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Abstract 
 

The Scalable Adaptive Graphics Environment (SAGE) 
is specialized middleware for enabling data, high-definition 
video and extremely high-resolution graphics to be 
streamed in real-time from remotely distributed rendering 
and storage clusters to scalable display walls over ultra-
high-speed networks. In this paper, we present the SAGE 
architecture, focusing on its dynamic graphics streaming 
capability. In the SAGE framework, multiple visualization 
applications can be streamed to large tiled displays and 
viewed at the same time. The application windows can be 
moved, resized and overlapped like any standard desktop 
window manager. Every window movement or resize 
operation requires dynamic and non-trivial reconfiguration 
of the involved graphics streams. This approach has been 
successfully shown to scale to support streaming on the 
LambdaVision 100 Megapixel display wall. SAGE is now 
being extended to support distance collaboration with 
multiple endpoints by streaming visualization to all the 
participants. 
 
1. Introduction 

A fundamental goal of visualization and collaboration 
on Grids interconnected by high-bandwidth deterministic 
networks (also called LambdaGrids [1,2]) is to enable users 
to collectively interpret enormous datasets in real-time at 
extremely high resolutions. An increasingly important 
model is to conduct the visualization using large pools of 
computing resources (such as clusters of powerful 
computers equipped with high-performance graphics 
processors) and streaming the results to the collaborating 
end-points. These end-points may range from PDAs all the 
way up to ultra-high-resolution display walls such as those 
built by stitching together dozens of LCD panels. The 
image streams shown on these display devices may consist 
of offline rendered movies as well as real-time 
visualizations and high-definition video. This approach 
provides significant advantages: firstly, the pooling of 
computing resources increases utilization, especially when 
they are cast as Grid services that can be combined with 

other services to form a pipeline that could link large-scale 
data sources with visualization resources. Secondly, since 
networking is diminishing in cost at a rate exceeding that 
of computing and storage, it becomes more cost-effective 
for users to build low-cost, networked thin clients than to 
have to purchase and maintain their own rendering farms, 
storage repositories, etc. 

We developed the Scalable Adaptive Graphics 
Environment (SAGE) to put this model into practice. 
SAGE allows the seamless display of various networked 
applications over ultra-high-resolution displays. Each 
visualization application (such as real-time or offline 
rendered visualizations, remote desktop, high-definition 
video streams, 2D maps etc.) streams its rendered pixels (or 
graphics primitives) to the virtual high-resolution frame 
buffer of SAGE, allowing user-definable window position 
and size on the displays (see Figure 1,9). Furthermore, 
SAGE enables users to freely move, resize and overlap the 
application windows by dynamically reconfiguring pixel 
streams. 

SAGE has successfully supported our high-resolution 
display LambdaVision that is an 11x5 tiled display with a 
total resolution of 100 Megapixels. A high-resolution 
display like LambdaVision is essential to render complex 
geometric models without losing details. Even though a 
geometric model has a million triangles, if it is rendered 
into a window of 250,000 pixels (500x500), at most 25 
percent of those triangles could contribute to the final 
image [10]. Also, geoscientists working with aerial and 
satellite imagery (365Kx365K pixels maps) and 
neurobiologists imaging the brain with montages consisting 
of thousands of pictures from high-resolution microscopes 
(4Kx4K pixels sensor) are good examples of SAGE and 
LambdaVision users. 

In addition, SAGE has an important role in our 

Figure 1.  An Example of SAGE Session 
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OptIPuter project [1,2]. It is a National Science Foundation 
funded project between the University of Illinois at 
Chicago and the University of California, San Diego to 
interconnect distributed storage, computing and 
visualization  resources using a backplane constructed from 
LambdaGrids. SAGE is the graphics middleware of this 
project providing a unified environment to support various 
data exploration tools (visualization applications). 

The main contributions of this paper are as follows: 
 

I. It proposes the SAGE architecture and the procedure 
of dynamic pixel stream reconfiguration for multiple 
applications. 

II. It shows the proposed architecture can support remote 
visualization applications scaling the resolution up to 
multi-ten Megapixels without losing interactivity. 

III. It shows the proposed architecture can stream 
graphics data over 10gigabit wide area networks 
utilizing almost 90% of available bandwidth. 

