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Abstract— We present a novel rails approach so that future e-
Science applications can effectively exploit future system 
architectures, including multi-core and many-core 
architectures, multiple network cards, multiple graphical 
processing units and hybrid hierarchical memory 
architectures. We define “rail” as the co-scheduling of two or 
more of these resources. This approach enables creation of 
parallel multi-rails through every aspect of an end system: 
from processing on the multi- and many cores, to generation of 
multiple data flows and streaming over multi-lane NICs 
connected via a parallel interconnect. We describe a novel 
open-source multi-rail toolkit and evaluate end-system 
parameters that impact the efficiency of such multi-rail 
systems, including Interrupt, Memory, Thread and Core 
Affinities -- key properties for achieving scalable performance. 

Keywords- High-performance computing, topology-aware 
resource allocation, high-level abstractions, multi-core 
computing 

I.  INTRODUCTION  
 Cyberinfrastructure, comprised of geographically 

distributed instruments and compute, storage and 
visualization clusters interconnected by ultra-high-speed 
optical networks, is the technological foundation that enables 
global e-Science research, in fields including climate 
analysis, astronomy, high-energy physics and neuroscience. 
Earth scientists in National Aeronautics and Space 
Administration (NASA) climate modeling, analysis and 
prediction (MAP) project [1] routinely run simulations and 
models on geographically distributed computational clusters 
and access distributed storage to predict tropical cyclones 

and hurricanes.  Bio-scientists and geo-scientists are 
adopting the Scalable Adaptive Graphics Environment 
(SAGE) [2], specialized collaboration and visualization 
middleware that enables co-operative scientific discovery by 
geographically distributed scientists. 

e-Science applications have demonstrated scalable 
performance using today’s cyberinfrastructure architectures. 
However, future architectures, as listed in Table 1, will 
require today’s applications and middleware to scale their 
performance in ways previously unexplored. Future 
cyberinfrastructure will be characterized by deep and 
complex memory, processor and interconnect hierarchies 
with inherent parallelism in the various subsystems. Thus, a 
critical component for scalable performance will be the 
development of new and novel techniques for efficient 
utilization of end-system architectures and resources.   

Typically, e-Science applications and middleware scale 
their performance to end-systems by optimizing their 
implementations for the end-system architecture. However, 
as end-system architectures evolve and become more 
complex, solutions that aid in the design of evolvable 
software are of paramount importance.  One way to achieve 
this would be to develop abstractions of the various 
subsystems. These abstractions can help e-Science 
programmers design efficient and deployable middleware 
and applications. 

We present the Rails Toolkit (RTK), an approach 
towards enabling e-Science applications and middleware to 
effectively exploit the potential of these architectural trends. 
RTK abstracts end-system topology for applications and 
middleware, and enables co-scheduling of CPU cores, GPUs, 
memory and network resources within multi- and many-core 

TABLE I.  ARCHITECTURAL TRENDS THAT E-SCIENCE APPLICATIONS AND MIDDLEWARE WILL HAVE TO CONTEND WITH IN FUTURE 

Subsystem Currently Deployed Architecture Future Architectural Trends 

Processor Dual and Quad core Multi- and Many-cores with a Multi-dimensional topology 

Memory SMP, NUMA 
 (typically 2 memory banks) 

SMP, NUMA, Hybrid combination of SMP and NUMA, 
 Multi-dimensional (2D and 3D) memory topology 

Graphical Processing 
Unit (GPU) 

PCIe based GPU 
(typically with 128 processors) 

Multiple GPUs with 256 to 800 processors per GPU 
 (potentially on-core GPU design) 

System Interconnects Shared Bus, PCIe Gen 1 (2.5 Gbps) Multi-lane PCIe Gen 2 and 3, Quick processor interconnect (QPI),  
HyperTransport, (HT)  DWDM-based optical interconnects 

Network Interconnects 10 GE Ethernet, Infiniband, Myrinet, etc. 40 Gbps – 100 Gbps Multi-lane Ethernet, Infiniband interconnects,  
Multi-lane DWDM based interconnects 

