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Abstract 

 
Quanta is a cross-platform adaptive networking toolkit for supporting the data delivery requirements of 
interactive and bandwidth intensive applications, such as Amplified Collaboration Environments. One of 
the unique goals of Quanta is to provide applications with the ability to provision optical pathways 
(commonly referred to as Lambdas) in dedicated photonic networks. This paper will introduce Quanta’s 
architecture and capabilities, with particular attention given to its aggressive and predictable high 
performance data transport scheme called Reliable Blast UDP (RBUDP). We provide an analytical model 
to predict RBUDP’s performance and compare the results of our model against experimental results 
performed over a high speed wide-area network.   

 
1 Introduction 

Amplified Collaboration Environments (ACE) are physical meeting spaces that enable distantly located groups to work in 
intensive  collaboration campaigns that are augmented by advanced collaboration, computation, and visualization systems. 
One example of an ACE is the Continuum (Figure 1) at the Electronic Visualization Laboratory [4], at the University of 
Illinois at Chicago, and at the Technology Research, Education and Commercialization Center in DuPage County, Illinois 
[25].  ACEs are based on the concept of the “War Room” or “Project Room” which have been shown to increase the 
productivity of collocated working teams by a factor of two[29]. The goal of the Continuum is to provide the same, if not 
greater, benefits for distributed teams. To this end, the Continuum integrates a broad range of technologies that include: 
multi-party video conferencing (via the AccessGrid [1]), electronic touch screens (for intuitive shared white-boarding), 
passive stereoscopic displays (such as the GeoWall, for displaying data sets in true 3D [13]), high resolution tiled displays 
(for displaying large visualizations or mosaics of visualizations), and PDAs and laptops for wireless control of these 
systems. Taken as a whole, each of these systems requires one or more computers to support. Hence a full Continuum 
will require a compute cluster per site. Furthermore this compute cluster must also be connected to other possibly 
distributed computing clusters, which might house massive data sets that are being shared in the collaborative 
environment. At EVL, we have developed a computing paradigm called the Optiputer as the primary means for 
supporting future generation networked applications such as the Continuum. Quanta, is the networking middleware for 
supporting applications modeled after the Optiputer. 
 
The Optiputer [18] is a National Science Foundation funded project to interconnect distributed storage, computing and 
visualization resources using photonic networks. The main goal of the project is to exploit the trend that network capacity 
is increasing at a rate far exceeding processor speed, while at the same time plummeting in cost. This allows one to 
experiment with a new paradigm in distributed computing - where the photonic networks serve as the computer's system 
bus and compute clusters taken as a whole, serve as the peripherals in a potentially, planetary-scale computer. We 
differentiate photonic networks from optical networks as networks comprised of optical fibers and MEMS optical 
switching devices. There is no translation of the photons to electrons and hence no routing within photonic switches. 
Applications that control these networks will direct photons directly from the start point to the end point of a series of 
photonic switches and hence will have full control of the available bandwidth in these allocated light paths. 
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Figure 1: The Continuum- an Amplified Collaboration Environment 

In order to optimize data delivery in Optiputer applications such as ACEs, advances need to be made at several of the OSI 
network layers. At the physical layer, shared packet-switched Internet should be replaced by exclusive photonic switched 
networks to guarantee high bandwidth.  We are currently developing Stargate , an inter-domain photonic signaling 
framework to support this capability. At the data link layer, Multiple Protocol Label Switching (MPLS) or Virtual LAN 
(VLAN) replaces the slow and inefficient layer 3 switching, while at the same time providing Quality-of-Service. The 
Internet Protocol (IP) is still used at layer 3 in order to maintain compatibility with the Internet. At the transport layer, 
there is already consensus among network researchers that the current TCP imple mentations are not suitable for long 
distance high performance data transfer.  Either TCP needs to be modified radically or new transport protocols should be 
introduced.  
 