 
2. Related Work 

There are several existing systems with parallel or 
remote rendering schemes related to SAGE. The simplest 
case of remote rendering uses remote desktop methods 
such as VNC, Microsoft Remote Desktop or Xmove. These 
were designed to transmit screens of single desktops to 
remote computers over slow networks operating on event 
triggered streaming mechanisms that are not suitable for 
real-time streaming of scientific visualization or 
collaborative applications. Access Grid [5] is a system that 
supports distributed collaborative interactions over Grids. 
Although it enables remote visualization sharing, the major 
focus of Access Grid lies in distributed meetings, 
conferences and collaborative work-sessions. Furthermore, 
the display resolution of remote desktop and Access Grid is 
limited to a single desktop resolution (at most 1600x1200 
usually). On the other hand, SAGE can support 100 
Megapixel display walls and include these systems in the 
SAGE framework by adding a simple SAGE API to them. 

Perrine et al [9] and Klosowski et al [10] presented the 
merits of high-resolution display for various visualization 
applications. They used Scalable Graphics Engine (SGE) 
developed by IBM to drive their high-resolution displays. 
SGE is a hardware frame buffer for parallel computers. 
Disjointed pixel fragments are joined within the SGE frame 
buffer and displayed as a contiguous image [9]. SGE 
supports up to sixteen 1GigE inputs and can drive up to 
eight displays with double buffering for a total of 16 
Megapixels. SAGE and SGE are similar in receiving 
graphics data from multiple rendering nodes and routing to 
high-resolution displays.  

However, SAGE differs from SGE in that the former is 
a software approach that is much more flexible and 
scalable than the latter. SAGE does not require any special 
hardware. New network technology like 10GigE and new 
network protocols can be easily applied to SAGE. SGE, on 
the other hand, is bound to 1GigE inputs and an SGE-
specific network protocol. There is no theoretical limitation 
in scaling the performance of SAGE by adding rendering 
and display nodes. In contrast, network bandwidth, the 
number of inputs and memory capacity all limit the 
performance of SGE. 

There are several parallel rendering systems that can 
benefit from SAGE or SGE. WireGL [7] or parallel scene-

graph rendering is a sort-first parallel rendering scheme 
from a single data source. This approach allows a single 
serial application to drive a tiled display by streaming 
graphics primitives that will be rendered in parallel on 
display nodes. However, it has limited data scalability due 
to its single data source bottleneck. Flexible scalable 
graphics systems such as Chromium [8] or Aura [11] are 
designed for distributing visualization to and from cluster 
driven tiled-displays. However, these systems enable a 
unique application at a time with a static layout on a tiled 
display. So they require a graphics streaming architecture 
such as SAGE or SGE to move, resize and overlap multiple 
application windows.  

XDMX (Distributed Multi-head X11) is another system 
that can drive a tiled display. It is a front-end proxy X 
server that controls multiple back-end X servers to make 
up a unified large display [15]. XDMX also can support 
Chromium to display multiple applications on a tiled 
display. However, XDMX only supports non-parallel 
applications. This limits its scalability with large datasets. 

The most unique feature of SAGE as compared with 
SGE, XDMX or Chromium, is the high-speed graphics 
streaming capability over wide area networks as shown in 
Figure 2. SAGE can use various streaming protocols 
designed for high-bandwidth and high-round-trip-time 
networks that are not considered in the streaming protocols 
of SGE and Chromium. We will discuss more about SAGE 
streaming protocols later. Moreover, we are extending 
SAGE to scalably support distance collaboration with 
multiple endpoints by streaming graphics to all the 
participating endpoints using various multicast approaches. 
In addition, SAGE considers mullions (borders) of each 
LCD panel of tiled displays when displaying application 
windows. Hence, the mullions appear to be placed on top 
of a large continuous image. This was also not considered 
in SGE and Chromium. 

Our previous work, TeraVision [3], is a scalable 
platform-independent solution that is capable of 
transmitting multiple synchronized high-resolution video 
streams between single workstations and/or clusters. 
TeraVision also can stream graphics data over wide area 
networks. However, it has a static application layout on a 
tiled display. It is suitable for streaming a single desktop to 

Figure 2. SAGE over Wide Area Network 



a high-resolution tiled display, but unsuitable for 
supporting parallel applications or multiple instances of 
applications. To overcome these drawbacks, we developed 
SAGE. 

