
The Rails Toolkit – Enabling End-System Topology-Aware High End Computing

Venkatram Vishwanath, Jason Leigh,
 Sungwon Nam, Luc Renambot
Electronic Visualization Laboratory

University of Illinois at Chicago,
Chicago, Illinois, USA

venkat@evl.uic.edu

Takashi Shimizu, Hirokazu Takahashi,
Makoto Takizawa, Osamu Kamatani
NTT Network Innovation Laboratories

Yokosuka, Japan
t-shimizu@ieee.org

Abstract— We present a novel rails approach so that future e-
Science applications can effectively exploit future system
architectures, including multi-core and many-core
architectures, multiple network cards, multiple graphical
processing units and hybrid hierarchical memory
architectures. We define “rail” as the co-scheduling of two or
more of these resources. This approach enables creation of
parallel multi-rails through every aspect of an end system:
from processing on the multi- and many cores, to generation of
multiple data flows and streaming over multi-lane NICs
connected via a parallel interconnect. We describe a novel
open-source multi-rail toolkit and evaluate end-system
parameters that impact the efficiency of such multi-rail
systems, including Interrupt, Memory, Thread and Core
Affinities -- key properties for achieving scalable performance.

Keywords- High-performance computing, topology-aware
resource allocation, high-level abstractions, multi-core
computing

I. INTRODUCTION
 Cyberinfrastructure, comprised of geographically

distributed instruments and compute, storage and
visualization clusters interconnected by ultra-high-speed
optical networks, is the technological foundation that enables
global e-Science research, in fields including climate
analysis, astronomy, high-energy physics and neuroscience.
Earth scientists in National Aeronautics and Space
Administration (NASA) climate modeling, analysis and
prediction (MAP) project [1] routinely run simulations and
models on geographically distributed computational clusters
and access distributed storage to predict tropical cyclones

and hurricanes. Bio-scientists and geo-scientists are
adopting the Scalable Adaptive Graphics Environment
(SAGE) [2], specialized collaboration and visualization
middleware that enables co-operative scientific discovery by
geographically distributed scientists.

e-Science applications have demonstrated scalable
performance using today’s cyberinfrastructure architectures.
However, future architectures, as listed in Table 1, will
require today’s applications and middleware to scale their
performance in ways previously unexplored. Future
cyberinfrastructure will be characterized by deep and
complex memory, processor and interconnect hierarchies
with inherent parallelism in the various subsystems. Thus, a
critical component for scalable performance will be the
development of new and novel techniques for efficient
utilization of end-system architectures and resources.

Typically, e-Science applications and middleware scale
their performance to end-systems by optimizing their
implementations for the end-system architecture. However,
as end-system architectures evolve and become more
complex, solutions that aid in the design of evolvable
software are of paramount importance. One way to achieve
this would be to develop abstractions of the various
subsystems. These abstractions can help e-Science
programmers design efficient and deployable middleware
and applications.

We present the Rails Toolkit (RTK), an approach
towards enabling e-Science applications and middleware to
effectively exploit the potential of these architectural trends.
RTK abstracts end-system topology for applications and
middleware, and enables co-scheduling of CPU cores, GPUs,
memory and network resources within multi- and many-core

TABLE I. ARCHITECTURAL TRENDS THAT E-SCIENCE APPLICATIONS AND MIDDLEWARE WILL HAVE TO CONTEND WITH IN FUTURE

Subsystem Currently Deployed Architecture Future Architectural Trends

Processor Dual and Quad core Multi- and Many-cores with a Multi-dimensional topology

Memory SMP, NUMA
 (typically 2 memory banks)

SMP, NUMA, Hybrid combination of SMP and NUMA,
 Multi-dimensional (2D and 3D) memory topology

Graphical Processing
Unit (GPU)

PCIe based GPU
(typically with 128 processors)

Multiple GPUs with 256 to 800 processors per GPU
 (potentially on-core GPU design)

System Interconnects Shared Bus, PCIe Gen 1 (2.5 Gbps) Multi-lane PCIe Gen 2 and 3, Quick processor interconnect (QPI),
HyperTransport, (HT) DWDM-based optical interconnects

Network Interconnects 10 GE Ethernet, Infiniband, Myrinet, etc. 40 Gbps – 100 Gbps Multi-lane Ethernet, Infiniband interconnects,
Multi-lane DWDM based interconnects