Wide-Area Network 1-10 Gbps networks DWDM-based Multi-10 Gbps optical networks 



computer systems. We define a “rail” as the co-scheduling of 
two or more of these resources. Using RTK, application 
developers can create one or more rails over which their 
data-intensive computations and data retrievals can be 
accelerated with minimal interference from other rails or 
applications, and thus dramatically improve program 
performance. RTK is an open source toolkit and presents an 
intuitive API for applications and middleware to efficiently 
utilize end-system architectures. RTK can be used to 
improve the performance of high-performance computing 
applications, high-speed data delivery applications, and high-
resolution graphics and video streaming. In the case of 
SAGE, RTK can aid in the efficient use of network 
parallelism to improve the performance of data streaming 
critical for real-time collaboration. 

Novel contributions of the paper include: 
• End-system, topology-aware, resource abstractions 

to enable applications efficiently utilize current and 
future high-end systems. This enables topology-
aware memory allocation and enables applications to 
seamlessly use multiple network interfaces. 

• Easy-to-use extensible API that can be integrated at 
multiple levels with applications and middleware. 

• Open source application-level toolkit available for 
download for immediate use by the community.  

The outline of the paper is as follows: We describe the 
rails approach and RTK Toolkit in section II. Experimental 
evaluation using the RTK Toolkit, including micro-
benchmarks and application-level benchmarks, is discussed 
in section III. We present related work in section IV and 
finally conclude in section V. 

 
 

II. RAILS TOOLKIT (RTK) 
e-Science applications typically have multiple 

components, which are compute-intensive, network-
intensive, IO-intensive and combinations of these. In 
network-intensive workloads, including bulk data transfer 
and data streaming, improving the achievable throughput 
and reducing the message latency is critical for 
performance. Additionally, reducing message latency and 
memory access latency is important for compute-intensive 
e-Science applications. The Rails approach enables efficient 
topology-aware co-allocation of system resources, 
including memory, processing cores and network 
subsystem resources. Figure 1 depicts a network rail which 
is a software abstraction of a processor core connected to a 
lane on a network interface card (NIC) via a dedicated 
interconnect.  A network rail helps in improving the 
achievable throughput and reducing the message latency by 
reducing cache pollution and lowering memory access 
latency. The rails approach enables pipelining of multiple 
subsystems to compose hybrid rails. The RTK API can be 
used to pipeline GPU rails and network rails, and thus 
improve the performance of graphics streaming for remote 
visualization by reducing cache pollution, exploiting 
memory locality to reduce latency and reducing system bus 
contention. This is critical for future cyberinfrastructures 

where GPUs are an integral component. RTK enables 
allocation of parallel rails, which, facilitates exploitation of 
system topology and the parallelism inherent in current (and 
future) system architectures. A parallel four-rail network rail 
system is depicted in Figure 1, each rail consists of a 
processor core with dedicated memory connected to a lane 
on a NIC via a dedicated interconnect. The parallel rails 
approach can be expanded to exploit parallelism in other 
sub-systems.  

RTK is implemented in C++ and is distributed under 
GNU Public License (GPL) version 2.1.  A beta version of 
the toolkit and relevant documentation is available for 
download at http://www.evl.uic.edu/cavern/rtk. It works 
under Linux and has been tested on SMP-based Intel 
architectures, NUMA-based AMD Opterons and IBM Cell 
architectures. We describe the Rails toolkit architecture in 
section II-a, discuss system properties which help in 
achieving topology-aware resource allocation in section II-b 
and provide an example of the RTK API in section II-c. 

A. Rails Toolkit Architecture 
Figure 2 depicts the Rails Toolkit Architecture, which 

consists of the Resource Abstraction Layer, Resource 
Allocation Layer and the Rail Allocation Layer. The 
Resource Abstraction Layer abstracts the end-system 
topology and deals with the low-level resource bindings.  
The Resource Topology Database maintains relevant 
information including the topological configuration of the 
available processors, cores, memory nodes and IO devices. 
This database is populated during initialization by probing 
the system resources and using input configuration files. The 
Resource Binding Layer is responsible for binding 
interrupts to processor(s), threads to processor(s), the 

 
Figure 1.  The Rails approach. This figure depicts a network rail wherein 

co-allocation of memory elements (ME), processor elements (PE) and 
networks resources (NE) help achieve improved performance 



memory policy and allocation over node(s). This layer is 
designed using a wrapper around Linux system calls and 
enables co-allocation of the resources. The Resource 
monitor is a lightweight daemon that periodically checks the 
online status of the processors and memory nodes.  