 
3. SAGE Architecture 

SAGE consists of various components: the Free Space 
Manager (FSManager), SAGE Application Interface 
Library (SAIL), SAGE Receivers, synchronization channel, 
and UI clients as shown in Figure 3. To dynamically 
reconfigure pixel streams, SAGE includes a component to 
control the whole procedure by communicating with all the 
other components. The FSManager is designed for this 
purpose. SAIL is the thin layer between an application and 
the high-speed network that is needed to capture the output 
pixels of the application and stream them to the display. A 
SAGE receiver on each display node receives and displays 
multiple pixel streams independently to allow multiple 
applications to be shown concurrently on the tiled display. 

 
3.1. Free Space Manager (FSManager) 

The Free Space Manager (FSManager) is the window 
manager for SAGE. This is akin to a traditional desktop 
manager in a windowing system, except that it can scale 
from a single tablet PC screen to a desktop spanning over 
100 Mega-pixel displays. The FSManager receives from UI 
clients various user commands such as application 
execution, window move, resizing or z-order change 
(overlapping windows) and then executes the commands 
by sending control messages to SAIL nodes or SAGE 
Receivers. To deliver control messages among SAGE 
components, we use our cross-platform adaptive 
networking toolkit QUANTA [12]. 

The FSManager collects and maintains the information 
needed for dynamic pixel stream reconfiguration from 
other SAGE components. Its most important role is to 
control the reconfiguration procedure based on the 
information whenever application windows are 
repositioned or resized. The detailed reconfiguration 
procedure will be described in the section 4. 

Another important role of the FSManager is to execute 
applications based on user-defined configurations as shown 
in Table 1. ‘nodeNum’ is the number of rendering nodes. 
The line starting by ‘Init’ specifies the initial position and 
size of the application window. ‘exec’ is followed by an IP 

address and commands. The IP address specifies the 
machine on which the commands are executed, and the 
commands are directly used for executing the application. 
‘nwProtocol’ specifies the name of the network protocol 
library to be used for pixel streaming. ‘syncMode’ 
specifies the synchronization mode of the application, on 
the rendering and display sides. Since multiple 
configurations are possible for each application, users can 
execute multiple instances of an application with different 
configurations by giving different configuration ID. 
 
3.2. SAGE Application Interface Library (SAIL) 

SAGE applications communicate with the FSManager 
and stream pixels to SAGE receivers through SAIL, which 
provides application programmers with a very simple 
interface to the SAGE framework. The SAGE API allows 
the programmers to describe pixel buffers and the position 
of the buffers in the application output image. The latter is 
needed when programming a parallel application where 
each processor will generate a portion of the whole picture. 
This mode is used either to speed up the application (each 
processor generates less pixels keeping the same total 
resolution) or to achieve higher resolution (increasing the 
number of processors while each generates the same 
amount of pixels). The only SAIL function other than 
'init()' in the application is the call to the ‘swapBuffer()’ 
function. Due to this minimal API, any application with 
uncompressed pixel output can be easily ported to SAGE. 

Table 2 shows an example of a minimal SAGE 
 

Table 2. Minimal SAGE application 
sailConfig scfg; 
scfg.cfgFile = "sage.conf"; 
scfg.appName = "render"; 
scfg.rank = 0; 
sageRect renderImageMap; 
renderImageMap.left = 0.0; 
renderImageMap.right = 1.0; 
renderImageMap.bottom = 0.0; 
renderImageMap.top = 1.0; 
scfg.imageMap = renderImageMap; 
scfg.colorDepth = 24; 
scfg.pixFmt = TVPIXFMT_888; 
scfg.rowOrd = BOTTOM_TO_TOP; 
sageInf.init(scfg); 
while (1) { 
  draw( rgbBuffer );  
sageInf.swapBuffer( rgbBuffer ); 

} 

Table 1. SAGE Application Configuration
atlantis { 
configName TCP 
nodeNum 1 
Init 100 100  1000 1000 
exec 127.0.0.1 atlantis 0 127.0.0.1 
nwProtocol tvTcpModule.so 
syncMode 0 

 
configName UDP 
nodeNum 1 
Init 1100 1100 2000 2000 
exec 127.0.0.1 atlantis 0 127.0.0.1 
nwProtocol tvUdpModule.so 
syncMode 2 