Wide-Area Network 1-10 Gbps networks DWDM-based Multi-10 Gbps optical networks

computer systems. We define a “rail” as the co-scheduling of
two or more of these resources. Using RTK, application
developers can create one or more rails over which their
data-intensive computations and data retrievals can be
accelerated with minimal interference from other rails or
applications, and thus dramatically improve program
performance. RTK is an open source toolkit and presents an
intuitive API for applications and middleware to efficiently
utilize end-system architectures. RTK can be used to
improve the performance of high-performance computing
applications, high-speed data delivery applications, and high-
resolution graphics and video streaming. In the case of
SAGE, RTK can aid in the efficient use of network
parallelism to improve the performance of data streaming
critical for real-time collaboration.

Novel contributions of the paper include:
• End-system, topology-aware, resource abstractions

to enable applications efficiently utilize current and
future high-end systems. This enables topology-
aware memory allocation and enables applications to
seamlessly use multiple network interfaces.

• Easy-to-use extensible API that can be integrated at
multiple levels with applications and middleware.

• Open source application-level toolkit available for
download for immediate use by the community.

The outline of the paper is as follows: We describe the
rails approach and RTK Toolkit in section II. Experimental
evaluation using the RTK Toolkit, including micro-
benchmarks and application-level benchmarks, is discussed
in section III. We present related work in section IV and
finally conclude in section V.

II. RAILS TOOLKIT (RTK)
e-Science applications typically have multiple

components, which are compute-intensive, network-
intensive, IO-intensive and combinations of these. In
network-intensive workloads, including bulk data transfer
and data streaming, improving the achievable throughput
and reducing the message latency is critical for
performance. Additionally, reducing message latency and
memory access latency is important for compute-intensive
e-Science applications. The Rails approach enables efficient
topology-aware co-allocation of system resources,
including memory, processing cores and network
subsystem resources. Figure 1 depicts a network rail which
is a software abstraction of a processor core connected to a
lane on a network interface card (NIC) via a dedicated
interconnect. A network rail helps in improving the
achievable throughput and reducing the message latency by
reducing cache pollution and lowering memory access
latency. The rails approach enables pipelining of multiple
subsystems to compose hybrid rails. The RTK API can be
used to pipeline GPU rails and network rails, and thus
improve the performance of graphics streaming for remote
visualization by reducing cache pollution, exploiting
memory locality to reduce latency and reducing system bus
contention. This is critical for future cyberinfrastructures

where GPUs are an integral component. RTK enables
allocation of parallel rails, which, facilitates exploitation of
system topology and the parallelism inherent in current (and
future) system architectures. A parallel four-rail network rail
system is depicted in Figure 1, each rail consists of a
processor core with dedicated memory connected to a lane
on a NIC via a dedicated interconnect. The parallel rails
approach can be expanded to exploit parallelism in other
sub-systems.

RTK is implemented in C++ and is distributed under
GNU Public License (GPL) version 2.1. A beta version of
the toolkit and relevant documentation is available for
download at http://www.evl.uic.edu/cavern/rtk. It works
under Linux and has been tested on SMP-based Intel
architectures, NUMA-based AMD Opterons and IBM Cell
architectures. We describe the Rails toolkit architecture in
section II-a, discuss system properties which help in
achieving topology-aware resource allocation in section II-b
and provide an example of the RTK API in section II-c.

A. Rails Toolkit Architecture
Figure 2 depicts the Rails Toolkit Architecture, which

consists of the Resource Abstraction Layer, Resource
Allocation Layer and the Rail Allocation Layer. The
Resource Abstraction Layer abstracts the end-system
topology and deals with the low-level resource bindings.
The Resource Topology Database maintains relevant
information including the topological configuration of the
available processors, cores, memory nodes and IO devices.
This database is populated during initialization by probing
the system resources and using input configuration files. The
Resource Binding Layer is responsible for binding
interrupts to processor(s), threads to processor(s), the

Figure 1. The Rails approach. This figure depicts a network rail wherein

co-allocation of memory elements (ME), processor elements (PE) and
networks resources (NE) help achieve improved performance

memory policy and allocation over node(s). This layer is
designed using a wrapper around Linux system calls and
enables co-allocation of the resources. The Resource
monitor is a lightweight daemon that periodically checks the
online status of the processors and memory nodes.