We intend to address the data transport problem with Quanta, a cross-platform adaptive networking toolkit for supporting 
the diverse networking requirements of interactive and data intensive Optiputer applications.  The goal is to provide an 
easy to use system that will allow programmers to specify the data transfer characteristics of their application at a high 
level, and let Quanta transparently translate these requirements into appropriate networking decisions. The decisions will 
include making necessary QoS reservations, and adaptively utilizing the transport protocols to fulfill the user’s data 
transfer requirements.   
 
Quanta currently uses an optical network (Starlight) and a photonic network (Omninet) as experimental testbeds. Starlight 
[24] is a project managed by the University of Illinois at Chicago, to provide an IP-over-Dense Wave Division 
Multiplexing (DWDM) peering point for national and international optical networks. Plans are underway to convert 
Starlight to a photonic network. OMNInet is a project supported by Nortel Networks, SBC Communications Inc. and 
Ameritech to assess and validate next -generation photonic technologies, architectures and applications in metropolitan 
area networks [17]. 
 
This paper begins with a description of Quanta’s architecture and capabilities, with particular attention given to the 
development of high performance data transport schemes. We describe an algorithm for an aggressive bulk data transfer 
scheme called Reliable Blast UDP (RBUDP), provide an analytical model to predict its performance, and compare the 
results of our model against our implementation of RBUDP.  Finally we extend the analytical model to support high 
throughput reliable data streaming, and compare it with the graphics streaming experiments performed during the IGrid 
2002 conference in Amsterdam, The Netherlands. 
 
2 Related Work 

In 1995, George Gilder predicted that network bandwidth would triple every year for the next 25 years [7].  So far his 
prediction seems to be approximately correct.  Each fiber optical wavelength channel can run at 10 Gbps.  Wavelength 
division multiplexing gives 128 or more  channels per fiber, resulting in a combined bandwidth of 1 terabits per second 
(almost 20,000,000 times faster than 56 kilobits per second modem connection). Consequently, this has led to a situation 
where straightforward use of the BSD socket library cannot take advantage of the high bandwidth available, making 
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commonly used networking protocols unsuitable for high-end applications. Even if networked applications could make 
Gigabit “lambda reservations”, it does not however guarantee that they will be able to make full use of that bandwidth. 
This problem is particularly evident when one attempts to perform large bulk data transfers over long distance, high-speed 
networks (often referred to as “long fat networks” or LFNs) [26]. 
 
LFNs such as those between the US and Europe or Asia have extremely high round-trip latencies (at best 120ms). This 
latency results in gross bandwidth under-utilization when TCP is used for data delivery. This is because TCP’s 
windowing mechanism imposes a limit on the amount of data it will send before it waits for an acknowledgement. 
International networks have long delays causing TCP to spend an inordinate amount of time waiting for 
acknowledgments. Consequently, the client’s data transmission will never reach the peak available capacity of the 
network. Traditionally this is “remedied” by adjusting TCP’s window and buffer sizes to match the bandwidth * delay 
product (or capacity) of the network. For example, for a 1Gbps connection between Chicago and Amsterdam, with an 
average round trip time of 110ms, the capacity is 1024*0.11/8 = 14.1 Mbytes. Adjusting TCP window size is problematic 
for several reasons: firstly, on some operating systems (such as IRIX for the SGI,) the window size can only be modified 
by building a new version of the kernel- hence this is not an operation a user-level application can invoke. Secondly, one 
needs to know the current capacity of the network in order to set the window size correctly. The current capacity varies 
with the amount of background traffic already on the network and the path to the destination. 
 