} 
 

Figure 3. SAGE Components 
 



application. This application registers itself with the name 
‘render’ to the FSManager. It is a sequential application, 
and the unique process will generate the whole image as 
described in the ‘renderImageMap’ data structure. The 
application function, ‘draw()’, generates 24-bit image in 
the RGB format onto the ‘rgbBuffer’ memory buffer where 
the pixels are laid out from bottom to top. The 
‘swapBuffer()’ call delivers the image contained in the 
‘rgbBuffer’ to the SAIL library. Then SAIL splits the 
image into sub-images and streams them to the proper 
SAGE Receivers based on the information given by the 
FSManager. It is completely transparent to users to 
partition and stream the images to the display using various 
protocols. 
 
3.3. SAGE Receiver 

A SAGE Receiver receives multiple pixel streams from 
SAIL nodes to drive the screens attached to each display 
node. The received streams may belong to different 
applications if multiple application windows are 
overlapped on the screens. This means the SAGE Receiver 
may have to update each application window at different 
times if the applications are independently synchronized at 
various refresh rates. We cannot use multi-threads to 
update the windows independently because conventional 
display control libraries like GLUT or SDL are not 
designed for multi-threading. Thus, we designed SAGE 

Receiver as shown in Figure 4.  
Each network thread receives a single pixel stream and 

stores the pixels in a circular buffer. If any synchronization 
slaves receive a synchronization signal, the display thread 
updates the screens with new images and start downloading 
the next frames from the circular buffers to the graphics 
card memory so that the next frames can be instantly 
updated to the screens by the next synchronization signal. 
The detailed synchronization procedure will be discussed 
in the next section. 

A SAGE Receiver can drive multiple tiles (monitor 
screens). The layout of the tiled display is specified in a 
text configuration file that describes the association and the 
physical arrangement between the displays and the 
computers. Table 3 describes a 2x2 display driven by two 
computers. Here we assume LCD panels have uniform 
mullion (border of LCD panels) widths. PPI (pixel per 
inch) and mullion widths are used to calculate how many 
pixels should be hidden by mullions. 
 
3.4. Synchronization Channels 

When an application is displayed on a tiled display, 
each tile needs to be synchronously updated for the sub-
images to be shown as one large consistent image. From 
our prior work on the TeraVision [3], we have learned that 
that not only display nodes but also rendering nodes need 
to be synchronized to yield better synchronization results in 
the case of a parallel application. So two synchronization 
channels were implemented: the display synchronization 
channel among SAGE Receivers and the rendering 
synchronization channel among SAIL nodes. If a parallel 
application synchronizes its output, the rendering 
synchronization is unnecessary. Also, users may want to 
turn off synchronization to remove the overhead in case 
synchronization is not critical for the application content. 
SAGE provides four synchronization modes as shown in 
Table 4. This allows users to freely turn on or off 
synchronization on each side per each application instance 
as shown in Table 1. 

The procedure of rendering synchronization is very 
simple. The synchronization master thread resides on one 
of the SAIL nodes. Each SAIL node sends update signals 
to the synchronization master once it finishes transferring 
an image frame. Then, the synchronization master sends 
synchronization signals to all SAIL nodes after receiving 
update signals from all. After receiving the synchronization 
signal, SAIL nodes start to transfer new frames as soon as 
the frames are ready by the application.  

For display synchronization, SAGE creates a 
synchronization master thread on one of SAGE Receivers 
and a synchronization slave object per each SAGE 
Receiver whenever an application is launched. The detailed 
synchronization procedure is as follows: 

 

Table 4. Four Synchronization Modes
Sync Mode Rendering Sync Display Sync 

0 On On 

1 On Off 

2 Off On 

3 Off Off 
 

Table 3. Tiled Display Configuration 
TileDisplay  
Dimensions 2 2          
Mullions 0.625 0.625 0.625 0.625     
Resolution 1280 1024         
PPI 90         
Machines 2 
 
DisplayNode          
Name yorda1-10         
IP 10.0.8.121         
Monitors 2 (0,0) (1,0) 
 
DisplayNode          
Name yorda2-10         
IP 10.0.8.122         
Monitors 2 (1,0) (1,1) 

 

Figure 4. Architecture of SAGE Receiver



(1) The display thread waits until the images of frame N of 
the application A have arrived in the circular buffers. 