The Resource Allocation Layer allocates threads,
sockets and memory using the underlying resource
abstraction layer. The Thread Library is a C++ wrapper
around the pthread library and enables manipulation of the
processor-thread binding and memory policies of a thread
using the resource abstraction layer. Additionally, it provides
in-depth performance statistics, including context-switches
and priorities, on a per-thread basis. The Memory
Allocation Library enables topology aware memory
allocation. It supports the NUMA memory policies available
in Linux including interleaving, local allocation and strict
allocation. The socket library currently supports TCP, UDP
and Parallel TCP. The library is extensible and is useful in
the design of composable protocols such as Reliable Blast
UDP [3] and LambdaStream [4]. The library provides in-
depth performance information of the network streams.

The Rail Allocation Layer synergistically co-allocates
resources for improved performance. This layer can aid in
isolating resources and reducing contention. The layer also
enables pipelining of rails. In graphics streaming
applications, pipelining GPU and network rails is important
for reducing resource contention, including the contention in

IO bus due to the GPU and network subsystem competing
for it.

We have exposed the capabilities at various layers as a
lightweight API so that researchers interested in applying
this approach have multiple levels to integrate their
applications with RTK. Details of the API are available at
the RTK website. We envision middleware and applications
using RTK to fully exploit the topologies of end-systems.
RTK could be used in the design of adaptive run-time
systems to optimize resource allocation. One such example is
the MultiRail Socket Library, which enables seamless use
of multiple network rails for network intensive applications.
It is implemented in C++ and derived from the rail socket
library. It exploits:

• Data Parallelism by striping the data onto multiple
data streams. The current implementation uses static
data striping and can be augmented to use adaptive
striping policies [5].

• Task Parallelism by employing worker threads to
stream each of the data streams. This makes efficient
use of system resources in a multi-core, many-core
environments.

• Network Parallelism by streaming the data streams
over the multiple network paths available between a
source and destination pair.

Additionally, the library employs efficient memory
interleaving heuristics to improve memory bandwidth.

Figure 2. Rail Toolkit Architecture. This figure depicts the various layer in the design of the Rail Toolkit (RTK) architecture. RTK consists of Resource

Abstraction Layer, Resource Allocation Layer and Rail Allocation Layer,. E-Science applications and middleware can use any of the 3 layers for
optimizing their performance to an end-systems topology.

B. System properties critical for topology-aware resource
allocation

Figure 3. This figure depicts the Interrupt Affinity (IA) property. IA is set

if the interrupt processing occurs on a processor where the device is
physically connected

Figure 4. This figure depicts the Thread Affinity (TA) property. TA is set

if the network application thread is bound to the processor where the
interrupt processing occurs

Figure 5. This figure depicts the Memory Affinity (MA) property. MA is

set if the application buffer is allocated on the memory bank where the
network application thread is bound.

We discuss properties that help improve an application’s
performance by enabling efficient topology-aware resource
allocation. In this paper, we restrict our focus towards
properties critical for network-intensive workloads.
However, we would like to note that these properties are also
necessary for other e-Science workloads, including compute-
intensive workloads.

We define the Interrupt Affine property as one wherein
the interrupt processing is performed on the processor to
which the IO device is physically bound. Interrupt affinity
reduces the message latency by servicing the interrupts on
the nearest processor. As seen in Fig. 3, NIC 0 is physically
attached to the PCIe bridge physically connected to
processor 0. If the interrupt processing of NIC 0 occurs on
any core of processor 0, we consider this to be interrupt
affine. If the interrupt processing of NIC 0 occurs on
processor 1, the interrupt affinity is not set. Thus, we define
interrupt affinity relative to the physical topology of the IO
device.

 We define the Thread Affine property as one wherein
the network application thread is scheduled on the processor
in charge of the interrupt processing. Thread affinity reduces
cache pollution and improves latency as the interrupt
processing and the application thread are scheduled on the
same processor. As seen in Figure 4, if the network
application thread is scheduled on processor 0 and the
interrupt processing of NIC 0 occurs on processor 0, we
consider this to be thread affine. In Figure 4, we have both
interrupt affine and thread affine properties. Thus, for
network intensive workloads, we define thread affinity
relative to the corresponding interrupt processing.

