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Cancers arising from the oropharynx have become increasingly more studied in the past few years, as they are

now epidemic domestically. These tumors are treated with definitive (chemo)radiotherapy, and have local
recurrence as a primary mode of clinical failure. Recent data suggest that ‘radiomics’, or extraction of image
texture analysis to generate mineable quantitative data from medical images, can reflect phenotypes for various
cancers. Several groups have shown that developed radiomic signatures, in head and neck cancers, can be
correlated with survival outcomes. This data descriptor defines a repository for head and neck radiomic
challenges, executed via a Kaggle in Class platform, in partnership with the MICCAI society 2016 annual meeting.
These public challenges were designed to leverage radiomics and/or machine learning workflows to discriminate
HPV phenotype in one challenge (HPV status challenge) and to identify patients who will develop a local
recurrence in the primary tumor volume in the second one (Local recurrence prediction challenge) in a
segmented, clinically curated anonymized oropharyngeal cancer (OPC) data set.
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Background & Summary

Intensity-modulated radiation therapy (IMRT) has evolved in less than two decades to be the state-of-
the-art treatment modality for most of the head and neck cancer cases. IMRT is now employed in the
treatment of diverse head and neck cancers, in a variety of settings (adjuvant or definitive for the primary
disease or re-irradiation for recurrent disease. IMRT is either assigned as a single treatment modality or
concurrently with chemotherapy (CRT)' .

The higher therapeutic ratio attained by the application of IMRT in the management of head and neck
cancers, especially oropharyngeal cancers, explains the high-esteem to this modality by radiation
oncology societies, including the Radiation Therapy Oncology Group (RTOG) which has been endorsing
head and neck trials implementing the IMRT modality for years now™”.

With over 20,000 annual cases projected in the U.S, spotlight has been shed on OPC, especially in the
era of OPC association to human papilloma virus (HPV)®. HPV-associated cancers have been shown to
have increased survival and better tumor control with radiotherapy than non-HPV-associated cancers’.
HPV status is predictive of outcomes, and is tested routinely using immunohistochemistry for p16, a
protein, or in situ hybridization for viral DNA®, Meanwhile, loco-regional persistence of the disease,
recurrence or second primaries following curative intent IMRT-based management remain extremely
detrimental’. These facts combined have triggered and maintained interest in identifying a subgroup of
patients with the lowest risk of disease recurrence after therapy. De-intensification of therapy for this
group with subsequent improvement in therapeutic ratio (i.e., similar survival outcomes to those
associated with current therapy, along with less toxicity) is among the anticipated payoffs of our study'’.

To advance this effort, we prepared these data sets for two machine learning competitions, which were
organized by our radiation oncology team at University of Texas MD Anderson Cancer Center
(MDACC), as Medical Image Computing and Computer Assisted Intervention (MICCAI) society grand
challenges (http://www.miccai.org). Contestants were tasked to predict, using expert-segmented contrast-
enhanced computed tomography (CT) images, whether a tumor is HPV positive or negative (as defined
by p16 or HPV testing) for the first challenge and the probability of local tumor recurrence for the second
challenge. We provided data sets of anonymized Digital Imaging and Communications in Medicine
(DICOM) files that represent a relatively uniform cohort of 288 oropharynx cancer patients,
supplemented with relevant clinical data, known etiological/biological correlates (specifically, HPV
status) as ground truth. Our major target was to assess the ability of participant-developed radiomic
workflows to predict binary (phenotypic/genotypic) HPV status and/or possibility of local recurrence,
using a defined ‘“Training’ cohort as a ‘prior’ data set that includes all input and outcome data, to build up
an algorithm. Figure 1 depicts the series of iterative steps for reproducible and consistent extraction of
imaging data.