The Resource Allocation Layer allocates threads, 
sockets and memory using the underlying resource 
abstraction layer. The Thread Library is a C++ wrapper 
around the pthread library and enables manipulation of the 
processor-thread binding and memory policies of a thread 
using the resource abstraction layer. Additionally, it provides 
in-depth performance statistics, including context-switches 
and priorities, on a per-thread basis. The Memory 
Allocation Library enables topology aware memory 
allocation. It supports the NUMA memory policies available 
in Linux including interleaving, local allocation and strict 
allocation. The socket library currently supports TCP, UDP 
and Parallel TCP. The library is extensible and is useful in 
the design of composable protocols such as Reliable Blast 
UDP [3] and LambdaStream [4]. The library provides in-
depth performance information of the network streams.  

The Rail Allocation Layer synergistically co-allocates 
resources for improved performance. This layer can aid in 
isolating resources and reducing contention. The layer also 
enables pipelining of rails. In graphics streaming 
applications, pipelining GPU and network rails is important 
for reducing resource contention, including the contention in 

IO bus due to the GPU and network subsystem competing 
for it. 

We have exposed the capabilities at various layers as a 
lightweight API so that researchers interested in applying 
this approach have multiple levels to integrate their 
applications with RTK. Details of the API are available at 
the RTK website. We envision middleware and applications 
using RTK to fully exploit the topologies of end-systems. 
RTK could be used in the design of adaptive run-time 
systems to optimize resource allocation. One such example is 
the MultiRail Socket Library, which enables seamless use 
of multiple network rails for network intensive applications. 
It is implemented in C++ and derived from the rail socket 
library. It exploits: 

• Data Parallelism by striping the data onto multiple 
data streams. The current implementation uses static 
data striping and can be augmented to use adaptive 
striping policies [5]. 

• Task Parallelism by employing worker threads to 
stream each of the data streams. This makes efficient 
use of system resources in a multi-core, many-core 
environments. 

• Network Parallelism by streaming the data streams 
over the multiple network paths available between a 
source and destination pair.  

Additionally, the library employs efficient memory 
interleaving heuristics to improve memory bandwidth. 

 
Figure 2.  Rail Toolkit Architecture. This figure depicts the various layer in the design of the Rail Toolkit (RTK) architecture. RTK consists of Resource 

Abstraction Layer, Resource Allocation Layer and  Rail Allocation Layer,. E-Science applications and middleware can use any of the 3 layers for 
optimizing their performance to an end-systems topology.  



B. System properties critical for topology-aware resource 
allocation 

 
Figure 3.  This figure depicts the Interrupt Affinity (IA) property. IA is set 

if the interrupt processing occurs on a processor where the device is 
physically connected 

 
Figure 4.  This figure depicts the Thread Affinity (TA) property. TA is set 

if the network application thread is bound to the processor where the 
interrupt processing occurs 

 
Figure 5.  This figure depicts the Memory Affinity (MA) property. MA is 

set if the application buffer is allocated on the memory bank where the 
network application thread is bound. 

We discuss properties that help improve an application’s 
performance by enabling efficient topology-aware resource 
allocation. In this paper, we restrict our focus towards 
properties critical for network-intensive workloads. 
However, we would like to note that these properties are also 
necessary for other e-Science workloads, including compute-
intensive workloads. 

We define the Interrupt Affine property as one wherein 
the interrupt processing is performed on the processor to 
which the IO device is physically bound. Interrupt affinity 
reduces the message latency by servicing the interrupts on 
the nearest processor. As seen in Fig. 3, NIC 0 is physically 
attached to the PCIe bridge physically connected to 
processor 0. If the interrupt processing of NIC 0 occurs on 
any core of processor 0, we consider this to be interrupt 
affine. If the interrupt processing of NIC 0 occurs on 
processor 1, the interrupt affinity is not set. Thus, we define 
interrupt affinity relative to the physical topology of the IO 
device. 