Several alternative solutions are possible. One solution is to provide TCP with better estimates of the current capacity of a 
link. The WEB100 Consortium [28], which takes this approach, is developing techniques to modify router operating 
systems to report available bandwidth over a network link. They are also modifying operating systems kernels to allow 
better monitoring of TCP performance. Another solution is to use parallel TCP. In parallel TCP, the payload being 
delivered is divided into N partitions, which are delivered over N TCP connections. Both Leigh [12, 19] and Allcock [2] 
have shown that parallel TCP can provide throughput as high as 80% of a network’s available bandwidth, but its 
performance is unstable when excessive numbers of sockets are used. Moreover, it is difficult to predict the correct 
number of sockets to use.  However, there is a growing community of high bandwidth network users that are realizing 
that there is no need for a congestion control mechanism if the application is able to reserve a dedicated network path 
such as in the case of photonic networks. As a consequence, there is now great interest in developing UDP-based 
protocols to improve bandwidth use.  Simple Available Bandwidth Utilization Library (SABUL) [8] and Tsunami [27] 
are two recent examples. Our Reliable Blast UDP (RBUDP) protocol which we developed in 2000 is another [12].  The 
unique contribution of RBUDP is that we are able to provide an analytical model to predict its performance. This kind of 
predictability is important for data intensive, interactive applications. 
 
3 Overall Design of Quanta 

Quanta emerged from almost a decade’s experience in connecting immersive CAVE systems [3] to each other and to 
supercomputers- this concept is called Tele-Immersion [14].  Quanta’s predecessor is CAVERNsoft [19], which has been 
widely used by the CAVE community to develop advanced tele-immersive applications.  Consequently, Quanta inherits 
all of the data sharing abstractions that have been found to be useful for developing these applications; and networked 
applications in general. Quanta aims to provide an Adaptive Network Controller (ANC) (Figure 2) and three supporting 
services: a Resource Monitor, a Quality of Service provisioner and a collection of data transport mechanisms and data 
sharing abstractions. The ANC’s first role is to take application-specified data delivery requirements (e.g. bandwidth, 
latency, jitter, reliability, etc) and translate them into networking and computational resource allocations needed to meet 
the applications’ demands. The ANC will monitor the current state of the network or QoS capability, select an optimal 
transmission protocol, and make QoS requests (if available.)  If QoS is available, the ANC contacts the Admission 
Control system to determine if the desired bandwidth is available, and then makes a reservation using the Signaling 
Controller. Once the strategy has been activated, the ANC will monitor the progress of the data transmission and adjust 
networking and computational parameters to sustain the desired performance. To accommodate multiple simultaneous 
and heterogeneous network flows, the ANC may alter some of the low-level transport protocol para meters (such as buffer 
size) or may adjust QoS reservations dynamically. The Signaling Controller maintains device-independence via a plug-in 
architecture that dynamically loads-in service-provider-specific libraries to signal for QoS. In the case of our photonic 
testbeds, the signaling controller interacts with Stargate to make light path reservations. 
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Figure 2: Quanta's  Adaptive Networking System. 

 
3.1 Stargate: Inter-domain Light Path Provisioning for Quanta 

Work is currently underway to develop a software infrastructure for light path provisioning on photonic networks (Figure 
3). While Quanta can ensure that data is optimally delivered over these light paths, it presently does not have the ability to 
allocate these dedicated light paths. This is the role of Stargate. An application wishing to allocate a light path between 
two end points, contacts its local Stargate which will dispatch generic light path signaling messages to neighboring 
Stargates until the final destination is reached. Each Stargate will translate the generic light path signaling message into 
the native photonic signaling message that is understood by the local intra-domain light path signaling facility. This 
facility then signals the photonic switch to make adjustments to its internal MEMS switches to establish the connection. 
At the present time a prototype of Stargate is being developed, and TL1 command sets and APIs from multiple vendors 
such as Nortel, Glimmerg lass, Calient and IMMI, are being examined to identify common commands that Stargate will 
need to support. 
 
3.2 Quanta’s Data Transport and Data Sharing Capabilities 

Quanta’s data transport capabilities include C++ classes that simplify socket-level programming of TCP, UDP and 
multicast communications (these are encapsulated in the C++ classes: QUANTAnet_tcp_c, QUANTAnet_udp_c, 
QUANTAnet_mcast_c respectively). The reader is encouraged to examine the Quanta API manual [20] for a detailed 
explanation of how one goes about using the individual C++ classes. The names of the C++ classes are provided here as a 
reference. All the data transport classes have performance monitoring built into them so that an application can easily 
determine how much bandwidth it is using and how much latency it is experiencing. As Quanta is a cross-platform toolkit, 
it provides a data packing API that allows applications to ensure that their transmissions are correctly translated into the 
format of the target computer system (QUANTAnet_datapack_c). Quanta also provides a set of threading and mutual 
exclusion classes (QUANTAts_mutex_c, QUANTAts_thread_c, QUANTAts_condition_c). 
 