Methods

Study population and eligibilty criteria

Diagnostic computed tomography (CT) DICOM files and relevant clinical metadata of 288 patients with
histopathologically-proven OPC, treated at our institution between the years 2005 and 2012 were
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ICD 10 Applicable to ICD Hyperlink to the ICD 10 website
nomenclature of 10
oropharynx subsites code
of origin
Malignant neoplasm | Malignant neoplasms of tonsillar fossa, tonsillar | C09 | http://www.icd10data.com/ICD10CM/Codes/C00-D49/C00-C14/C09-/C09
of tonsil pillars (anterior and/or posterior), overlapping sites

of tonsil or tonsil (unspecified)
Malignant neoplasm | Malignant neoplasms of dorsal surface of base of | CO1 [ http://www.icd10data.com/ICD10CM/Codes/C00-D49/C00-C14/C01-
of base of tongue tongue/ fixed part of tongue NOS/ posterior third of

tongue.

Malignant neoplasm C05.1 | http://www.icd10data.com/ICD10CM/Codes/C00-D49/C00-C14/C05-/C05.1
of soft palate
Malignant neoplasm €09.0 | http://icd10coded.com/cm/neoplasm/?page = 14
of glossopharyngeal
sulcus
Malignant neoplasm C10.0 | http://www.icd10data.com/ICD10CM/Codes/C00-D49/C00-C14/C10-/C10.0
of vallecula
Malignant neoplasm C10.2 | http://www.icd10data.com/ICD10CM/Codes/C00-D49/C00-C14/C10-/C10.2
of lateral wall of
oropharynx
Malignant neoplasm C10.3 | http://www.icd10data.com/ICD10CM/Codes/C00-D49/C00-C14/C10-/C10.3
of posterior wall of
oropharynx
Malignant neoplasm C10.8 | http://www.icd10data.com/ICD10CM/Codes/C00-D49/C00-C14/C10-/C10.8
of overlapping sites
of oropharynx

Table 1. Oropharynx cancer subsites of origin included in this data set.

retrospectively restored from a larger oropharynx cohort, using custom-built electronic medical records,
ClinicStation (http://www.clinfowiki.org/wiki/index.php/ClinicStation), after an institutional review
board (IRB) authorization. Being a HIPAA-compliant retrospective study waived the prerequisite for
informed consent. Inclusion entailed the subjects of the study had the following criteria:

1. Histopathologically-proven diagnosis of squamous cell carcinoma (SCC) of the OPC, which encompasses
these specified subsites, per the International Classification of Disease, tenth edition (ICD 10): of malignant
neoplasm of oropharynx (C10) (http://www.icd10data.com/ICD10CM/Codes/C00-D49/C00-C14/C10-/
C10); as detailed in Table 1. We adopted the American ICD-10-CM version.

2. base of tongue (BOT), tonsil, soft palate, pharyngeal wall (posterior and/or lateral), glossopharyngeal sulcus
(GPS), vallecula, or other; in case no single subsite of origin could be specified, which is referred to in the
ICD 10 coding system as ‘malignant neoplasm of overlapping sites of oropharynx’.

3. Treatment with curative-intent IMRT, which implied that none of these patients had undergone any
definitive surgery; prior to the initiation of the radiotherapy treatment course, with subsequent consistent
follow-up of >2 years. Also, we didn’t include any alternative radiotherapy techniques other than IMRT,
e.g., intensity-modulated proton therapy (IMPT).

4. Known HPV status that was assessed by HPV DNA in situ hybridization'' and/or p16 protein expression
via immunohistochemistry (IHC).

5. Feasibility of high-quality CT scans, with non-reconstructed axial cuts for each patient, who should
have been injected intravenous (IV) contrast material beforehand. Contrast-enhanced axial CT cuts have
been the state-of-the-art platform for head and neck target volume delineation for decades; given the higher
spatial assimilation of the primary and nodal diseases'?. However, according to our institutional policy, non-
contrast-enhanced CT scans were designated for pre-treatment simulation CT scans. Consequently, we
selected from contrast-enhanced CT scans that were primarily ordered for diagnostic purposes.