 We define the Thread Affine property as one wherein 
the network application thread is scheduled on the processor 
in charge of the interrupt processing. Thread affinity reduces 
cache pollution and improves latency as the interrupt 
processing and the application thread are scheduled on the 
same processor.  As seen in Figure 4, if the network 
application thread is scheduled on processor 0 and the 
interrupt processing of NIC 0 occurs on processor 0, we 
consider this to be thread affine. In Figure 4, we have both 
interrupt affine and thread affine properties. Thus, for 
network intensive workloads, we define thread affinity 
relative to the corresponding interrupt processing. 

We define the Memory Affine Property as one wherein 
the memory buffer used by the network application thread is 
allocated on the memory bank with the lowest access latency 
with respect to the application thread. In case of NUMA-
based systems, memory allocation on the local memory bank 
is considered to be memory affine. In Figure 5, the network 
application thread is scheduled on processor 0. If the 
memory is allocated on node 0, we consider this to be 
memory affine. Memory affinity helps in reducing the data 
access latency. In case of system architectures with deep and 
multi-level memory hierarchies, memory affinity refers to 
allocation of memory on memory nodes with the least access 
latency. Lower memory access latency is critical for data-
intensive e-Science. 

Additionally, using RTK, one can enable multiple 
properties simultaneously for improved performance. 
Enabling thread and interrupt affinity together would help in 
an improved performance over the individual affinities due 
to lower cache pollution among others. As mentioned earlier, 
RTK can be used to form parallel rails to exploit the inherent 
parallelism in end-systems. 

If T is the achievable performance of a single rail, In an 
N-rail system, the expected performance would be:  N x T x 
∂, where ∂ is the parallel efficiency. In an ideal parallel 
system, the parallel efficiency is approximately unity (∂ → 
1), and this system exhibits additive performance. The goal 
would be to identify the affinity combinations that would 



help parallel efficiency. This could be used towards the 
design of efficient run-time systems. 

C. Sample program using the RTK API  
Table II depicts the pseudo code of a typical TCP client 

socket program. This program uses the default affinity 
settings of the operating system. A rail-enabled socket 
program using the RTK API to enable interrupt affinity and 
thread affinity given in Table III. This uses the RTK 
Abstraction Layer API.  One could design an interposer layer 
to set these affinities by default for e-Science applications. 
The interposer layer enables easy integration of the RTK 
with existing applications without a single line of source-
code modification. Table IV demonstrate the same using the 
RTK Allocation layer. This provides an intuitive higher-level 
abstraction for resource allocation. In-depth examples, 

including querying the system topology and multi-node 
memory allocation, can be found in the RTK software 
distribution 

III. EXPERIMENTAL ANALYSIS 
In this section, we study the efficacy of the RTK toolkit 

on a set of micro-benchmarks and application-level 
benchmarks. We focus our attention on network-intensive 
benchmarks. The experimental testbed consisted of Two 
dual-core, dual-processor AMD 2.6 GHz Opteron TYAN 
2895 systems with 4GB RAM and two PCIe 16X slots. The 
two machines were connected back-to-back with two 10 GE 
Myrinet NIC each. The Linux kernel version used was 2.6.18 
with MSI enabled. The MTU used for the experiments was 
9000 bytes. The 1.4.1 Myrinet driver was used in the 
experiments 

TABLE II.   
PSEUDOCODE OF A SIMPLE TCP CLIENT 

TABLE III.   
TCP CLIENT USING RTK’S RAIL ABSTRACTION 

LAYER API 

TABLE IV.   
TCP CLIENT USING RTK’S RAIL ALLOCATION 

LAYER API 

int sockfd; struct sockaddr_in server_addr; 
 
/* create a TCP socket */ 
sockfd=socket(AF_INET,SOCK_STREAM, 0) 
 
/* Populate the server_addr with server info */ 
 
/* connect to the server */ 
connect(sockfd,&server_addr,sizeof(srv_addr)) 
 
