
High-Performance Dynamic Graphics Streaming
for Scalable Adaptive Graphics Environment

Byungil Jeong, Luc Renambot, Ratko Jagodic, Rajvikram Singh, Julieta Aguilera, Andrew Johnson, Jason Leigh

Electronic Visualization Laboratory, University of Illinois at Chicago
{bijeong, luc, rjagodic, rsingh, julieta, aej, spiff}@evl.uic.edu

Abstract

The Scalable Adaptive Graphics Environment (SAGE)
is specialized middleware for enabling data, high-definition
video and extremely high-resolution graphics to be
streamed in real-time from remotely distributed rendering
and storage clusters to scalable display walls over ultra-
high-speed networks. In this paper, we present the SAGE
architecture, focusing on its dynamic graphics streaming
capability. In the SAGE framework, multiple visualization
applications can be streamed to large tiled displays and
viewed at the same time. The application windows can be
moved, resized and overlapped like any standard desktop
window manager. Every window movement or resize
operation requires dynamic and non-trivial reconfiguration
of the involved graphics streams. This approach has been
successfully shown to scale to support streaming on the
LambdaVision 100 Megapixel display wall. SAGE is now
being extended to support distance collaboration with
multiple endpoints by streaming visualization to all the
participants.

1. Introduction

A fundamental goal of visualization and collaboration
on Grids interconnected by high-bandwidth deterministic
networks (also called LambdaGrids [1,2]) is to enable users
to collectively interpret enormous datasets in real-time at
extremely high resolutions. An increasingly important
model is to conduct the visualization using large pools of
computing resources (such as clusters of powerful
computers equipped with high-performance graphics
processors) and streaming the results to the collaborating
end-points. These end-points may range from PDAs all the
way up to ultra-high-resolution display walls such as those
built by stitching together dozens of LCD panels. The
image streams shown on these display devices may consist
of offline rendered movies as well as real-time
visualizations and high-definition video. This approach
provides significant advantages: firstly, the pooling of
computing resources increases utilization, especially when
they are cast as Grid services that can be combined with

other services to form a pipeline that could link large-scale
data sources with visualization resources. Secondly, since
networking is diminishing in cost at a rate exceeding that
of computing and storage, it becomes more cost-effective
for users to build low-cost, networked thin clients than to
have to purchase and maintain their own rendering farms,
storage repositories, etc.

We developed the Scalable Adaptive Graphics
Environment (SAGE) to put this model into practice.
SAGE allows the seamless display of various networked
applications over ultra-high-resolution displays. Each
visualization application (such as real-time or offline
rendered visualizations, remote desktop, high-definition
video streams, 2D maps etc.) streams its rendered pixels (or
graphics primitives) to the virtual high-resolution frame
buffer of SAGE, allowing user-definable window position
and size on the displays (see Figure 1,9). Furthermore,
SAGE enables users to freely move, resize and overlap the
application windows by dynamically reconfiguring pixel
streams.

SAGE has successfully supported our high-resolution
display LambdaVision that is an 11x5 tiled display with a
total resolution of 100 Megapixels. A high-resolution
display like LambdaVision is essential to render complex
geometric models without losing details. Even though a
geometric model has a million triangles, if it is rendered
into a window of 250,000 pixels (500x500), at most 25
percent of those triangles could contribute to the final
image [10]. Also, geoscientists working with aerial and
satellite imagery (365Kx365K pixels maps) and
neurobiologists imaging the brain with montages consisting
of thousands of pictures from high-resolution microscopes
(4Kx4K pixels sensor) are good examples of SAGE and
LambdaVision users.

In addition, SAGE has an important role in our

Figure 1. An Example of SAGE Session

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC2006 November 2006, Tampa, Florida, USA
0-7695-2700-0/06 $20.00 © 2006 IEEE

OptIPuter project [1,2]. It is a National Science Foundation
funded project between the University of Illinois at
Chicago and the University of California, San Diego to
interconnect distributed storage, computing and
visualization resources using a backplane constructed from
LambdaGrids. SAGE is the graphics middleware of this
project providing a unified environment to support various
data exploration tools (visualization applications).

The main contributions of this paper are as follows:

I. It proposes the SAGE architecture and the procedure
of dynamic pixel stream reconfiguration for multiple
applications.

II. It shows the proposed architecture can support remote
visualization applications scaling the resolution up to
multi-ten Megapixels without losing interactivity.

III. It shows the proposed architecture can stream
graphics data over 10gigabit wide area networks
utilizing almost 90% of available bandwidth.