(2) Once arrived, the display thread downloads the images 
into the graphics card memory. 

(3) The synchronization slave A sends an update signal to 
its master (synchronization master A). 

(4) The synchronization master A sends synchronization 
signals to all its slaves after receiving the update signal 
from all. 

(5) When the synchronization slave A receives a 
synchronization signal, the display thread clears the 
screens and draws the frame N of the application A and 
the current frame of the application B. 

(6) Repeat steps (1) – (5) for frame N+1 
 
The same procedure is repeated for the application B in 

parallel. Even if only one application receives a 
synchronization signal, current images of the other 
application have to be redrawn, however, the overhead is 
minimal because drawing a rectangle with the texture 
already downloaded into the graphics card is extremely fast. 
The TCP out-of-band data channel is used for transferring 
synchronization signals in order to reduce the latency and 
to increase their priorities. 
 
3.5. User Interaction 

UI Clients can be a Graphical User Interface, text-based 
console or tracked devices [6], which send user commands 
to the FSManager and show the status of SAGE to the 
users. Any UI client can execute, shutdown, move, and 
resize SAGE applications in a manner very similar to a 
typical contemporary windowing system. Furthermore, UI 
clients can reside on any machine (laptop, tablet, desktop 
etc.) that can be connected to the FSManager over any 
network. Since SAGE is well suited for use in collaborative 
environments, several tools have been incorporated into the 
SAGE GUI to facilitate joint work. Users could, for 
example, have discussions and meetings in front of a tiled 
display where each of them is running an instance of the 
SAGE GUI connected to the same or even different 
displays. For basic communication, a chat capability and a 
list of users currently connected to the display are available 
via a server that manages user connections to every SAGE 
display. Every user can also be connected to multiple 
displays at the same time and control applications on any 
of them. This could prove especially useful when multiple 
sites are working together. At the end of a meeting, users 
could save the session and the state of the tiled display so 
that they can quickly resume their work at a later time. 

 
4. Dynamic Pixel Stream Reconfiguration 

We discuss here how SAGE dynamically reconfigures 
pixel streams. The procedure of dynamic pixel stream 
reconfiguration consists of the initial phase, the 
configuration phase and the streaming phase. The initial 
phase consists of static preparation procedures. The other 
two phases are being performed dynamically.  

In the initial phase, an application is started and network 
connections are established. 

 
(1) A SAGE application starts on a rendering cluster R. 
(2) The application initializes a SAIL object per each 

node to be connected to the FSManager. 

(3) The FSManager sends the SAIL objects the IP 
addresses and port numbers of the display nodes in 
cluster D. 

(4) Every SAIL object on R is connected to all the 
display nodes in D so that |R| x |D| pairs of network 
connections are established (|R|,|D| is the number of 
nodes in each cluster). 

 
In the configuration phase, the active connection set that 

will be actually used for the pixel streaming is decided 
according to user-defined application layout. The display 
and rendering nodes are dynamically reconfigured for the 
new streams. An example in Figure 5 is used for explaining 
the procedure. In this example, a parallel application is 
launched on rendering nodes A and B. The display cluster 
consisting of node 1, 2, 3, 4, 5 and 6 is driving a six-tile 
display. 

 
(1) Overlap the application layout and the tiled display 

layout as in Figure 5. 
(2) Generate the set of all sub-images of the application 

divided by tile borders. In the example, {A1, A2, A4, 
A5, B2, B5} (Mn: the intersection of the image 
rendered by M and the tile driven by n). 

(3) Find the active connection set. Each sub-image 
generated in (2) corresponds to an active connection. 
In the example, {A-1, A-2, A-4, A-5, B-2, B-5} (M-
N : network connection between M and N)  

(4) Configure rendering nodes to split the application 
image into the sub-images generated in (2). 

(5) Find the active display node set that will be actually 
used for showing application images. In the example, 
{ 1, 2, 4, 5 }. 

(6) Configure active display nodes to draw streamed 
images within the boundary of the sub-images 
generated in (2). 