In accordance with these inclusion criteria, OPC patients who were non-SCC (3 individuals) or had
unknown HPV status (591 individuals) were excluded. Furthermore, even qualified patients, whose CT
scan features didn’t harmonize with our eligibility criteria, were excluded. Toward this end, 3 patients
were excluded due to a lack of pre-IMRT CT scans, and 11 patients were excluded because their
pre-IMRT CT scans were non-contrast-enhanced. An additional 11 patients were also excluded due to
inadequacy of the attained CT cuts, specifically, artifacts masking the region of interest stemming from
metal dental fillings or CT cuts that didn’t encompass the entire ROL Moreover, it was found that poor
CT timing was a cause for exclusion, i.e., an inability to accurately depict the real magnitude of the
primary and nodal disease at time of diagnosis. Fifteen individuals had received induction chemotherapy
with no available earlier CT scans, while an additional 21 individuals had undergone excisional
biopsies of the primary disease (e.g., tonsillectomy) or suspicious lymph nodes with no CT scans
performed in advance. This resulted in a net result of 315 OPC patients, who constituted our ultimate
competition cohort.

However, as a part of our team’s systematic process of checking the competition, it was discovered that
there had been 9 incidences of duplicate images while rendering corresponding DICOM-RT files, which
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Figure 2. Flowchart of patient selection for inclusion.

could not be amended. Moreover, the segmented GTVp in 18 patients wasn’t adequately representative of
the primary tumor gross volume. Accordingly, after omitting these 27 patients’ files, the data set
described in this article encompasses 288 patients, as mapped in Fig. 2.

We imported the contrast-enhanced CT scans from the patients’ electronic medical records that were
performed not only before the initiation of the radiation treatment course, but also preceding any
significant alteration in the disease, e.g., induction chemotherapy or excisional biopsies. The yielded CT
scans of choice were imported to VelocityAl 3.0.1 software (powered by VelocityGrid; http://www.
velocitymedical.com/), our institutionally-adopted contouring platform, which was used by two expert
radiation oncologists to segment our ROIs, namely the pre-treatment gross tumor volume (GTV), both of
the primary disease (GTVp) and the metastatic lymph nodes (GTVn).

Both the segmented structures, along with the relevant clinical meta-data extracted from the patients’
profiles were the pillars for our radiomics challenges. Defined as deriving quantitative imaging features
from routine imaging data through a multi-step image processing, radiomic analyses have been
implemented in correlation with clinical data to generate promising meaningful data; that can be further
projected into prognostic and/or predictive non-invasive biomarkers'*™'°.

Hence, our team constructed two public challenges examining radiomic analytics for head and neck
cancer applications, specifically for the OPC domain. These public challenges were a part of a spate of
activities related to the computational precision medicine satellite activities, supported by MICCAI
society. They were designed to allow any and all data science teams to test their radiomic analysis skills, in
order to discriminate etiologic features and treatment outcomes of patients in a clinically curated
anonymized OPC data set (n=288) with contrast-enhanced CT-scans and standardized radiation
oncologist-segmented primary tumor and nodal volumes.

Challenge 1 evaluated competitor's ability to classify HPV/pl6 status (HPV status challenge)
(http://inclass.kaggle.com/c/oropharynx-radiomics-hpv), while Challenge 2 sought to predict which
patients will have a local recurrence in the primary tumor volume (Local recurrence prediction challenge)
(https://inclass.kaggle.com/c/opc-recurrence). Both challenges were hosted online at the machine
learning challenge website Kaggle in Class (https://inclass.kaggle.com).

Patient demographics and clinical end points
In this data set, the records of the included 288 patients with OPC treated with curative-intent IMRT at
The University of Texas MD Anderson Cancer Center, drawn from a larger oropharynx cohort between
the years 2005 and 2012 were thoroughly screened for specific demographic data, disease characteristics,
treatment details and outcomes'®'”. Table 2 includes Supplementary Information about the data
provided for this cohort of patients. Collective clinical characteristics of the patients, disease and
treatment are given in Supplementary Table 1.