2. Related Work

There are several existing systems with parallel or
remote rendering schemes related to SAGE. The simplest
case of remote rendering uses remote desktop methods
such as VNC, Microsoft Remote Desktop or Xmove. These
were designed to transmit screens of single desktops to
remote computers over slow networks operating on event
triggered streaming mechanisms that are not suitable for
real-time streaming of scientific visualization or
collaborative applications. Access Grid [5] is a system that
supports distributed collaborative interactions over Grids.
Although it enables remote visualization sharing, the major
focus of Access Grid lies in distributed meetings,
conferences and collaborative work-sessions. Furthermore,
the display resolution of remote desktop and Access Grid is
limited to a single desktop resolution (at most 1600x1200
usually). On the other hand, SAGE can support 100
Megapixel display walls and include these systems in the
SAGE framework by adding a simple SAGE API to them.

Perrine et al [9] and Klosowski et al [10] presented the
merits of high-resolution display for various visualization
applications. They used Scalable Graphics Engine (SGE)
developed by IBM to drive their high-resolution displays.
SGE is a hardware frame buffer for parallel computers.
Disjointed pixel fragments are joined within the SGE frame
buffer and displayed as a contiguous image [9]. SGE
supports up to sixteen 1GigE inputs and can drive up to
eight displays with double buffering for a total of 16
Megapixels. SAGE and SGE are similar in receiving
graphics data from multiple rendering nodes and routing to
high-resolution displays.

However, SAGE differs from SGE in that the former is
a software approach that is much more flexible and
scalable than the latter. SAGE does not require any special
hardware. New network technology like 10GigE and new
network protocols can be easily applied to SAGE. SGE, on
the other hand, is bound to 1GigE inputs and an SGE-
specific network protocol. There is no theoretical limitation
in scaling the performance of SAGE by adding rendering
and display nodes. In contrast, network bandwidth, the
number of inputs and memory capacity all limit the
performance of SGE.

There are several parallel rendering systems that can
benefit from SAGE or SGE. WireGL [7] or parallel scene-

graph rendering is a sort-first parallel rendering scheme
from a single data source. This approach allows a single
serial application to drive a tiled display by streaming
graphics primitives that will be rendered in parallel on
display nodes. However, it has limited data scalability due
to its single data source bottleneck. Flexible scalable
graphics systems such as Chromium [8] or Aura [11] are
designed for distributing visualization to and from cluster
driven tiled-displays. However, these systems enable a
unique application at a time with a static layout on a tiled
display. So they require a graphics streaming architecture
such as SAGE or SGE to move, resize and overlap multiple
application windows.

XDMX (Distributed Multi-head X11) is another system
that can drive a tiled display. It is a front-end proxy X
server that controls multiple back-end X servers to make
up a unified large display [15]. XDMX also can support
Chromium to display multiple applications on a tiled
display. However, XDMX only supports non-parallel
applications. This limits its scalability with large datasets.

The most unique feature of SAGE as compared with
SGE, XDMX or Chromium, is the high-speed graphics
streaming capability over wide area networks as shown in
Figure 2. SAGE can use various streaming protocols
designed for high-bandwidth and high-round-trip-time
networks that are not considered in the streaming protocols
of SGE and Chromium. We will discuss more about SAGE
streaming protocols later. Moreover, we are extending
SAGE to scalably support distance collaboration with
multiple endpoints by streaming graphics to all the
participating endpoints using various multicast approaches.
In addition, SAGE considers mullions (borders) of each
LCD panel of tiled displays when displaying application
windows. Hence, the mullions appear to be placed on top
of a large continuous image. This was also not considered
in SGE and Chromium.

Our previous work, TeraVision [3], is a scalable
platform-independent solution that is capable of
transmitting multiple synchronized high-resolution video
streams between single workstations and/or clusters.
TeraVision also can stream graphics data over wide area
networks. However, it has a static application layout on a
tiled display. It is suitable for streaming a single desktop to

Figure 2. SAGE over Wide Area Network

a high-resolution tiled display, but unsuitable for
supporting parallel applications or multiple instances of
applications. To overcome these drawbacks, we developed
SAGE.

3. SAGE Architecture

SAGE consists of various components: the Free Space
Manager (FSManager), SAGE Application Interface
Library (SAIL), SAGE Receivers, synchronization channel,
and UI clients as shown in Figure 3. To dynamically
reconfigure pixel streams, SAGE includes a component to
control the whole procedure by communicating with all the
other components. The FSManager is designed for this
purpose. SAIL is the thin layer between an application and
the high-speed network that is needed to capture the output
pixels of the application and stream them to the display. A
SAGE receiver on each display node receives and displays
multiple pixel streams independently to allow multiple
applications to be shown concurrently on the tiled display.

3.1. Free Space Manager (FSManager)

The Free Space Manager (FSManager) is the window
manager for SAGE. This is akin to a traditional desktop
manager in a windowing system, except that it can scale
from a single tablet PC screen to a desktop spanning over
100 Mega-pixel displays. The FSManager receives from UI
clients various user commands such as application
execution, window move, resizing or z-order change
(overlapping windows) and then executes the commands
by sending control messages to SAIL nodes or SAGE
Receivers. To deliver control messages among SAGE
components, we use our cross-platform adaptive
networking toolkit QUANTA [12].