 
In the streaming phase, SAGE starts or resumes 

streaming using the configuration done in the previous 
phase. All streams are synchronized as described in 3.4. 

 
(1) Grab the application image and split it as configured. 
(2) Stream each sub-image over the corresponding 

active connection. 
(3) Display the streamed images at the configured 

position on the tiles driven by the active display 
nodes. 

(4) When users request window move or resizing, the 
application pixel streams are paused and go to the 
configuration phase.  

Figure 5. An Example of Application Layout 
 



 
Ongoing streams need to be paused in order to be safely 

reconfigured. The FSManager pauses the streams by 
sending control messages to SAIL nodes and then starts the 
configuration phase. 
 
5. Experimental Results 

In this section, we will discuss the network streaming 
protocol we used for this experiment, the benchmarks, a 
real application test and the remote pixel streaming latency 
of SAGE. We used two 28-node LambdaVision cluster in 
San Diego (UCSD) and Chicago (UIC). A 10gigabit 
dedicated optical network connects the two clusters. Each 
cluster node has dual AMD 64bit 2.4Ghz processors, an 
Nvidia Quadro3000 graphics card, 4GB of main memory, 
and 1gigabit Ethernet (GigE) network interface fully 
connected to each other through a gigabit local network 
switch. We excluded other traffic on the network during 
our experiments. We used the standard MTU size (1.5KB) 
for local area tests and jumbo frames (9KB) for wide area 
tests. 

 

5.1. Network Streaming Protocol 
For SAGE we exploited the network streaming protocol 

of TeraVision [3], which provides simple interfaces to 
stream image frames over wide area networks. It has two 
network modules: one based on TCP and the other based 
on UDP. Since TCP is designed for short round-trip time 
networks, it works well over local area gigabit networks. 
However, it shows low or unstable performance over high-
performance wide area networks with long round trip times, 
in our case 78ms. For this reason, we are using UDP 
network module for wide area network transfer. This 
module attaches a header for each UDP packet that 
includes the frame number and the position information of 
the pixel data stored in the packet. Even though several 
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packets are lost, pixel data contained in the following 
packets can be placed at the right position in the image 
frame using the information in the header. However, since 
the UDP module of TeraVision does not have data flow 
control, applications may blast pixel data exceeding 
available network bandwidth. It causes packet loss 
resulting in serious artifacts in the streamed image (see 
Figure 6). To fix this problem, we set the upper bound of 
the data transfer rate for each sender (rendering node) and 
extended the UDP module to control the data transfer rate 
so not to exceed the upper bound. In addition, we added a 
user command to change the upper bound interactively. By 
controlling the data transfer rate at an appropriate level, we 
were able to completely eliminate or reduce packet loss 
below 1.0% and the artifacts disappeared as shown in 
Figure 9. 
 
5.2. Benchmarks 

We wrote a benchmark application for SAGE, Checker, 
which keeps streaming white pixels stored in the main 
memory to the SAGE display. For the local area test, we 
ran Checker on 1 to 12 rendering nodes. Each rendering 
node streamed 1Mpixel images to the tiled display driven 
by 12 displaying nodes. In the case of UDP, we configured 
the upper bound of the transfer rate to 1Gbps for each 
sender (rendering node). Figure 7 shows the throughput 
increased to 11.2Gbps using UDP without packet loss with 
the number of rendering nodes increased and up to 
10.5Gbps using TCP, sustaining the frame rates at 
36~37fps (UDP) and 34~37fps (TCP). The pixel transfer 
rate of each node was 34~37Mpixel/sec. This result clearly 
shows the scalability of SAGE and its excellent network 
bandwidth utilization: 93.5% (UDP) and 90.3% (TCP) on 
average.  

If only considering memory bandwidth, the peak 
performance of the SGE is 720Mpixel/sec [9]. However, to 
achieve this performance, the network bandwidth of each 
1GigE input has to reach 45Mpixel/sec (1.08Gbps 
assuming RGB pixels are streamed) because the SGE has 
16 inputs in total. This means the bottleneck of the SGE 
performance is in the network bandwidth utilization or the 
pixel transfer rate per rendering node. When the SGE was 
tested with the Chromium, the transfer rate was 
12Mpixel/sec per rendering node [8], though, if measured 
separately, they showed the rate exceeding 23Mpixel/sec 
per node, which means the network utilization is around 
50%. In contrast, SAGE was able to utilize the network 
over 90% (albeit on the different hardware used for 
rendering during the experiments). 