/* Send data to the server */ 
loop{ 
        write ( sockfd, buffer, sizeof(buffer)); 
} 
 
close (sockfd); 

int sockfd; struct sockaddr_in server_addr; 
 
/* create a TCP socket */ 
sockfd = socket(AF_INET,SOCK_STREAM,0) 
 
/* Populate the server_addr with server info */ 
 
/* connect to the server */ 
connect(sockfd,&server_addr,sizeof(srv_addr)); 
 
/* Initialize Interrupt Affinity of the network  
* interface to its physically connected processor  
* and set thread affinity to the processor where  
* the Interrupt affinity is set */ 
RTK_Interrupt_Affinity IntrAff;  
RTK_Thread_Affinity ThreadAff; 
 
IntrAff.init(sockfd); 
ThreadAff.init ( &IntrAff); 
 
/* Send data to the server */ 
loop { 
         write ( sockfd, buffer, sizeof(buffer)); 
} 
close (sockfd); 

RTK_tcpClient client; /* A TCP Client Object */                                            
 
/* connect to the server */ 
client.connectToServer(srv_name, srv_port);    
 
/* Initialize Interrupt Affinity of the network  
* interface to its physically connected processor  
* and set thread affinity to the processor where  
* the Interrupt affinity is set */ 
 
client.setInterruptAffinity(); 
client.setThreadAffinity(); 
 
/* Send data to the server */ 
loop{ 
       client.write ( buffer, sizeof(buffer)); 
} 
 
client.close(); 

  
Figure 6.  Effect of affinities on the latency of multiple TCP streams. As 

the message size increases, memory affinity is key for improved throughput 
Figure 7.  Effect of affinities on the latency of multiple UDP streams. 

Thread affinity plays a key role in inmproved throughput 



A. Micro-benchmarks 
We evaluate the performance of rails and the RTK toolkit 

on network intensive workloads. In e-Science cluster-based 
applications, a node routinely needs to send and receive data 
from multiple nodes. We designed a simple TCP micro-
benchmark program to measure the efficacy of the rails 
approach on the achievable throughput, CPU usage and 
message latency. The benchmark program is written in C and 
creates four network streams between the two test nodes. 
Two network streams are bound to each of the 10G NIC. The 
client and server programs use the RTK Rail Abstraction 
Layer API. We compare the RTK version with a socket-
based program. The socket program does not use the RTK 
API and relies on the default system affinity and scheduling 
heuristics. 

1) Effects of Various Rail Configurations on Message 
Latency 

Figure 6 compares the performance of setting the rails 
affinities on the message transfer latency for various 
payloads using four concurrent TCP (two per NIC). We 
compare this performance with the default case in Linux. As 
seen from the graph, as the payload size increase, thread and 
memory affinities help in reducing the transfer latency. For a 

payload of 8MB, thread and memory affinity together yield 
reduce the message latency by 33% over the default Linux 
case. This is mainly due to the improved cache locality and 
lower data access latency due to memory affinity. This is 
reduction in message latency is critical for applications using 
MPI and network-intensive applications. A similar trend is 
seen in the case of UDP in Figure 7 where thread and 
memory affinity together help reduce the transfer latency. 
The effect of thread affinity on latency is clearly visible as 
the payload size exceeds 4K (page size). The effects of 
memory affinity are not very pronounced in comparison to 
thread affinity due to the fact that the payload fits into the 
processor cache.  

2)  Effects of Various Rail Configurations on 
Throughput and CPU Utilization 

 The effect of affinities of the throughput of network-
intensive TCP and UDP workloads is shown in Figures 8 and 
9. The workload consists of four concurrent streams (two per 
NIC). We compare the achievable throughput for the stream 
using the RTK Abstraction Layer API to enable affinities (at 
both the sender and the receiver) with the achievable 
throughput on the system relying on default system settings.  
We notice that enabling affinities improves the achievable 

  
Figure 8.  Effect of affinities on the aggregate throughput of four TCP 

streams. As the payload size increases, enabling affinities leads to higher 
throughput in comparison to a default Linux system. 