The FSManager collects and maintains the information
needed for dynamic pixel stream reconfiguration from
other SAGE components. Its most important role is to
control the reconfiguration procedure based on the
information whenever application windows are
repositioned or resized. The detailed reconfiguration
procedure will be described in the section 4.

Another important role of the FSManager is to execute
applications based on user-defined configurations as shown
in Table 1. ‘nodeNum’ is the number of rendering nodes.
The line starting by ‘Init’ specifies the initial position and
size of the application window. ‘exec’ is followed by an IP

address and commands. The IP address specifies the
machine on which the commands are executed, and the
commands are directly used for executing the application.
‘nwProtocol’ specifies the name of the network protocol
library to be used for pixel streaming. ‘syncMode’
specifies the synchronization mode of the application, on
the rendering and display sides. Since multiple
configurations are possible for each application, users can
execute multiple instances of an application with different
configurations by giving different configuration ID.

3.2. SAGE Application Interface Library (SAIL)

SAGE applications communicate with the FSManager
and stream pixels to SAGE receivers through SAIL, which
provides application programmers with a very simple
interface to the SAGE framework. The SAGE API allows
the programmers to describe pixel buffers and the position
of the buffers in the application output image. The latter is
needed when programming a parallel application where
each processor will generate a portion of the whole picture.
This mode is used either to speed up the application (each
processor generates less pixels keeping the same total
resolution) or to achieve higher resolution (increasing the
number of processors while each generates the same
amount of pixels). The only SAIL function other than
'init()' in the application is the call to the ‘swapBuffer()’
function. Due to this minimal API, any application with
uncompressed pixel output can be easily ported to SAGE.

Table 2 shows an example of a minimal SAGE

Table 2. Minimal SAGE application
sailConfig scfg;
scfg.cfgFile = "sage.conf";
scfg.appName = "render";
scfg.rank = 0;
sageRect renderImageMap;
renderImageMap.left = 0.0;
renderImageMap.right = 1.0;
renderImageMap.bottom = 0.0;
renderImageMap.top = 1.0;
scfg.imageMap = renderImageMap;
scfg.colorDepth = 24;
scfg.pixFmt = TVPIXFMT_888;
scfg.rowOrd = BOTTOM_TO_TOP;
sageInf.init(scfg);
while (1) {
 draw(rgbBuffer);
sageInf.swapBuffer(rgbBuffer);

}

Table 1. SAGE Application Configuration
atlantis {
configName TCP
nodeNum 1
Init 100 100 1000 1000
exec 127.0.0.1 atlantis 0 127.0.0.1
nwProtocol tvTcpModule.so
syncMode 0

configName UDP
nodeNum 1
Init 1100 1100 2000 2000
exec 127.0.0.1 atlantis 0 127.0.0.1
nwProtocol tvUdpModule.so
syncMode 2

}

Figure 3. SAGE Components

application. This application registers itself with the name
‘render’ to the FSManager. It is a sequential application,
and the unique process will generate the whole image as
described in the ‘renderImageMap’ data structure. The
application function, ‘draw()’, generates 24-bit image in
the RGB format onto the ‘rgbBuffer’ memory buffer where
the pixels are laid out from bottom to top. The
‘swapBuffer()’ call delivers the image contained in the
‘rgbBuffer’ to the SAIL library. Then SAIL splits the
image into sub-images and streams them to the proper
SAGE Receivers based on the information given by the
FSManager. It is completely transparent to users to
partition and stream the images to the display using various
protocols.

3.3. SAGE Receiver

A SAGE Receiver receives multiple pixel streams from
SAIL nodes to drive the screens attached to each display
node. The received streams may belong to different
applications if multiple application windows are
overlapped on the screens. This means the SAGE Receiver
may have to update each application window at different
times if the applications are independently synchronized at
various refresh rates. We cannot use multi-threads to
update the windows independently because conventional
display control libraries like GLUT or SDL are not
designed for multi-threading. Thus, we designed SAGE

Receiver as shown in Figure 4.
Each network thread receives a single pixel stream and

stores the pixels in a circular buffer. If any synchronization
slaves receive a synchronization signal, the display thread
updates the screens with new images and start downloading
the next frames from the circular buffers to the graphics
card memory so that the next frames can be instantly
updated to the screens by the next synchronization signal.
The detailed synchronization procedure will be discussed
in the next section.

A SAGE Receiver can drive multiple tiles (monitor
screens). The layout of the tiled display is specified in a
text configuration file that describes the association and the
physical arrangement between the displays and the
computers. Table 3 describes a 2x2 display driven by two
computers. Here we assume LCD panels have uniform
mullion (border of LCD panels) widths. PPI (pixel per
inch) and mullion widths are used to calculate how many
pixels should be hidden by mullions.