Furthermore, SAGE showed the wide area performance 
consistent with the local area result. For the wide area 
performance test, we used a real SAGE application called 
MagicCarpet which is a cluster-based ultra-high-resolution 
image viewer for scalable tiled displays [14]. Figure 8 
shows the frame rate and the network bandwidth of SAGE 
when MagicCarpet was rendering and streaming its pixels 
through SAIL from San Diego and Chicago. To evaluate 
the bandwidth and packet loss, we configured the 
application and SAIL as each rendering node streamed 
1Mpixel images with the 0.9 and 1.0Gbps transfer rate 
upper bound. For the 1.0Gbps upper bound, we were able 
to achieve up to 8.95Gbps with at most 0.72% packet loss 
sustaining 36~37fps. For the 0.9Gbps upper bound, up to 
8.16Gbps was achieved but with no or less packet loss than 
the former (see the table at the bottom of Figure 8). It is 
natural in that reducing the transfer rate increases packet 

intervals and decreases the load on the receivers. The 
former relieves network congestion and the latter reduces 
packet loss at the receivers. We also evaluated the display 
frame rates of SAGE while varying the resolution of the 
image data. This time we limited the transfer rate of each 
sender to 0.9Gbps. The curves in the graph above depict 
the frame rates when 4, 8 and 16Mpixel images are 
displayed respectively. This graph tells us that SAGE can 
scale the frame rate and the resolution by adding the 
appropriate number of rendering nodes. In other words, the 
frame rate linearly increases with the number of rendering 
nodes if we keep the image resolution the same, and the 
resolution which SAGE can support with the same frame 
rate linearly increases with the number of rendering nodes. 
When 20 and 38Mpixel images are streamed using 10 
rendering nodes, we achieved 17.4 and 9.3fps respectively, 
but the packet loss increased 4.35% and 7.59% in spite of 
the transfer rate control. It seems the increase in resolution 
raised the load on each receiver, which increased the 
packet loss. 

 
5.3 Real Application Test 

Figure 9 shows four real SAGE applications used for a 
typical SAGE demonstration at EVL/UIC. MagicCarpet, 
on the right, was used to stream the Blue Marble dataset, 
created by NASA, from San Diego to Chicago using UDP. 
JuxtaView [4], in the middle, is a high-resolution image 
viewer that can migrate over huge image datasets such as 
356Kx356K aerial photography. It was used to locally 
stream the aerial photography of downtown Chicago using 
TCP. Bitplayer, on the top left, is an uncompressed 
animation player developed by the National Center for 
Supercomputing Applications (NCSA). It was used to 
stream an animation of a tornado simulation from StarLight 
in downtown Chicago to UIC using UDP. Scalable 
Visualization Consumer (SVC), on the bottom left, 
developed by Gwang-ju Institute of Science and 
Technology (GIST) was used to locally stream HD camera 
live feed using TCP. For SVC, we used a 16-bit RGB pixel 
format rather than the 24-bit RGB format we used for the 
other applications. 

Table 5 shows the sustained performance, total 
rendering resolution, and the number of rendering nodes 
used by these applications in this experiment. We set the 
transfer rate upper bound of MagicCarpet and Bitplayer to 
0.8Gbps per sender to reduce packet loss to 0.31 and 
0.38% respectively. When we increased the upper bound to 

Figure 9. Typical SAGE Demonstration 
 



1.0Gbps per node, the total network bandwidth was raised 
to 11Gbps as shown in the Figure 10. However, the packet 
loss of MagicCarpet and Bitplayer also increased to 1.5 and 
9.1% respectively. This experiment shows that SAGE can 
support multiple remote and local applications using 
different network protocols at a time. 