Quanta provides a number of data sharing abstractions. These are described below: 
 

QUANTAnet_tcpReflector_c and QUANTAnet_udpReflector_c: Data reflection is a unicast method for 
emulating multicast. Clients send information to a central server rather than a single multicast address and the 
reflector repeats/reflects that same information to all other subscribing clients. From our experience we have 
found that this is one of the most heavily used capabilities for supporting data sharing in collaborative 
applications. The UDP reflector provides both unicast reflection and multicast bridging.  This enables groups of 
clients to operate multicast within separated domains and share information across them using a bridge rather 
than having to set up a multicast tunnel, which often requires system administrator privileges. The TCP reflector 
is similar to the UDP reflector in that it places boundaries on TCP messages (making them discrete) instead of 
broadcasting them as a continuous stream.  
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Figure 3: Architecture of Stargate Inter-domain Light path Provisioner. 

 
 

QUANTAdb_c, QUANTAmisc_observer_c and QUANTAmisc_subject_c: Quanta provides persistent 
distributed shared memory emulation via the QUANTAdb (or database) class. This is essentially a client/server 
database with automatic data reflection. Hence any updates to the database are propagated to all subscribers of 
the database. Clients are notified either via a traditional callback function or via a subject/observer mechanism 
[6]. This is essentially an object-oriented replacement for callbacks. The subject maintains a list of its observers 
for specific events and each observer will be triggered whenever the specific event occurs. The database assumes 
a Unix-like directory hierarchy with the leaf nodes containing the individual data values. These data values are 
intended to be small to expedite state information sharing rather than bulk data sharing. 
 
QUANTAnet_rpc_c: To complement Quanta’s distributed shared memory and message passing capabilities, 
remote procedure calling is also provided.  This allows clients and servers to invoke each other’s functions and 
procedures. This is a widely used technique for distributed computing. 
 
QUANTAnet_http_c: This is a C++ class to access WEB servers. 

 
QUANTAnet_parallelTcp_c: This class works like Quanta’s regular TCP socket class except a data buffer is 
partitioned and transmitted over several sockets rather than just one. Parallel TCP has been shown to be able to 
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overcome the LFN problem, however the performance becomes unstable when too many parallel sockets are 
used [19]. 

 
QUANTAnet_remoteFileIO32_c, QUANTAnet_remoteFileIO64_c, 
QUANTAnet_remoteParallelFileIO32_c, QUANTAnet_remoteParallelFileIO64_c classes: 
The Remote File I/O classes provide the capability for uploading and downloading files from a remote server.  
The provision of both 32-bit and 64-bit versions as well as parallel socket versions of the class allows for the 
efficient delivery of all file sizes, including those larger than 2 Gigabytes. The 64-bit version effectively allows 
one to deliver Terabyte files. 

 
QUANTAnet_fecClient_c, QUANTAnet_fecServer_c:  For long distance networks such as international 
networks, latencies are high (on the order of hundreds of milliseconds). In advanced collaborative applications, 
we would ideally like state updates in the shared environment to occur with a minimum amount of latency and 
with a high degree of reliability. Data should be transmitted reliably over long distances without the 
acknowledgement typically used in protocols such as TCP. We have applied Forward Error Correction (FEC) to 
achieve this [5]. FEC collects between 1 and N (typically 2 or 3) data packets and performs a bit -wise operation 
on the packets (such as XOR), to produce a “redundant” packet. This packet is delivered along with the regular 
UDP traffic as a separate UDP stream. If any data packets are lost, FEC packets can be used to reconstruct the 
missing packet. By using such a scheme the latency and jitter can be reduced for reliable transmission over long 
distance networks. 