We define the Memory Affine Property as one wherein
the memory buffer used by the network application thread is
allocated on the memory bank with the lowest access latency
with respect to the application thread. In case of NUMA-
based systems, memory allocation on the local memory bank
is considered to be memory affine. In Figure 5, the network
application thread is scheduled on processor 0. If the
memory is allocated on node 0, we consider this to be
memory affine. Memory affinity helps in reducing the data
access latency. In case of system architectures with deep and
multi-level memory hierarchies, memory affinity refers to
allocation of memory on memory nodes with the least access
latency. Lower memory access latency is critical for data-
intensive e-Science.

Additionally, using RTK, one can enable multiple
properties simultaneously for improved performance.
Enabling thread and interrupt affinity together would help in
an improved performance over the individual affinities due
to lower cache pollution among others. As mentioned earlier,
RTK can be used to form parallel rails to exploit the inherent
parallelism in end-systems.

If T is the achievable performance of a single rail, In an
N-rail system, the expected performance would be: N x T x
∂, where ∂ is the parallel efficiency. In an ideal parallel
system, the parallel efficiency is approximately unity (∂ →
1), and this system exhibits additive performance. The goal
would be to identify the affinity combinations that would

help parallel efficiency. This could be used towards the
design of efficient run-time systems.

C. Sample program using the RTK API
Table II depicts the pseudo code of a typical TCP client

socket program. This program uses the default affinity
settings of the operating system. A rail-enabled socket
program using the RTK API to enable interrupt affinity and
thread affinity given in Table III. This uses the RTK
Abstraction Layer API. One could design an interposer layer
to set these affinities by default for e-Science applications.
The interposer layer enables easy integration of the RTK
with existing applications without a single line of source-
code modification. Table IV demonstrate the same using the
RTK Allocation layer. This provides an intuitive higher-level
abstraction for resource allocation. In-depth examples,

including querying the system topology and multi-node
memory allocation, can be found in the RTK software
distribution

III. EXPERIMENTAL ANALYSIS
In this section, we study the efficacy of the RTK toolkit

on a set of micro-benchmarks and application-level
benchmarks. We focus our attention on network-intensive
benchmarks. The experimental testbed consisted of Two
dual-core, dual-processor AMD 2.6 GHz Opteron TYAN
2895 systems with 4GB RAM and two PCIe 16X slots. The
two machines were connected back-to-back with two 10 GE
Myrinet NIC each. The Linux kernel version used was 2.6.18
with MSI enabled. The MTU used for the experiments was
9000 bytes. The 1.4.1 Myrinet driver was used in the
experiments

TABLE II.
PSEUDOCODE OF A SIMPLE TCP CLIENT

TABLE III.
TCP CLIENT USING RTK’S RAIL ABSTRACTION

LAYER API

TABLE IV.
TCP CLIENT USING RTK’S RAIL ALLOCATION

LAYER API

int sockfd; struct sockaddr_in server_addr;

/* create a TCP socket */
sockfd=socket(AF_INET,SOCK_STREAM, 0)

/* Populate the server_addr with server info */

/* connect to the server */
connect(sockfd,&server_addr,sizeof(srv_addr))

/* Send data to the server */
loop{
 write (sockfd, buffer, sizeof(buffer));
}

close (sockfd);

int sockfd; struct sockaddr_in server_addr;

/* create a TCP socket */
sockfd = socket(AF_INET,SOCK_STREAM,0)

/* Populate the server_addr with server info */

/* connect to the server */
connect(sockfd,&server_addr,sizeof(srv_addr));

/* Initialize Interrupt Affinity of the network
* interface to its physically connected processor
* and set thread affinity to the processor where
* the Interrupt affinity is set */
RTK_Interrupt_Affinity IntrAff;
RTK_Thread_Affinity ThreadAff;

IntrAff.init(sockfd);
ThreadAff.init (&IntrAff);

/* Send data to the server */
loop {
 write (sockfd, buffer, sizeof(buffer));
}
close (sockfd);

RTK_tcpClient client; /* A TCP Client Object */

/* connect to the server */
client.connectToServer(srv_name, srv_port);

/* Initialize Interrupt Affinity of the network
* interface to its physically connected processor
* and set thread affinity to the processor where
* the Interrupt affinity is set */

client.setInterruptAffinity();
client.setThreadAffinity();

/* Send data to the server */
loop{
 client.write (buffer, sizeof(buffer));
}

client.close();

Figure 6. Effect of affinities on the latency of multiple TCP streams. As

the message size increases, memory affinity is key for improved throughput
Figure 7. Effect of affinities on the latency of multiple UDP streams.

