Motivations

Leverage Multi-touch overlays

More functions than a regular whiteboard

Share and annotate documents

Completely scalable

Easy to use

Enhance in-place and remote collaboration

More than a Whiteboard

Prepared material

Relocate and resize

Flawless erasing

Mirroring over different screens

Save and load sessions

Collaboration

Enhanced in-place collaboration

Remote collaboration available

Content sharing

Seamless environment

Demo

Demo

Related Works

First interactive whiteboards in the early 90s

Very active field in education

Studies demonstrate that engages children

Projector-based or touch based

Usually rely on dedicated input devices

Continue to the second of the second of

http://sage2.sagecommons.org/project/introduction/

Node.js Server Display Clients

Background: SAGE2

Collaborative Platform

Completely scalable to any size

Users share a canvas that can be interacted with

Commonly used for in-place collaboration, but remote is available too.

Arbitrary number of input clients and mirroring display clients.

SAGE Board

Data Flow

extraDataMask: 0 }

Quality vs Latency

Only most important points sent

Deterministic B-spline interpolation

Same Result on every screen

Drawing latency improved

Quality

Palette

A Special SAGE2 Application

Always in front

Square buttons, well separated

Stroke Preview

Tutorial button

Can be disabled

Multi-Touch Management

Extension: Mobile

Goody Common Com

Enables a different kind of collaboration

Easy to develop thanks to architecture

Treated as a normal touch input

No scaling

Leverage device precision

User Study

Goal

Understand how the collaborative behaviors change between using an electronic whiteboard such as our application and a more common single mouse input.

Task

Find a common path for different interest

Actually very challenging

Find optimal path in undirected graph

Easier because common in real life

Collaborative but also competitive

Setup

Performed in Cyber Commons classroom at EVL

SAGEBoard running on 20ft x 6ft screen (6m x 1.8m)

Perform the task singularly at first, to understand map and input bias.

Collaborate using both inputs, on different maps.

Drawing Input

SAGEBoard extended ad hoc for the task

Working in the exact same environment

Comparable results

Mouse used to draw, right click eraser

Mouse emulates a touch input

Feedback

University of Illinois at Chicago Department of Computer Science

Survey questions Evaluation of Whiteboard Application for Large Touch Displays

 Please rate the ease of use of freehand drawing with the whiteboard application on a scale of 1 to 10, with 1 being difficult and 10 being easy.

1 difficult	2	3	4	5	6	7	8	9	10 easy

 Please rate the ease of use of writing with the whiteboard application on a scale of 1 to 10, with 1 being difficult and 10 being easy.

1 difficult	2	3	4	5	6	7	8	9	10 casy
----------------	---	---	---	---	---	---	---	---	------------

 Please rate the ease of use of the palette interface on a scale of 1 to 10, with 1 being difficult and 10 being easy.

-										
	1 difficult	2	3	4	5	6	7	8	9	10

4) Please describe any difficulties you faced while using the Whiteboard application.

5) How could the Whiteboard application be improved? Are there any features that you felt are missing?

> Evaluation of Whiteboard Application for Large Touch Displays Survey questions version: 1, 06/02/2015. Page 1 of 2

We ask the users to rate various features

More focused on SAGEBoard evaluation

Last questions on collaborative experience

User Study Results

Premise

We do not really care about the actual scores

We are not testing the application on this particular problem

We are interested in the different behaviors with different inputs

Will the input dictate how the users collaborate?

Annotations

Users were given both styluses and pens

It was up to them where to annotate

Mostly on paper when using mouse

Mostly on the screen with multi-touch

Users did not even try annotating on screen with the mouse

Singular Task

Different Maps

Problem very hard, difficult to find similar instances

Map 1 has lower scores than map 2

The input does not influence the singular score

Different Maps

Higher scores do not mean easier.

Users spent more time solving Map 2

Map 2 has higher scores because of a greater solution space

These results will help us analyze the Collaborative task

Collaborative Task

Collaborative Scores

Scores more balanced

Input does not influence the result

Not what we are looking for

Collaborative Scores

Using multi-touch less difference in singular scores

Mouse has to be shared, it can only be owned by one user at a time

With mouse the users are no longer peers

Sharing Ratio

When using multi-touch the users share the application almost equally

Collaboration Settings

When using Multi-touch both the users are in front of the screen

When using the single mouse there are two settings, Pointer and draftsman, or draftsman and analyst.

Interestingly the role is not associated with the situation leadership.

Feedback

Usability Evaluation

Users that used a stylus in the multitouch interaction gave much better evaluations.

The low scores are related the the low precision given by the touch overlay.

Inputs Evaluation

Users were globally satisfied with the application, regardless of the used input.

Users recognized that the multi-touch input is better for collaboration.

The preference question answers were almost always in favor of multi-touch

Conclusions

Conclusions

Developed an easy to use application that extends a simple whiteboard with more functionalities.

A scalable application that can be shared in real time between many clients.

Extended the application with a remote control function, using a tablet.

Tested the application and demonstrated its usability.

Noticed how the users are not willing to use a mouse for annotations

Conclusions

Showed how a single mouse input limits the collaboration.

Showed how the single mouse make the users feel like they are no longer peers.

Showed how this misbalance in the collaboration opens the floor to leadership by one of the two users, resulting in a higher difference in scores.

Noticed how the role played in the collaboration is not related to the leadership.

Noticed how the multi-touch input results in a more shared solution.

Thank You