3.4. Synchronization Channels

When an application is displayed on a tiled display,
each tile needs to be synchronously updated for the sub-
images to be shown as one large consistent image. From
our prior work on the TeraVision [3], we have learned that
that not only display nodes but also rendering nodes need
to be synchronized to yield better synchronization results in
the case of a parallel application. So two synchronization
channels were implemented: the display synchronization
channel among SAGE Receivers and the rendering
synchronization channel among SAIL nodes. If a parallel
application synchronizes its output, the rendering
synchronization is unnecessary. Also, users may want to
turn off synchronization to remove the overhead in case
synchronization is not critical for the application content.
SAGE provides four synchronization modes as shown in
Table 4. This allows users to freely turn on or off
synchronization on each side per each application instance
as shown in Table 1.

The procedure of rendering synchronization is very
simple. The synchronization master thread resides on one
of the SAIL nodes. Each SAIL node sends update signals
to the synchronization master once it finishes transferring
an image frame. Then, the synchronization master sends
synchronization signals to all SAIL nodes after receiving
update signals from all. After receiving the synchronization
signal, SAIL nodes start to transfer new frames as soon as
the frames are ready by the application.

For display synchronization, SAGE creates a
synchronization master thread on one of SAGE Receivers
and a synchronization slave object per each SAGE
Receiver whenever an application is launched. The detailed
synchronization procedure is as follows:

Table 4. Four Synchronization Modes
Sync Mode Rendering Sync Display Sync

0 On On

1 On Off

2 Off On

3 Off Off

Table 3. Tiled Display Configuration
TileDisplay
Dimensions 2 2
Mullions 0.625 0.625 0.625 0.625
Resolution 1280 1024
PPI 90
Machines 2

DisplayNode
Name yorda1-10
IP 10.0.8.121
Monitors 2 (0,0) (1,0)

DisplayNode
Name yorda2-10
IP 10.0.8.122
Monitors 2 (1,0) (1,1)

Figure 4. Architecture of SAGE Receiver

(1) The display thread waits until the images of frame N of
the application A have arrived in the circular buffers.

(2) Once arrived, the display thread downloads the images
into the graphics card memory.

(3) The synchronization slave A sends an update signal to
its master (synchronization master A).

(4) The synchronization master A sends synchronization
signals to all its slaves after receiving the update signal
from all.

(5) When the synchronization slave A receives a
synchronization signal, the display thread clears the
screens and draws the frame N of the application A and
the current frame of the application B.

(6) Repeat steps (1) – (5) for frame N+1

The same procedure is repeated for the application B in

parallel. Even if only one application receives a
synchronization signal, current images of the other
application have to be redrawn, however, the overhead is
minimal because drawing a rectangle with the texture
already downloaded into the graphics card is extremely fast.
The TCP out-of-band data channel is used for transferring
synchronization signals in order to reduce the latency and
to increase their priorities.

3.5. User Interaction

UI Clients can be a Graphical User Interface, text-based
console or tracked devices [6], which send user commands
to the FSManager and show the status of SAGE to the
users. Any UI client can execute, shutdown, move, and
resize SAGE applications in a manner very similar to a
typical contemporary windowing system. Furthermore, UI
clients can reside on any machine (laptop, tablet, desktop
etc.) that can be connected to the FSManager over any
network. Since SAGE is well suited for use in collaborative
environments, several tools have been incorporated into the
SAGE GUI to facilitate joint work. Users could, for
example, have discussions and meetings in front of a tiled
display where each of them is running an instance of the
SAGE GUI connected to the same or even different
displays. For basic communication, a chat capability and a
list of users currently connected to the display are available
via a server that manages user connections to every SAGE
display. Every user can also be connected to multiple
displays at the same time and control applications on any
of them. This could prove especially useful when multiple
sites are working together. At the end of a meeting, users
could save the session and the state of the tiled display so
that they can quickly resume their work at a later time.

4. Dynamic Pixel Stream Reconfiguration

We discuss here how SAGE dynamically reconfigures
pixel streams. The procedure of dynamic pixel stream
reconfiguration consists of the initial phase, the
configuration phase and the streaming phase. The initial
phase consists of static preparation procedures. The other
two phases are being performed dynamically.

In the initial phase, an application is started and network
connections are established.

(1) A SAGE application starts on a rendering cluster R.
(2) The application initializes a SAIL object per each

node to be connected to the FSManager.

(3) The FSManager sends the SAIL objects the IP
addresses and port numbers of the display nodes in
cluster D.

(4) Every SAIL object on R is connected to all the
display nodes in D so that |R| x |D| pairs of network
connections are established (|R|,|D| is the number of
nodes in each cluster).

