-window
configruation Configuring TwinView [example] xorg.conf

configuration
script

set two tiles, using the function "add_tile"
adjust the offset for left and right eye,
respectively, using the function
"set_tile_view_offset"
set_tile_view_offset(tileid, x_offset, y_offset)

[example]
argos_idesk4.conf

run
It is the same way as the single view. The only
difference is that "mpirun" is not needed to run,
because the host is only one.

[example]
../viewer/viewer -f
../config/argos_idesk4.lua
-f ../scripts/singlemov.lua

 GPU shader for colormap

The videowall passes the colormap and the index of color into a GPU, and the vertex shader of the GPU specifies the
value of color for each vertex.
download : colormap.frag

#extension GL_ARB_texture_rectangle : enable

/* passing from the videowall application with openGL */

uniform sampler2DRect image; // image texture location
uniform sampler2DRect colormap; // colormap texture location

uniform float cmap_offset; // offset of colormap
uniform float cmap_scalef; // scale factor of colormap

void main(void)
{
 // do a lookup into image texture
 float color = texture2DRect(image, gl_FragCoord.st).r;

 // re-calcuate the color's index for colormap
 vec2 map = vec2(color * 255.0 * cmap_scalef + 0.5 + cmap_offset, 0.0);

 // do a lookup into colormap texture
 vec4 mapColor = texture2DRect(colormap, map);

 // assign the color value for a vertex
 gl_FragColor = mapColor;
}

 The description of control key ("singlemov script")

movie control
keyboard : description
up arrow : increase fps
down arrow : descrease fps

VideoWall file:///Users/spiff/Desktop/untitled%20folder/VideoWall.html

8 of 9 7/10/07 7:28 PM

right arrow : moving forward
left arrow : moving backward
spacebar : pause moving

colormap control

keyboard : description
key "c" : increase a offset
key "z" : decrease a offset
key "s" : increase a scale factor
key "x" : descrease a scale factor

virtual mouse control

keyboard : description
key "j" : left
key "l" : right
key "i" : up
key "k" : down
key "p" : increase a movement interval
key "u" : descrease a movement interval

key "m"

: display the pixel value on current mouse position

 GUI server and client

GUI server
Compile : We don't need to do anything special
How to run the videowall with GUI server
- mpirun -np node_number -machinefile node_file executable_file -f configuration_script -f
finding_luasocket_script -f guiserver_script -f application_script -d data_directory -t data_type
- [Example] mpirun -np 4 -machinefile ../config/teiburu.dat ../viewer/viewer -f ../config/teiburu.lua -f
/usr/local/share/lua/5.1/compat-5.1.lua -f guiserv.lua -f singlemov.lua -d /data/lasco/c3 -t lasco

GUI client
How to run : python nrl_client.py
- currently, a gui client and server are using a "3333" port number
connect / disconnect

control colormap
- scale factor, "-"/"+" button : adjust a scale factor
- offset, "-"/"+" button : adjust a offset

control playing movie
- speed control, slide bar : adjust a speed
- pause button : pause playing
- direction, "<<"/ ">>" button : backward / forward playing

control video
- original button : display a original video

VideoWall file:///Users/spiff/Desktop/untitled%20folder/VideoWall.html

9 of 9 7/10/07 7:28 PM

- diff button : display a video with difference mode
- reset button : reload a video and reset
- view image button : get current displaying image (at running only singlemovie)
- new load button : type other dataset's directory and type, and click the button

running a gui client reloading another dataset during run-time

Summary of Final Deliverables

1 Status report detailing activity on each of the 4 SOW items. COMPLETED
2 Finalized Tiled Video Browser (software) COMPLETED
3 Immersadesk4 modifications for SECCHI image viewing (software) COMPLETED
4 Improvements/Modifications to Tiled Video Browser as a result of manipulation of SECCHI data once it starts
coming in. (software) COMPLETED
5 Add cursor interation to Tiled Video Browser (software) COMPLETED
6 Set up and configure Geowall software to handle SECCHI data (software) COMPLETED