 
QUANTAnet_rbudpSender_c, QUANTAnet_rbudpReceiver_c:  When operating over dedicated 
networks the probability of packet loss is low. To take advantage of this opportunity one can use UDP 
augmented with acknowledgements. The Reliable Blast UDP (RBUDP) scheme works by “blasting” the contents 
of a data file at just below the available bandwidth without asking the remote site to acknowledge any of the 
packets [12].  Hence, all the available bandwidth is used for pure data transmission. At the remote site, a tally is 
kept for all the packets that have arrived and, after some timeout period, a list of missing packets is sent back to 
the sending client. The sender reacts by resending all the missing packets and again waiting for another negative 
acknowledgement, and so on. The next section focuses deeply into RBUDP, as it has recently gained significant 
importance as a technique in overcoming TCP’s inability to fill high bandwidth networks. 

 
4 Reliable Blast UDP 

Reliable Blast UDP [9] has two main goals. The first is to keep the network pipe as full as possible during bulk data 
transfer. The second goal is to avoid TCP’s per-packet interaction so that acknowledgments are not sent per window of 
transmitted data, but aggregated and delivered at the end of a transmission phase. Figure 4 below illustrates the RBUDP 
data delivery scheme. In the first data transmission phase (A to B in the figure), RBUDP sends the entire payload at a 
user-specified sending rate using UDP datagrams. Since UDP is an unreliable protocol, some datagrams may become lost 
due to congestion or an inability of the receiving host from reading the packets rapidly enough. The receiver therefore 
must keep a tally of the packets that are received in order to determine which packets must be retransmitted. At the end of 
the bulk data transmission phase, the sender sends a DONE signal via TCP (C in the figure) so that the receiver knows 
that no more UDP packets will arrive. The receiver responds by sending an Acknowledgment consisting of a bitmap tally 
of the received packets (D in the figure). The sender responds by resending the missing packets, and the process repeats 
itself until no more packets need to be retransmitted. 
 
In RBUDP, the most important input parameter is the sending rate of the UDP blasts.  To minimize loss, the sending rate 
should not be larger than the bandwidth of the bottleneck link. Tools such as Iperf [10] and netperf [16] are typically used 
to measure the bottleneck bandwidth.  In theory if one could send data just below this rate, data loss should be near zero. 
In practice however, other factors need to be considered. In our first implementation of RBUDP, we chose a send rate of 
5% less than the available network bandwidth predicted by Iperf.  Surprisingly this resulted in approximately 33% loss!  
After further investigation we found that the problem was in the end host rather than the network.  Specifically, the 
receiver was not fast enough to keep up with the network while moving data from the kernel buffer to application buffers.  
When we used a faster comp uter as the receiver, the loss rate decreased to less than 2%.  The details of this experiment 
are further discussed in Section 4.2.   
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Figure 4: Time sequence diagram of RBUDP. 

The chief problem with using Iperf as a measure of possible throughput over a link is that it does not take into account the 
fact that, in a real application, data is not simply streamed to a receiver and discarded. It has to be moved into main 
memory for the application to use. This has motivated us to produce app_perf (a modified version of iperf) to take into 
account an extra memory copy that most applications must perform. We can therefore use app_perf as a more realistic 
bound for how well a transmission scheme should be able to reasonably obtain. In the experiments detailed in Section 4.2, 
we will include both iperf and app_perf’s prediction of available bandwidth. 
 
Three versions of RBUDP were developed: 
 

• RBUDP without scatter/gather optimization – this is a naïve implementation of RBUDP where each incoming 
packet is examined (to determine where it should go in the application’s memory buffer) and then moved there. 