In the configuration phase, the active connection set that

will be actually used for the pixel streaming is decided
according to user-defined application layout. The display
and rendering nodes are dynamically reconfigured for the
new streams. An example in Figure 5 is used for explaining
the procedure. In this example, a parallel application is
launched on rendering nodes A and B. The display cluster
consisting of node 1, 2, 3, 4, 5 and 6 is driving a six-tile
display.

(1) Overlap the application layout and the tiled display

layout as in Figure 5.
(2) Generate the set of all sub-images of the application

divided by tile borders. In the example, {A1, A2, A4,
A5, B2, B5} (Mn: the intersection of the image
rendered by M and the tile driven by n).

(3) Find the active connection set. Each sub-image
generated in (2) corresponds to an active connection.
In the example, {A-1, A-2, A-4, A-5, B-2, B-5} (M-
N : network connection between M and N)

(4) Configure rendering nodes to split the application
image into the sub-images generated in (2).

(5) Find the active display node set that will be actually
used for showing application images. In the example,
{ 1, 2, 4, 5 }.

(6) Configure active display nodes to draw streamed
images within the boundary of the sub-images
generated in (2).

In the streaming phase, SAGE starts or resumes

streaming using the configuration done in the previous
phase. All streams are synchronized as described in 3.4.

(1) Grab the application image and split it as configured.
(2) Stream each sub-image over the corresponding

active connection.
(3) Display the streamed images at the configured

position on the tiles driven by the active display
nodes.

(4) When users request window move or resizing, the
application pixel streams are paused and go to the
configuration phase.

Figure 5. An Example of Application Layout

Ongoing streams need to be paused in order to be safely

reconfigured. The FSManager pauses the streams by
sending control messages to SAIL nodes and then starts the
configuration phase.

5. Experimental Results

In this section, we will discuss the network streaming
protocol we used for this experiment, the benchmarks, a
real application test and the remote pixel streaming latency
of SAGE. We used two 28-node LambdaVision cluster in
San Diego (UCSD) and Chicago (UIC). A 10gigabit
dedicated optical network connects the two clusters. Each
cluster node has dual AMD 64bit 2.4Ghz processors, an
Nvidia Quadro3000 graphics card, 4GB of main memory,
and 1gigabit Ethernet (GigE) network interface fully
connected to each other through a gigabit local network
switch. We excluded other traffic on the network during
our experiments. We used the standard MTU size (1.5KB)
for local area tests and jumbo frames (9KB) for wide area
tests.

5.1. Network Streaming Protocol
For SAGE we exploited the network streaming protocol

of TeraVision [3], which provides simple interfaces to
stream image frames over wide area networks. It has two
network modules: one based on TCP and the other based
on UDP. Since TCP is designed for short round-trip time
networks, it works well over local area gigabit networks.
However, it shows low or unstable performance over high-
performance wide area networks with long round trip times,
in our case 78ms. For this reason, we are using UDP
network module for wide area network transfer. This
module attaches a header for each UDP packet that
includes the frame number and the position information of
the pixel data stored in the packet. Even though several

0

20

40

60

80

0 2 4 6 8 10

Number of Rendering Nodes

Fr
am

e
R

at
e

(fp
s)

4M 8M 16M

0

2

4

6

8

10

0 2 4 6 8 10

Number of Rendering Nodes

B
an

dw
id

th
 (G

bp
s)

0.9G 1.0G

Loss(%) 2 4 6 8 10

0.9G 0.01 0.00 0.00 0.00 0.32
1.0G 0.40 0.72 0.09 0.05 0.45

Figure 8. SAGE Performance over WAN

and Packet Loss

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Number of Rendering Nodes

B
an

dw
id

th
 (G

bp
s)

TCP UDP

 Figure 7. SAGE Throughput over LAN

Figure 6. UDP Packet Loss Artifacts (30% Loss)

packets are lost, pixel data contained in the following
packets can be placed at the right position in the image
frame using the information in the header. However, since
the UDP module of TeraVision does not have data flow
control, applications may blast pixel data exceeding
available network bandwidth. It causes packet loss
resulting in serious artifacts in the streamed image (see
Figure 6). To fix this problem, we set the upper bound of
the data transfer rate for each sender (rendering node) and
extended the UDP module to control the data transfer rate
so not to exceed the upper bound. In addition, we added a
user command to change the upper bound interactively. By
controlling the data transfer rate at an appropriate level, we
were able to completely eliminate or reduce packet loss
below 1.0% and the artifacts disappeared as shown in
Figure 9.

5.2. Benchmarks

We wrote a benchmark application for SAGE, Checker,
which keeps streaming white pixels stored in the main
memory to the SAGE display. For the local area test, we
ran Checker on 1 to 12 rendering nodes. Each rendering
node streamed 1Mpixel images to the tiled display driven
by 12 displaying nodes. In the case of UDP, we configured
the upper bound of the transfer rate to 1Gbps for each
sender (rendering node). Figure 7 shows the throughput
increased to 11.2Gbps using UDP without packet loss with
the number of rendering nodes increased and up to
10.5Gbps using TCP, sustaining the frame rates at
36~37fps (UDP) and 34~37fps (TCP). The pixel transfer
rate of each node was 34~37Mpixel/sec. This result clearly
shows the scalability of SAGE and its excellent network
bandwidth utilization: 93.5% (UDP) and 90.3% (TCP) on
average.