Figure 9.  Effect of affinities on the aggregate  goodput (thoughput with 
0% packet loss) of four concurrent UDP streams. As payload increases, 

enabling affinities leads to a higher performance in comparison to a 
default Linux system. 

  
Figure 10.  Effect of affinities on the average CPU Utilization of  four 

concurrent TCP Streams to process 1Gbps. Using RTK, the application 
needs less CPU to process 1Gbps TCP traffic. 

Figure 11.  Performance evaluation of  2 x 10GE Linux Ethernet Channel 
Bonding, user-space Multi-Threaded TCP over 2 NICs and user-space 
MultiRail Library based TCP over two network rails for transferring a 

payload of 8MB. 



throughput. This improvement is significant for higher 
payloads. In case of TCP, for a payload of 256 KB, affinities 
result in an improvement of 2 Gbps over the default settings. 
This is primarily due to factors, including lower cache 
pollution and lower memory access latency. Thus, allocating 
resources taking the topology into account is critical for 
network intensive e-Science and throughput intensive 
applications including wide-area data transfer. 

Figure 10 depicts the effect of affinities on the average 
CPU utilization of the network streaming at the receiver to 
process 1 Gbps. In this experiment, we have 4 concurrent 
streams competing to process the network streams. This is 
very common in cluster-based applications. Lower CPU 
usage by the network application would yield precious CPU 
cycles for the compute-intensive components. Enabling 
affinities results in a reduced CPU usage, which is primarily 
due to reduced contention of resources and lower cache 
pollution. In case of 8MB payload, a fully affine system 
leads to the 50% reduced CPU usage. This is mainly due to 
the fact that memory affinity leads to low-latency data 
access. This is critical for cluster-based applications wherein 
precious additional CPU cycles (leveraged from an affine 
network component) can be dedicated to compute-intensive 
components.  

3) MultiRail TCP benchmarks 
With the advent of Multi-lane NICs, efficient methods to 

exploit parallelism throughout the system and networks are 
necessary. This is critical for future LambdaGrids based 
applications using IP over Ethernet over DWDM. The 
current options include, Ethernet channel bonding and 
designing a multi-threaded protocol. MultiRail-TCP is a 
simple socket-like API that allows applications to leverage 
the performance benefits of rails without having to 
significantly modify an application’s source code. Internally, 
it takes advantage of data parallelism by splitting the data 
onto multiple streams; task parallelism by creating worker 
threads to stream the data; and network parallelism by using 
the multiple NICs available on the system. Similar to the 
micro-benchmarks, our MultiRail-TCP experiment created 
network rails with thread and memory affinity. The memory 
was interleaved between the two memory banks. As seen in 

Figure 11, MultiRail-TCP achieves a throughput 2 Gbps 
higher than a Multi-Threaded TCP over 2 NICs. This is due 
to the fact that the network rails reduce resource contention 
that is present in Multi-Threaded TCP wherein the threads 
are scheduled based on the Linux scheduler’s heuristics. 
MultiRail-TCP achieves 10 Gbps higher throughput than 
Linux Ethernet channel bonding. This is primarily due to the 
locking overheads in the Linux channel-bonding driver. 
Linux channel bonding works at gigabit rates but fails to 
scale to 10Gbps rates. Thus, one can achieve high 
performance at a user-space by exploiting parallelism 
throughout the system. 

B. Application Benchmarks – GPU Data Streaming  
Accelerators including GPUs are increasingly becoming 

prevalent in e-Science. GPUs are used for computation, 
information visualization and collaboration between 
scientists. Efficient data streaming between GPUs on 
multiple nodes, and, streaming between the GPU and the 
CPU is critical in a GPU’s performance in HPC clusters. We 
evaluate the efficacy of the RTK API on the performance of 
the “Netvideo” GPU streaming application. Netvideo is used 
for streaming 4K frames (4096 by 2048 pixels) of 
supercomputing e-Science simulations for remote and 
interactive visualization by scientists. This is very useful for 
steering simulations, especially in the petascale era. 