• RBUDP with scatter/gather opti mization – this implementation takes advantage of the fact that most incoming 
packets are likely to arrive in order, and if transmission rates are below the maximum throughput of the network, 
packets are unlikely to be lost. The algorithm works by using readv() to directly move the data from kernel 
memory to its predicted location in the application’s memory. After performing this readv() the packet header is 
examined to determine if it was placed in the correct location. If it was not (either because it was an out-of-order 
packet, or an intermediate packet was lost), then the packet is moved to the correct location in the user’s memory 
buffer.  This optimization can improve the throughput by 10% when the receiving host is slower than the 
network. [9] 

• “Fake” RBUDP – this implementation is the same as the scheme without the scatter/gather optimization except 
the incoming data is never moved to application memory. This was used to examine the overhead of the RBUDP 
protocol compared to raw transmission of UDP packets via Iperf. 

 
Experiments that compare these versions of the protocol, and an analytical model of RBUDP, will be presented next. 
 
4.1 Analytical Model for RBUDP 

The purpose of developing an analytical model for RBUDP is two -fold. Firstly we wanted to develop an equation similar 
to the “bandwidth * delay product” equation for TCP, to allow us to predict RBUDP performance over a given network. 
Secondly we wanted to systematically identify the factors that influenced the overall performance of RBUDP so that we 
can predict how much benefit any potential enhancement in the RBUDP algorithm might provide. 
 
Firstly, all variables are defined as follows: 
 Bachievable = achievable bandwidth 
 Bsend  = chosen send rate 

Stotal = total data size to send (ie payload) 
Ttotal = total predicted send time 
Tprop = propagation delay 
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TudpSendi = time to send UDP blast on ith iteration. 
Nresend = number of times to resend (depends on loss%) 
Tack = time to acknowledge a blast (at least 1 ACK is always needed) 
Li = % packet loss on ith iteration 

 
In our model we are attempting to predict the achievable bandwidth (Bachievable)of RBUDP: 
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Following the RBUDP algorithm, we estimate Ttotal  as:       
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In (2), the first term is the time to send the main payload, the second term is the time to transmit missing packets, called 
Tresend, the last term is the time to send each acknowledgement.  
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Given this equation, let us consider two possible situations - one where no loss occurs, and one where loss does occur. If 
no loss occurs, we can eliminate the middle term so that the best achievable performance can be computed using: 
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In the denominator, 
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 is very small compared to other factors and can be omitted. 

 
We can then derive the ratio of Bbest and Bsend as: 
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where: 

 2*Tprop is RTT (Round Trip Time). 
 

This ratio  shows that in order to maximize throughput, we should strive to minimize 
total

send

S
BRTT *

 by maximizing the 

size of the data we wish to deliver. For example, given Tprop for Chicago to Amsterdam is 50ms, and Bsend is 600 Mbps, 
and if we wish to achieve a throughput of 90% of the sending rate, then the payload, Stotal needs to be at least 67.5 
Megabytes.   
 
In Section 4.2 (Figure 5) we will use equation 3 to compare the theoretical best rate Bbest against experimental results, 
over a variety of send rates (Bsend). Furthermore we will compare Bbest against experimental results with varying payload 
sizes (Stotal) (Figure 7).  
 
Now let us turn to consider the situation where loss does occur. We will take a simplifying assumption that a constant loss 
rate of L occurs at every pass of the algorithm. We realize that in a real network subsequent losses in the retransmit phases 
is likely to be smaller, rather than constant, because we will be retransmitting a significantly smaller payload at each 
iteration. However to estimate that accurately would require us to develop a model for the buffer in the intervening 
routers too. Hence we can take our simplifying assumption as a worst-case estimate. 
 
So, given loss rate L, retransmits will occur until the amount of data left is less than 1 packet. Therefore the numb er of 
retransmits required can be estimated as: 
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The data size of all retransmits is therefore: 
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We can now plug (6) and (7) back into equation (3) to produce our new estimate of Bachievable given constant loss rate L. In 
Figure 7 we will put this prediction to use comparing an experimental situation where packet loss was observed.  
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4.2 Experimental Results  

The testbed network consisted of an OC-48 link (2.5 Gbps) brought by SURFnet from Amsterdam to the StarLight 
facility in Chicago.  There was little-to-no traffic on the link when the experiments were performed. Linux PCs were 
placed at each end of the link. The specifications of each PC is shown in Table 1 below.  Wgsara (in Amsterdam) was the 
slower PC, Charybdis (in Chicago) was the faster one.  The network bottleneck resides in the Gigabit Ethernet cards of 
host computers. 
 