Thread affinity plays a key role in inmproved throughput

A. Micro-benchmarks
We evaluate the performance of rails and the RTK toolkit

on network intensive workloads. In e-Science cluster-based
applications, a node routinely needs to send and receive data
from multiple nodes. We designed a simple TCP micro-
benchmark program to measure the efficacy of the rails
approach on the achievable throughput, CPU usage and
message latency. The benchmark program is written in C and
creates four network streams between the two test nodes.
Two network streams are bound to each of the 10G NIC. The
client and server programs use the RTK Rail Abstraction
Layer API. We compare the RTK version with a socket-
based program. The socket program does not use the RTK
API and relies on the default system affinity and scheduling
heuristics.

1) Effects of Various Rail Configurations on Message
Latency

Figure 6 compares the performance of setting the rails
affinities on the message transfer latency for various
payloads using four concurrent TCP (two per NIC). We
compare this performance with the default case in Linux. As
seen from the graph, as the payload size increase, thread and
memory affinities help in reducing the transfer latency. For a

payload of 8MB, thread and memory affinity together yield
reduce the message latency by 33% over the default Linux
case. This is mainly due to the improved cache locality and
lower data access latency due to memory affinity. This is
reduction in message latency is critical for applications using
MPI and network-intensive applications. A similar trend is
seen in the case of UDP in Figure 7 where thread and
memory affinity together help reduce the transfer latency.
The effect of thread affinity on latency is clearly visible as
the payload size exceeds 4K (page size). The effects of
memory affinity are not very pronounced in comparison to
thread affinity due to the fact that the payload fits into the
processor cache.

2) Effects of Various Rail Configurations on
Throughput and CPU Utilization

 The effect of affinities of the throughput of network-
intensive TCP and UDP workloads is shown in Figures 8 and
9. The workload consists of four concurrent streams (two per
NIC). We compare the achievable throughput for the stream
using the RTK Abstraction Layer API to enable affinities (at
both the sender and the receiver) with the achievable
throughput on the system relying on default system settings.
We notice that enabling affinities improves the achievable

Figure 8. Effect of affinities on the aggregate throughput of four TCP

streams. As the payload size increases, enabling affinities leads to higher
throughput in comparison to a default Linux system.

Figure 9. Effect of affinities on the aggregate goodput (thoughput with
0% packet loss) of four concurrent UDP streams. As payload increases,

enabling affinities leads to a higher performance in comparison to a
default Linux system.

Figure 10. Effect of affinities on the average CPU Utilization of four

concurrent TCP Streams to process 1Gbps. Using RTK, the application
needs less CPU to process 1Gbps TCP traffic.

Figure 11. Performance evaluation of 2 x 10GE Linux Ethernet Channel
Bonding, user-space Multi-Threaded TCP over 2 NICs and user-space
MultiRail Library based TCP over two network rails for transferring a

payload of 8MB.

throughput. This improvement is significant for higher
payloads. In case of TCP, for a payload of 256 KB, affinities
result in an improvement of 2 Gbps over the default settings.
This is primarily due to factors, including lower cache
pollution and lower memory access latency. Thus, allocating
resources taking the topology into account is critical for
network intensive e-Science and throughput intensive
applications including wide-area data transfer.

Figure 10 depicts the effect of affinities on the average
CPU utilization of the network streaming at the receiver to
process 1 Gbps. In this experiment, we have 4 concurrent
streams competing to process the network streams. This is
very common in cluster-based applications. Lower CPU
usage by the network application would yield precious CPU
cycles for the compute-intensive components. Enabling
affinities results in a reduced CPU usage, which is primarily
due to reduced contention of resources and lower cache
pollution. In case of 8MB payload, a fully affine system
leads to the 50% reduced CPU usage. This is mainly due to
the fact that memory affinity leads to low-latency data
access. This is critical for cluster-based applications wherein
precious additional CPU cycles (leveraged from an affine
network component) can be dedicated to compute-intensive
components.

