

Marco Cavallo

Riverwalk: Incorporating Historical Photographs in Public Outdoor Augmented Reality Experiences

... some discussions about terminology used could be done, but for now we will stick to the term **«Augmented Reality»**

(Milgram, 1994)

The Chicago 0,0 Project

The Chicago 0,0 Project

- Ongoing project >> in collaboration with **Geoffrey Alan Rhodes**
- Chicago History Museum's massive photo archive

The limits of markerless AR

- Flat images
- Highly textured
- Feature distribution
- Avoid organic shapes
- Avoid repetitive patterns
- Good local contrast

Guess what?

- Repetitive patterns (windows!)
- Sometimes uniform in color
- Lighting and weather conditions

• Flat ... ?

What if...

- No features to be tracked?
- No flat images to track?
- We wanted to create more complex behaviors?
- We wanted to improve the design process?

Our solution: geolocating content

Towards an absolute camera pose

Both overlays and fiducials are geolocated!

... we live in a 3D world after all :)

The dual camera approach

... an abstraction for Markerless & Location-based AR

ARCamera

>> pose estimated through pattern-based image tracking

SensorCamera

>> leveraging geomagnetic field, accelerometer and gyroscope

The ARCamera

- Temporary solution -> general purpose markerless AR and... oversampling :-/
- Future solution -> specific algorithm for architectural features

... approach by itself algorithm-independent

But... what's the novelty?

Absolute positioning!!

The SensorCamera

- Absolute position: (A-)GPS
 > Corrected with step detectors, multi-sensors odometry, visual odometry
- Absolute orientation: Inertial Measurement Unit (IMU)
 >> Accelerometer, Gyroscope, Magnetic field

Estimating the pose of the camera

$$\triangle r = r_{ar}^{-1} * r_s$$

 $r = r_s * \triangle r$

$$pos_{smoothed} = pos_{old} + (pos_{current} - pos_{old}) * \frac{k_1}{dist} * time_{frame}$$

$$rot_{smoothed} = rot_{old} (rot_{old}^{-1} * rot_{current})^{\frac{k_2}{dist} * time_{frame}}$$

4 cases to be handled:

- Fiducial found
- Fiducial lost
- Multiple fiducials
- No fiducials available

- Absolute Geolocation
 - >> Abstract location-based and marker-less AR as a single experience >> Load and unload content based on user location >> Display virtual content even if no tracking is available >> Know virtual content close to user or to other virtual content >> Prune the dataset of pattern images based on proximity >> Virtual environment where to edit and preview the application >> Dynamic resource management

• Absolute orientation:

>> Know how much user is moving away from a tracked object

>> Display objects even if tracking has been lost

- >> Know how to orient user towards other virtual content
- >> Know how to filter virtual content if overlapping
- >> Signaling incoherent situations and false positives / negatives
- >> Intelligent camera smoothing (stabilization)

Navigation & information browsing

- Color coding and showing available content
- Showing target where the user has to aim
- Indicating whete to move / rotate to next object
- Indicate when device needs calibration
- Allow transitions between adjacent / overlapping content
- Suggest the user where to position to see from a particular perspective
- Map + optional navigation
- Allow user to move / modify / correct by himself?

- Weather conditions
- Absence of light
- Device limitations

... always keep a classic user interface to allow users visualizing the content

The designer perspective

... ever wondered?

The designer perspective

▼1_1_bridge1

- s1_1900Boats
- site1_1Fire
- ▶ 1_2_trump1
- ▶ 1_3_trump2
- ▶ 1_4_trump3
- ▶ 1_5_trump4
- ▶ 1_6_trump5
- ▶ 1_7_Wrigley1
- ▶ 1_8_Wrigley3
- ▶ 1_9_Wrigley4
- 2_1_BigRiverwalk1
- ▶ 2_2_plaque1
- ▶ 2_3_Riverwalk1
- 2_4_RiverwalkArch1
- 2_5_RiverwalkArch2
- 2_6_DoubleDearborn1
- 2_7_DoubleDearborn2
- 2_8_DearbornSingle1
- 3_1_Streetsign1
- ▶ 3_2_Streetsign2
- ▶ 3_3_Plaque1
- ▶ 3_5_bridge2
- ▶ 3_6_bridge5
- ▶ 3_7_bridge6
- ▶ 3_8_bridge7
- ▶ 3_9_bridge8
- ▶ 3_10_bridge9
- ▶ 3_11_Crosswalk1
- ▶ 3_13_Trump1
- ▶ 3_14_Trump2
- ▶ 4_1_Trump4
- ▶ 4_2_Trump5

Towards a first authoring tool

- Selecting view points
- Placing overlays
- Previewing them offline...

...simulating the user's experience!!

Ops... now we'll go a bit off-topic :)

... or maybe not?

Let's broaden our term... let's use <<**Mixed Reality**>>

(Milgram, 1994)

What if we could...

- Create a better way to **design and edit** MR experiences
- Modify at **runtime** the MR experience
- Study how users behave while using our application
- Interact selectively with them

Merging the two worlds

1:1 mapping to real-world locations

(Physics, Meshes, Audio, ...) Unity Content

Real World

WGS84(latitude, altitude, longitude)

Vector3(x,y,z)

Not only a nice way to edit virtual content

A portal between realities

- Real-time content customization in order to solve problems or satisfy user needs
- Possibily to analyze the **behavior of users** and to store significant data
- Possibility to interact with users in MR
 >> Create private audio and video channels
 >> See from their real-world perspective
 >> Debug the whole MR solution
 >> Add ourselves to their MR experience

Thanks for watching ;)