Host Name CPU Memory Size 
System 
Bandwidth 

wgsara2.phys.uu.nl 
(Amsterdam) 

Pentium III  
800 MHz 

512M Bytes 238 MBytes/s 

charybdis.sl.startap.net 
(Chicago) 

XEON  
1.8 GHz 

512M Bytes 844 MBytes/s 

Table 1: Specification of host PCs in the experimental testbed. 

 
In the first set of experiments, data was sent via RBUDP from the faster PC to the slower PC (from Chicago to 
Amsterdam). In the second set of experiments data was sent in the opposite direction. This allowed us to examine the 
performance of RBUDP when the bottleneck was either at the processor or in the network. The result was compared 
against predicted results from our analytical model. A third set of experiments examined RBUDP throughput for different 
payload sizes. 

4.2.1 From the Fast PC to the Slow PC (Chicago to Amsterdam) – when the Bottleneck is in the Receiving Host 
Computer 

In this experiment, Iperf measured maximum available bandwidth at 878 Mbps, and app_perf measured maximum 
possible throughput at 643 Mbps.  In Figure 5 we plot these thresholds as lines across the top of the graph. Plotting the 
achieved throughput at various sending rates for the fake and real RBUDP algorithms, we notice that at sending rates 
below the network capacity, RBUDP performs well - i.e., RBUDP gives the application exactly what the application asks 
for. We also notice that as the sending rates approach the capacity of the network, Fake RBUDP achieves almost the same 
throughput as Iperf,  and the real RBUDP begins to hurt in performance because the underpowered CPU is unable to keep 
up with handling the incoming packets.  However, as real RBUDP is able to match the maximum performance of 
app_perf, this means that RBUDP is making as much use of the network for useful data transfer as the CPU will allow. 
Finally, notice that there is a close match between our experimental results and our prediction from equation 4 (which 
estimated RBUDP performance when loss rate is zero.)   

4.2.2 From the Slow PC to the Fast PC (Amsterdam to Chicago) – when the Bottleneck is in the Sending Host 
Computer 

We repeated the experiment in the opposite direction. This time the bottleneck was in the sending PC rather than in the 
receiving PC. Figure 6 shows that when the host computer is fast enough, iperf and app_perf performances match, as do 
the different implementations of RBUDP. Fake RBUDP is able to reach the maximum performance obtained by iperf; and 
Real RBUDP is able to reach the maximum performance obtained by app_perf- again confirming RBUDP’s ability to 
maximize bandwidth utilization for useful data delivery. 

4.2.3 Effect of Payload Size on Throughput 

From the analysis in Section 4.1, we know that the propagation time is the primary factor affecting RBUDP overhead.  
For smaller payloads, the time spent in the acknowledgement phase is almost constant while the time spent blasting UDP 
packets decreases.  In Figure 7 we compare an experimental situation where we send data at 611Mbps (experiencing no 
loss) against our theoretical prediction, which assumes no loss (equation 3.) Furthermore we compare an experimental 
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situation sending data at 682Mbps experiencing 12% loss, against our theoretical prediction where we assume a constant 
12% loss per iteration. 
 
Firstly, the results show that RBUDP performs best for large payloads. Secondly, the results show that a 12% packet loss 
does not impact throughput greatly for large payloads. Finally, our analytical models provide good boundaries for our 
experimental results for 0% loss and 12% loss. 
 
4.3 Adapting RBUDP for High Speed Data Streaming 

Even though the initial motivation of RBUDP is for bulk data transfer over long distance, some applications require high 
performance reliable streaming transport .  In Section 4.2.3, we showed that in order to achieve fairly high throughput, the 
payload needs to be large.  In streaming applications, if the size of objects to be streamed is small, we combine multiple 
objects to form a large payload.  However this will cause end-to-end latency to increase because of the buffering needed 
to form the large payloads.  Based on our analytical model, we can determine the minimum sending rate needed to ensure 
a desired object throughput rate, given the maximum delay the application is able to tolerate.  
 