3) MultiRail TCP benchmarks
With the advent of Multi-lane NICs, efficient methods to

exploit parallelism throughout the system and networks are
necessary. This is critical for future LambdaGrids based
applications using IP over Ethernet over DWDM. The
current options include, Ethernet channel bonding and
designing a multi-threaded protocol. MultiRail-TCP is a
simple socket-like API that allows applications to leverage
the performance benefits of rails without having to
significantly modify an application’s source code. Internally,
it takes advantage of data parallelism by splitting the data
onto multiple streams; task parallelism by creating worker
threads to stream the data; and network parallelism by using
the multiple NICs available on the system. Similar to the
micro-benchmarks, our MultiRail-TCP experiment created
network rails with thread and memory affinity. The memory
was interleaved between the two memory banks. As seen in

Figure 11, MultiRail-TCP achieves a throughput 2 Gbps
higher than a Multi-Threaded TCP over 2 NICs. This is due
to the fact that the network rails reduce resource contention
that is present in Multi-Threaded TCP wherein the threads
are scheduled based on the Linux scheduler’s heuristics.
MultiRail-TCP achieves 10 Gbps higher throughput than
Linux Ethernet channel bonding. This is primarily due to the
locking overheads in the Linux channel-bonding driver.
Linux channel bonding works at gigabit rates but fails to
scale to 10Gbps rates. Thus, one can achieve high
performance at a user-space by exploiting parallelism
throughout the system.

B. Application Benchmarks – GPU Data Streaming
Accelerators including GPUs are increasingly becoming

prevalent in e-Science. GPUs are used for computation,
information visualization and collaboration between
scientists. Efficient data streaming between GPUs on
multiple nodes, and, streaming between the GPU and the
CPU is critical in a GPU’s performance in HPC clusters. We
evaluate the efficacy of the RTK API on the performance of
the “Netvideo” GPU streaming application. Netvideo is used
for streaming 4K frames (4096 by 2048 pixels) of
supercomputing e-Science simulations for remote and
interactive visualization by scientists. This is very useful for
steering simulations, especially in the petascale era.

4K visualization at 24 frames per second (fps) in RGBA
format (32bit per pixel, with red, green, blue and alpha
channels at 8-bit each) requires 6.4 Gbps of network
bandwidth to stream from the rendering site to the display
site. ‘Netvideo’, shown in Figure 12, consists of:

• A sending application, streaming 4K frames from
main memory (usually simulation data).

• A receiving application that receives the frames, and
downloads them to the graphics card for display. To
optimize the pixel download, Netvideo uses pixel
buffer objects (an OpenGL feature) that offers
asynchronous DMA transfer to the GPU through its
PCIe link.

• A 10G Myrinet interconnect between the sending
and receiving machines for data transfer.

Figure 12. Streaming data from a GPU to a remote node over 10Gbps network using the RTK API for efficient resource co-scheduling. RTK improves the

performance of GPU data streaming by 11% over default system scheduling by co-scheduling GPU, memory and network subsystems

In this scenario with multiple devices requiring very high
throughput, namely the network interface and graphics card,
the rails approach helps in reducing the contention between
the various devices resulting in an improved performance.

The results are as following:
• The default Linux mechanism balances the interrupt

load between devices (IRQ balance daemon) without
any affinities and yields an end-to-end (from memory
to remote display) bandwidth of 5.6Gbps
(approximately 21 fps).

• Using RTK API, Netvideo achieves an end-to-end
throughput of 6.2 Gbps (approximately 23 fps). This
is close to interactive data visualization.

IV. RELATED WORK
Libnuma API [6,7] is a user-space library for NUMA

memory allocation in Linux. It supports two levels of
memory hierarchy, namely local memory and remote
memory. Thus, Libnuma fails to abstract multi-level memory
hierarchy, including the three-levels of memory hierarchy in
quad-processor systems [7,8]. Additionally, we found a bug
in the default allocation of Libnuma. Instead of allocating
memory on the node where the thread was last scheduled,
Libnuma always allocates memory onto Node 0 by default.
In comparison, RTK supports multi-level memory hierarchy
and also abstracts hybrid combinations of NUMA and UMA
characteristic of future architectures. Message Placement
Optimization (MPO) [9] is an implementation of NUMA in
Solaris. MPO abstracts the multi-level memory hierarchy
available and exposes this to user applications. In addition to
abstracting the memory hierarchy, the Rails toolkit enables
co-allocation of buffers with other sub-system resources
including threads and interrupts. It also provides a memory
buffer class to user applications, which facilitates seamless
run-time modification to a buffer’s policies. This is essential
for adaptive scheduling algorithms.