4K visualization at 24 frames per second (fps) in RGBA 
format (32bit per pixel, with red, green, blue and alpha 
channels at 8-bit each) requires 6.4 Gbps of network 
bandwidth to stream from the rendering site to the display 
site. ‘Netvideo’, shown in Figure 12, consists of: 

• A sending application, streaming 4K frames from 
main memory (usually simulation data). 

• A receiving application that receives the frames, and 
downloads them to the graphics card for display. To 
optimize the pixel download, Netvideo uses pixel 
buffer objects (an OpenGL feature) that offers 
asynchronous DMA transfer to the GPU through its 
PCIe link. 

• A 10G Myrinet interconnect between the sending 
and receiving machines for data transfer. 

 
Figure 12.  Streaming data from a GPU to a remote node over 10Gbps network using the RTK API for efficient resource co-scheduling. RTK improves the 

performance of GPU data streaming by 11% over default system scheduling by co-scheduling GPU, memory and network subsystems 



In this scenario with multiple devices requiring very high 
throughput, namely the network interface and graphics card, 
the rails approach helps in reducing the contention between 
the various devices resulting in an improved performance. 

The results are as following: 
• The default Linux mechanism balances the interrupt 

load between devices (IRQ balance daemon) without 
any affinities and yields an end-to-end (from memory 
to remote display) bandwidth of 5.6Gbps 
(approximately 21 fps). 

• Using RTK API, Netvideo achieves an end-to-end 
throughput of 6.2 Gbps (approximately 23 fps). This 
is close to interactive data visualization. 

IV. RELATED WORK 
Libnuma API [6,7] is a user-space library for NUMA 

memory allocation in Linux. It supports two levels of 
memory hierarchy, namely local memory and remote 
memory. Thus, Libnuma fails to abstract multi-level memory 
hierarchy, including the three-levels of memory hierarchy in 
quad-processor systems [7,8]. Additionally, we found a bug 
in the default allocation of Libnuma. Instead of allocating 
memory on the node where the thread was last scheduled, 
Libnuma always allocates memory onto Node 0 by default. 
In comparison, RTK supports multi-level memory hierarchy 
and also abstracts hybrid combinations of NUMA and UMA 
characteristic of future architectures. Message Placement 
Optimization (MPO) [9] is an implementation of NUMA in 
Solaris.  MPO abstracts the multi-level memory hierarchy 
available and exposes this to user applications.  In addition to 
abstracting the memory hierarchy, the Rails toolkit enables 
co-allocation of buffers with other sub-system resources 
including threads and interrupts. It also provides a memory 
buffer class to user applications, which facilitates seamless 
run-time modification to a buffer’s policies. This is essential 
for adaptive scheduling algorithms. 

PLPA in OpenRTE [10] presents an API for binding 
threads to processors. However, OpenRTE has been 
discontinued as a standalone project and is tightly integrated 
into OpenMPI. RTK’s thread binding has been influenced by 
OpenRTE’s design and presents a similar intuitive API as a 
C++ object. 

Multirail networks using technologies, including, 
Infiniband, Quadrics and Myrinet, have been used in HPC 
clusters to overcome the bandwidth bottleneck [5, 11].  In 
this case, a rail refers to a single network path and the 
payload is striped over the multiple network paths between 
any source-destination pair. In our work in the MultiRail 
Network library, in addition to exploiting parallelism of the 
network interconnects, we also exploit task parallelism 
critical for performance in multi-core environments. 

V. CONCLUSION 
The Rails Toolkit (RTK) abstracts the system topology 

and presents applications with an intuitive API to efficiently 
exploit end-system topology. RTK provides interfaces at 
multiple levels for integration with applications and 
middleware. The RTK API results in improved throughput, 

lower CPU usage and reduced message latency for 
applications by efficiently co-allocating resources. These 
results can help guide the development of future intelligent 
middleware that will automatically optimize the performance 
based on system parameters and conditions, thus making it 
easier for applications developers, who are often not systems 
experts, to make full use of the system capabilities. We are 
currently working towards extending RTK to other system 
architectures, including on-core GPU and accelerators, to 
enable future e-Science applications achieve scalable 
performance. 
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