Let: 
 

Sobj = size of streamed objects. 
Nobj  = number of objects per payload. 
Bobj = required throughput of objects. (number of objects per second) 
For example, in the case of graphics streaming, object throughput rate is measured in frames per second. 
D = the maximum extra delay the applcation can tolerate. 

 
Then the size of a payload is : 
 

objobjtotal NSS *=   (8) 

 
where: 
 

DBN objobj *=   (9) 

 
The required raw bandwidth is : 
 

objobjbest SBB *=   (10) 

 
 
Assuming we are operating over an over-provisioned network, we plug (8), (9) and (10) back in equation (5) to compute 
the rate at which RBUDP needs to send data to achieve the application’s requested throughput: 
 

D
RTT

BS
B objobj

Send

−
=

1

*
 (11) 

 
Hence, using a graphics streaming application as an example: given that RTT is 100ms, Sobj is 800*600*3, (assuming 
image resolution of 800x600 and 3 bytes color information for each pixel), if we want to achieve a frame rate Bobj of 20 
frames/second, the maximum extra delay introduced will be 0.5 seconds, the sending rate needs to be at least 288 Mbps 
and each payload must encapsulate 10 image frames.  During IGrid 2002, Luc Renambot applied Quanta’s RBUDP to a 
parallel graphics streaming application called Griz. Using our analytical model and the parameters from the above 
example, we were able to predict the number of animation frames that Griz had to package into a single payload to 
achieve full utilization of the Amsterdam-Chicago Starlight link [21]. 
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5 Conclusions  

We have described the overall architecture and capabilities of Quanta, a cross-platform C++ toolkit for building high 
performance networking applications.  In particular we described in detail, an aggressive bulk data transfer scheme, called 
RBUDP, which is intended for either dedicated, or QoS-enabled high bandwidth networks. RBUDP eliminates TCP’s 
slow-start and congestion control mechanisms, and aggregates acknowledgments so that the full bandwidth of a link is 
used for pure data delivery. For large bulk transfers, RBUDP can provide delivery at precise, user-specified sending rates. 
RBUDP performs at its best for large payloads, rather than smaller ones. This is because with smaller payloads, the time 
taken for completing the delivery approaches the time taken to acknowledge the payload.  
 
We have provided an analytical model that gives a good prediction of RBUDP’s performance. This prediction can be used 
as a rule of thumb in a manner similar to the bandwidth * delay product for TCP. In addition, this prediction can be used 
to estimate how future ideas for improving the algorithm might impact RBUDP performance.  Even though the initial 
application of RBUDP is bulk data transfer over high-speed networks, this protocol can also be extended for use in 
streaming applications.  Here an application must make a tradeoff between latency and throughput. To achieve higher 
throughput, latency will increase because more data must be aggregated as a single transmission payload. 
 
Through the combined use of Stargate and Quanta, bandwidth intensive Optiputer applications will soon be able to 
allocate light paths between multiple photonic domains and make full use of the available bandwidth. 
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Figure 5: RBUDP throughput from Chicago to Amsterdam. Payload is 450MB. Bottleneck is in the receiving host. 
The lines indicating iperf and app_perf throughput show the maximum performance when the tools are sending at 
the network’s full data rate. App_perf is a more realistic indication of the rate at which an application can absorb 
incoming data packets as it takes into account the additional overhead involved in most applications that need to 
take the data off the network and use it. 
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Figure 6: RBUDP throughput from Amsterdam to Chicago.  Payload is 450MB. Bottleneck is in the sending host.  
The maximum of the sending rate is 725Mbps.  See Figure 5 for an explanation of the iperf and app_perf lines in 
the graph. 
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Figure 7: Throughput vs. Payload Size.  Larger payloads produce better network utilization. 
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