If only considering memory bandwidth, the peak
performance of the SGE is 720Mpixel/sec [9]. However, to
achieve this performance, the network bandwidth of each
1GigE input has to reach 45Mpixel/sec (1.08Gbps
assuming RGB pixels are streamed) because the SGE has
16 inputs in total. This means the bottleneck of the SGE
performance is in the network bandwidth utilization or the
pixel transfer rate per rendering node. When the SGE was
tested with the Chromium, the transfer rate was
12Mpixel/sec per rendering node [8], though, if measured
separately, they showed the rate exceeding 23Mpixel/sec
per node, which means the network utilization is around
50%. In contrast, SAGE was able to utilize the network
over 90% (albeit on the different hardware used for
rendering during the experiments).

Furthermore, SAGE showed the wide area performance
consistent with the local area result. For the wide area
performance test, we used a real SAGE application called
MagicCarpet which is a cluster-based ultra-high-resolution
image viewer for scalable tiled displays [14]. Figure 8
shows the frame rate and the network bandwidth of SAGE
when MagicCarpet was rendering and streaming its pixels
through SAIL from San Diego and Chicago. To evaluate
the bandwidth and packet loss, we configured the
application and SAIL as each rendering node streamed
1Mpixel images with the 0.9 and 1.0Gbps transfer rate
upper bound. For the 1.0Gbps upper bound, we were able
to achieve up to 8.95Gbps with at most 0.72% packet loss
sustaining 36~37fps. For the 0.9Gbps upper bound, up to
8.16Gbps was achieved but with no or less packet loss than
the former (see the table at the bottom of Figure 8). It is
natural in that reducing the transfer rate increases packet

intervals and decreases the load on the receivers. The
former relieves network congestion and the latter reduces
packet loss at the receivers. We also evaluated the display
frame rates of SAGE while varying the resolution of the
image data. This time we limited the transfer rate of each
sender to 0.9Gbps. The curves in the graph above depict
the frame rates when 4, 8 and 16Mpixel images are
displayed respectively. This graph tells us that SAGE can
scale the frame rate and the resolution by adding the
appropriate number of rendering nodes. In other words, the
frame rate linearly increases with the number of rendering
nodes if we keep the image resolution the same, and the
resolution which SAGE can support with the same frame
rate linearly increases with the number of rendering nodes.
When 20 and 38Mpixel images are streamed using 10
rendering nodes, we achieved 17.4 and 9.3fps respectively,
but the packet loss increased 4.35% and 7.59% in spite of
the transfer rate control. It seems the increase in resolution
raised the load on each receiver, which increased the
packet loss.

5.3 Real Application Test

Figure 9 shows four real SAGE applications used for a
typical SAGE demonstration at EVL/UIC. MagicCarpet,
on the right, was used to stream the Blue Marble dataset,
created by NASA, from San Diego to Chicago using UDP.
JuxtaView [4], in the middle, is a high-resolution image
viewer that can migrate over huge image datasets such as
356Kx356K aerial photography. It was used to locally
stream the aerial photography of downtown Chicago using
TCP. Bitplayer, on the top left, is an uncompressed
animation player developed by the National Center for
Supercomputing Applications (NCSA). It was used to
stream an animation of a tornado simulation from StarLight
in downtown Chicago to UIC using UDP. Scalable
Visualization Consumer (SVC), on the bottom left,
developed by Gwang-ju Institute of Science and
Technology (GIST) was used to locally stream HD camera
live feed using TCP. For SVC, we used a 16-bit RGB pixel
format rather than the 24-bit RGB format we used for the
other applications.

Table 5 shows the sustained performance, total
rendering resolution, and the number of rendering nodes
used by these applications in this experiment. We set the
transfer rate upper bound of MagicCarpet and Bitplayer to
0.8Gbps per sender to reduce packet loss to 0.31 and
0.38% respectively. When we increased the upper bound to

Figure 9. Typical SAGE Demonstration

1.0Gbps per node, the total network bandwidth was raised
to 11Gbps as shown in the Figure 10. However, the packet
loss of MagicCarpet and Bitplayer also increased to 1.5 and
9.1% respectively. This experiment shows that SAGE can
support multiple remote and local applications using
different network protocols at a time.