 
5.4 Remote Pixel Streaming Latency 

We evaluated the pixel streaming latency of SAGE by 
running MagicCarpet again at San Diego and streaming its 
pixels to Chicago while varying the rendering resolution (X 
axis) and the number of rendering nodes (one or eight 
nodes). The average latencies and frame rates are plotted in 
Figure 11. The numbers shown in parenthesis in the legend 
are the number of rendering nodes used in each case. The 
annotated numbers at the top of the bars are the plotted 
values of the cases with eight rendering nodes. To check 
the latency, we sent a message from the FSManager to 
SAIL. SAIL attached a label on an image frame to be 
streamed when receiving the message. A SAGE Receiver 
reported to the FSManager upon receiving the image frame 
with the label. Then, the FSManager computed the latency 
by comparing the times of the message sent to SAIL and 
the message received from the SAGE Receiver. So the 
latency values depicted in Figure 11 included the message 
passing delay from Chicago to San Diego and pixel 
streaming latency from San Diego to Chicago. From the 
average 78ms round trip time for the network between San 
Diego and Chicago, we can estimate the message passing 
delay from Chicago to San Diego to be 39ms. Then, the 
actual pixel streaming latency between San Diego and 
Chicago ranged from 85ms to 311ms. These latency values 
and frame rates show that SAGE can support remote 
rendering applications without losing interactivity. In 
addition, Figure 11 shows the clear inverse correlation 

between the frame rate and latency. As the rendering 
resolution increased and the frame rate decreased, it takes 
more time to transfer an image frame. SAIL may also need 
to wait longer for the message from the FSManager before 
actually starting the transfer of the labeled frame. This 
explains the latency increase in Figure 11. 
 
6. Future work 

One of the main future goals of this research is to 
support distant collaboration with multiple end-points by 
streaming the same visualization at the same time. This 
enables groups of collaborators to share their visualizations, 
and see each other via the streaming of HD camera live 
feed. As windows on the tiled display are resized or 
repositioned on the walls, SAGE must reconfigure the 
multiple streams from the rendering source to the PC nodes 
that drive the displays. This problem becomes much more 
complex when SAGE is required to support independent 
window operations (such as reposition or scaling) at each 
display sites with different configurations. 

A number of solutions are envisioned with various 
trade-offs. We are now designing a high-speed bridging 
system which receives pixel streams from rendering 
clusters to duplicate and split the streams for each end-
point. In this case, each rendering node can stream full 
image frames without considering the window layouts and 
tiled display configurations of multiple end-points. This 
bridging system will be deployed on high-performance PCs 
equipped with 10gigabit network interfaces located in the 
middle of the collaboration sites. As more capacity is 
needed, more nodes can be added to sustain the desired 
throughput. Another approach we want to try is reliable 
layered multicast for tiled displays. Although a variety of 
techniques exist for supporting reliable multicast, high-
bandwidth (on the order of tens of gigabits/s) and low-
latency, reliable multicast is an unsolved problem and an 
active area of research within the Grid community [13]. It 
is a particularly challenging problem that the endpoints 
must distribute the multicast traffic over networked tiled 
displays. 
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Figure 11. Remote Pixel Streaming Latency 
and Frame Rate 

Table 5. Real Application Performance 

Application Bandwidth 
(Mbps) 

Frame 
Rate 
(fps) 

Rendering 
Resolution

Node 
Num

MagicCarpet 6737.3 33.7 3200x3000 10 
JuxtaView 850.6 4.0 3200x3200 8 
Bitplayer 516.8 11.3 1920x1080 1 

SVC 538.4 24.9 1440x1080 1 
 

Figure 10. Network Bandwidth of SAGE Demo 
 



Furthermore, we are working on new streaming 
protocols and real-time compression techniques that will 
improve the SAGE pixel streaming capacity. Eventually, 
we will extend SAGE to stream other graphics data types 
such as polygons, voxels or progressive mesh so that 
SAGE can support a wider range of applications, and 
utilize networks and computing resources more effectively. 
 
7. Conclusion 

In this paper, we showed that SAGE could support 
scientific visualization at an extremely high display 
resolution with an interactive frame rate. The dynamic 
pixel stream reconfiguration capability enabled the user to 
run multiple applications and to move and resize 
application windows freely. Our experiments showed the 
low latency, high throughput and scalability of SAGE, both 
over local-area and wide area networks. The peak 
performance of SAGE was 11.2Gbps on a local area 
network using UDP (without packet loss). Using a real-
world application, we achieved 9.0Gbps over a 10Gbps 
dedicated link between San Diego and Chicago. Wide-area 
distributed visualization is now possible at the highest 
resolution while maintaining interactivity. 
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