PLPA in OpenRTE [10] presents an API for binding
threads to processors. However, OpenRTE has been
discontinued as a standalone project and is tightly integrated
into OpenMPI. RTK’s thread binding has been influenced by
OpenRTE’s design and presents a similar intuitive API as a
C++ object.

Multirail networks using technologies, including,
Infiniband, Quadrics and Myrinet, have been used in HPC
clusters to overcome the bandwidth bottleneck [5, 11]. In
this case, a rail refers to a single network path and the
payload is striped over the multiple network paths between
any source-destination pair. In our work in the MultiRail
Network library, in addition to exploiting parallelism of the
network interconnects, we also exploit task parallelism
critical for performance in multi-core environments.

V. CONCLUSION
The Rails Toolkit (RTK) abstracts the system topology

and presents applications with an intuitive API to efficiently
exploit end-system topology. RTK provides interfaces at
multiple levels for integration with applications and
middleware. The RTK API results in improved throughput,

lower CPU usage and reduced message latency for
applications by efficiently co-allocating resources. These
results can help guide the development of future intelligent
middleware that will automatically optimize the performance
based on system parameters and conditions, thus making it
easier for applications developers, who are often not systems
experts, to make full use of the system capabilities. We are
currently working towards extending RTK to other system
architectures, including on-core GPU and accelerators, to
enable future e-Science applications achieve scalable
performance.

ACKNOWLEDGMENTS
We would like to thank Alan Verlo (EVL, UIC), Lance

Long (EVL, UIC), Maxine Brown (EVL, UIC), Andrew
Johnson (EVL, UIC), Patrick Hallihan (EVL, UIC), Laurin
Herr (PII), Natalie Van Osdol (PII), Osamu Ishida (NTT),
Kazuaki Obana (NTT), Kazuo Hagimoto (NTT), Larry
Smarr (CalIT2, UCSD), Tom DeFanti (CalIT2, UCSD). This
material is based upon work supported by the National
Science Foundation (NSF), awards CNS-0420477, OCI-
0441094, and OCI-0225642, as well as funding from the
State of Illinois, Pacific Interface and Sharp Laboratories of
America. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the
funding agencies.

REFERENCES
[1] Modeling, Analysis and Prediction Project 2006, NASA Goddard

Space Flight Center. http://map06.gsfc.nasa.gov
[2] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. Johnson,

J. Leigh. “High-Performance Dynamic Graphics Streaming for
Scalable Adaptive Graphics Environment,” In the proceedings of
IEEE/ACM Conference on Supercomputing 2006, Tampa, FL,
November 11-17, 2006

[3] E. He, J. Leigh, O. Yu, and T. DeFanti, “Reliable Blast UDP:
Predictable High Performance Bulk Data Transfer,” In Proc. of the
IEEE Conference on Cluster Computing, September 23 - 26, 2002.

[4] V. Vishwanath, J. Leigh, E. He, M.D. Brown, L. Long, L. Renambot,
A. Verlo, X. Wang, T.A. DeFanti, “Wide-Area experiments with
LambdaStream over dedicated high-bandwidth networks,” In
Proceedings of IEEE INFOCOM High-Speed Networking Workshop:
The Terabit Challenge 2006, Barcelona, Spain, April 24-26, 2006.

[5] J. Liu, A. Vishnu and D. K. Panda, “Building Multi-rail InfiniBand
Clusters: MPI Level Design and Performance Evaluation,” ,” In the
proceedings of IEEE/ACM conference on Supercomputing 2004.

[6] Linux NUMA policy. Linux manual pages.
[7] A. Kleen, “An NUMA API for Linux,” 2004.
[8] U. Drepper, “What Every Programmer Should Know About

Memory,” 2007.
[9] J. Chew, “Message Placement Optimization - Solaris performance,”

http://opensolaris.org/os/community/performance/mpo_overview.pdf
[10] R. Castain, T. Woodall, D. Daniel, J. Squyres, B. Barrett, and G.

Fagg, “The Open Run-Time Environment (OpenRTE): A transparent
multicluster environment for high-performance computing,” Future
Gener. Comput. Syst. 24, 2 (Feb. 2008), 153-157.

[11] S. Coll, E. Frachtenberg, F. Petrini, A. Hoisie, and L. Gurvits, ”Using
Multirail Networks in High-Performance Clusters,” In Concurrency
and Computation: Practice and Experience, 15 (7-8): 625--651, 2003