5.4 Remote Pixel Streaming Latency

We evaluated the pixel streaming latency of SAGE by
running MagicCarpet again at San Diego and streaming its
pixels to Chicago while varying the rendering resolution (X
axis) and the number of rendering nodes (one or eight
nodes). The average latencies and frame rates are plotted in
Figure 11. The numbers shown in parenthesis in the legend
are the number of rendering nodes used in each case. The
annotated numbers at the top of the bars are the plotted
values of the cases with eight rendering nodes. To check
the latency, we sent a message from the FSManager to
SAIL. SAIL attached a label on an image frame to be
streamed when receiving the message. A SAGE Receiver
reported to the FSManager upon receiving the image frame
with the label. Then, the FSManager computed the latency
by comparing the times of the message sent to SAIL and
the message received from the SAGE Receiver. So the
latency values depicted in Figure 11 included the message
passing delay from Chicago to San Diego and pixel
streaming latency from San Diego to Chicago. From the
average 78ms round trip time for the network between San
Diego and Chicago, we can estimate the message passing
delay from Chicago to San Diego to be 39ms. Then, the
actual pixel streaming latency between San Diego and
Chicago ranged from 85ms to 311ms. These latency values
and frame rates show that SAGE can support remote
rendering applications without losing interactivity. In
addition, Figure 11 shows the clear inverse correlation

between the frame rate and latency. As the rendering
resolution increased and the frame rate decreased, it takes
more time to transfer an image frame. SAIL may also need
to wait longer for the message from the FSManager before
actually starting the transfer of the labeled frame. This
explains the latency increase in Figure 11.

6. Future work

One of the main future goals of this research is to
support distant collaboration with multiple end-points by
streaming the same visualization at the same time. This
enables groups of collaborators to share their visualizations,
and see each other via the streaming of HD camera live
feed. As windows on the tiled display are resized or
repositioned on the walls, SAGE must reconfigure the
multiple streams from the rendering source to the PC nodes
that drive the displays. This problem becomes much more
complex when SAGE is required to support independent
window operations (such as reposition or scaling) at each
display sites with different configurations.

A number of solutions are envisioned with various
trade-offs. We are now designing a high-speed bridging
system which receives pixel streams from rendering
clusters to duplicate and split the streams for each end-
point. In this case, each rendering node can stream full
image frames without considering the window layouts and
tiled display configurations of multiple end-points. This
bridging system will be deployed on high-performance PCs
equipped with 10gigabit network interfaces located in the
middle of the collaboration sites. As more capacity is
needed, more nodes can be added to sustain the desired
throughput. Another approach we want to try is reliable
layered multicast for tiled displays. Although a variety of
techniques exist for supporting reliable multicast, high-
bandwidth (on the order of tens of gigabits/s) and low-
latency, reliable multicast is an unsolved problem and an
active area of research within the Grid community [13]. It
is a particularly challenging problem that the endpoints
must distribute the multicast traffic over networked tiled
displays.

124.99
156.71

239.54

350.81

40.89
10.92

20.31

76.32

0

50

100

150

200

250

300

350

400

0.5 1 2 3.8
Resolution per Node

La
te

nc
y

(m
s)

Fr
am

eR
at

e
(fp

s)

Latency(1) Latency(8)
FrameRate(1) FrameRate(8)

Figure 11. Remote Pixel Streaming Latency
and Frame Rate

Table 5. Real Application Performance

Application Bandwidth
(Mbps)

Frame
Rate
(fps)

Rendering
Resolution

Node
Num

MagicCarpet 6737.3 33.7 3200x3000 10
JuxtaView 850.6 4.0 3200x3200 8
Bitplayer 516.8 11.3 1920x1080 1

SVC 538.4 24.9 1440x1080 1

Figure 10. Network Bandwidth of SAGE Demo

Furthermore, we are working on new streaming
protocols and real-time compression techniques that will
improve the SAGE pixel streaming capacity. Eventually,
we will extend SAGE to stream other graphics data types
such as polygons, voxels or progressive mesh so that
SAGE can support a wider range of applications, and
utilize networks and computing resources more effectively.

7. Conclusion

In this paper, we showed that SAGE could support
scientific visualization at an extremely high display
resolution with an interactive frame rate. The dynamic
pixel stream reconfiguration capability enabled the user to
run multiple applications and to move and resize
application windows freely. Our experiments showed the
low latency, high throughput and scalability of SAGE, both
over local-area and wide area networks. The peak
performance of SAGE was 11.2Gbps on a local area
network using UDP (without packet loss). Using a real-
world application, we achieved 9.0Gbps over a 10Gbps
dedicated link between San Diego and Chicago. Wide-area
distributed visualization is now possible at the highest
resolution while maintaining interactivity.

8. Acknowledgements

We would like to thank numerous people involved in
the development of SAGE: Larry Smarr and Tom Defanti
provided the endpoints at Calit2 in San Diego to perform
the experiments. Javid Alimohideen, Allan Spale and Tae
Jin Kim were involved in the SAGE UI development.
Nicholas Schwarz, Arun Rao and Dmitri Svistula
developed the applications for SAGE. Alan Verlo, Lance
Long, and Pat Hallihan provided us with diligent support to
help debug and solve various network and system issues.
We also want to give special thanks to Laura Wolf for
editing this paper. The valuable input by Xi Wang, Eric He,
Cole Krumbholz, Charles Zhang and Venkatram
Vishwanath are also greatly appreciated.

The Electronic Visualization Laboratory (EVL) at the

University of Illinois at Chicago specializes in the design
and development of high-resolution visualization and
virtual-reality display systems, collaboration software for
use on multi-gigabit networks, and advanced networking
infrastructure. These projects are made possible by major
funding from the National Science Foundation (NSF),
awards CNS-0115809, CNS-0224306, CNS-0420477, SCI-
9980480, SCI-0229642, SCI-9730202, SCI-0123399, ANI-
0129527 and EAR-0218918, as well as the NSF
Information Technology Research (ITR) cooperative
agreement (SCI-0225642) to the University of California
San Diego (UCSD) for "The OptIPuter" and the NSF
Partnerships for Advanced Computational Infrastructure
(PACI) cooperative agreement (SCI-9619019) to the
National Computational Science Alliance. EVL also
receives funding from the State of Illinois, General Motors
Research, the Office of Naval Research on behalf of the
Technology Research, Education, and Commercialization
Center (TRECC), and Pacific Interface Inc. on behalf of
NTT Optical Network Systems Laboratory in Japan. The
GeoWall, GeoWall2, Personal GeoWall2 (PG2), and
LambdaVision are trademarks of the Board of Trustees of
the University of Illinois.

9. References
[1] L. L. Smarr, A. A. Chien, T. DeFanti, J. Leigh, and

P. M. Papadopoulos, “The OptIPuter,”
Communications of the ACM, volume 46, issue 11, pp.
58-67, November 2003.

[2] J. Leigh et al, “An experimental OptIPuter
architecture for data-Intensive collaborative
visualization,” in Third Workshop on Advanced
Collaborative Environments, 2003.

[3] R. Singh, B. Jeong, L. Renambot, A. Johnson, and
J. Leigh, “TeraVision: a distributed, scalable, high
resolution graphics streaming system,” in
Proceedings of IEEE Cluster, 2004.

[4] N. K. Krishnaprasad et al, “JuxtaView – a tool for
interactive visualization of large imagery on scalable
tiled displays,” in Proceedings of IEEE Cluster, 2004.

[5] L. Childers, T. Disz, R. Olson, M. E. Papka, R.
Stevens, and T. Udeshi, “Access Grid: immersive
group-to-group collaborative visualization,” in
Proceedings of Fourth International Immersive
Projection Technology Workshop, 2000.

[6] C. Krumbholz, J. Leigh, A. Johnson, L. Renambot,
and R. Kooima, “Lambda table: high resolution tiled
display table for interacting with large visualizations,”
in Proceedings of Fifth Workshop on Advanced
Collaborative Environments, 2005.

[7] G. Humphreys, I. Buck, M. Eldridge, and
P. Hanrahan, “Distributed rendering for scalable
displays,” in Proceedings of ACM/IEEE Conference
on Supercomputing, 2000.

[8] G. Humphreys et al, “Chromium: a stream-processing
framework for interactive rendering on clusters,” in
Proceedings of SIGGRAPH, 2002.

[9] K. A. Perrine, D. R. Jones, and W. R. Wiley, “Parallel
graphics and interactivity with the scaleable graphics
engine,” in Proceedings of ACM/IEEE Conference on
Supercomputing, 2001.

[10] J. T. Klosowski, P. Kirchner, J. Valuyeva, G. Abram,
C. Morris, R. Wolfe, and T. Jackman, “Deep view:
high-resolution reality,” IEEE Computer Graphics
and Applications, volume 22, issue 3, pp. 12–15,
May/June 2002.

[11] D. Germans, H.J.W. Spoelder, L. Renambot, and
H. E. Bal, “VIRPI: a high-level toolkit for interactive
scientific visualization in virtual reality,” in
Proceedings of Immersive Projection
Technology/Eurographics Virtual Environments
Workshop, 2001.

[12] E. He et al, “Quanta: a toolkit for high performance
data delivery over photonic networks,” Journal of
Future Generation Computer Systems, volume 19,
issue 6, pp. 919-933, August 2003.

[13] M. D. Burger, T. Kielmann, and H. E. Bal,
“Balanced multicasting: high-throughput
communication for Grid applications,” in
Proceedings of ACM/IEEE Conference on
Supercomputing, 2005.

[14] D. Svistula, J. Leigh, A. Johnson, and P. Morin,
“MagicCarpet: a high-resolution image viewer for
tiled displays,” http://www.evl.uic.edu/cavern/mc.

[15] “Distributed multi-head X project,”
http://dmx.sourceforge.net/.