The patients’ demographics data were provided the same format for both challenges. These included:
gender, age at diagnosis and race. Disease characteristics encompassed: tumor laterality and oropharynx
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Data category Description

Patient ID Numbers_given_randomly_to_the_patient_after_anonymizing_the_DICOM_PHI_tag (0010,0020;_Patient_ID)

HPV/p16 status Human Papilloma Virus status, as assessed by HPV DNA in situ hybridization'' and/or p16 protein expression via
immunohistochemistry (IHC), with the results described as: 1 (i.e., Positive) or 0 (i.e., Negative)

Gender Patient's sex

Age at diagnosis Patient's age in years at the time of diagnosis

Race American Indian/Alaska Native, Asian, Black, Hispanic, White or NA (Not applicable)

Tumor laterality Right, left, bilateral

Oropharynx subsite of | The subsite of the tumor within the oropharynx, i.e., base of tongue (BOT), tonsil/soft palate/pharyngeal wall/glossopharyngeal sulcus

origin (GPS)/other (no single subsite of origin could be identified)

T category The T category describes the original (primary) tumor, as regard its size and extent, per the American Joint Committee on Caner (AJCC)

and Union for International Cancer Control (UICC) cancer staging system. It could be T1, T2, T3, T4. https://cancerstaging.org/
references-tools/Pages/What-is-Cancer-Staging.aspx

N category The N category describes whether or not the cancer has reached nearby lymph nodes, per the AJCC and UICC cancer staging system. It
can be NO, N1, N2a, N2b, N2c or N3. https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx

AJCC Stage AJCC cancer stage. https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx

Pathological grade The grade of tumor differentiation. It is described as: I, II, III, IV, I-IL, II-III or NA (Not assessable)

Smoking status at Never, current, or former

diagnosis

Smoking Pack-Years An equivalent numerical value of lifetime tobacco exposure. A pack year is defined as twenty cigarettes smoked every day for one year.

(NA: Not Assessable) http://smokingpackyears.com/

Table 2. Supplementary Information about the data provided for both challenges.

subsite of origin. Furthermore, TNM (Tumor, node and metastases) classification was also provided,
where T category describes the original (primary) tumor, as regard its size and extent, per the American
Joint Committee on Caner (AJCC) and Union for International Cancer Control (UICC) cancer staging
system, 7th edition'® (https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx).
Noteworthy, patients with Tx, ie., primary tumor couldn’t be assessed, were normally excluded.
Similarly, the N category describes whether or not the cancer has reached nearby lymph nodes, per
the AJCC and UICC cancer staging system, 7th edition, along with the corresponding AJCC stage.
Tumor histology and grade of differentiation were evaluated by pathologists at the parent
institution, whereas for patients diagnosed at an outside healthcare facility, central pathology review
was performed. Smoking status at diagnosis was recorded, per the 2016/2017 ICD 10 definitions as
categorized in Table 3.

This was followed by individual smoking-pack years, which represents an equivalent numerical
value of lifetime tobacco exposure. A pack year is defined as twenty cigarettes smoked every day for
one year. We used an online calculator (http://smokingpackyears.com/) whenever unfeasible to
calculate tobacco exposure (e.g., when oral tobacco ‘dips’ were not quantified); we used the coding ‘NA’
(i.e., ‘not assessable’).

For the ‘Local recurrence prediction challenge’, additional details were provided as well. These
included:

- Radiation treatment course duration, which was precisely reported in days given the well-known fact of
increased incidence of local failures as a function of a protracted radiation time, while managing head
and neck cancers'.

Total dose of irradiation each patient received in Grays*’.

- Total number of daily radiation treatment fractions. (Tabular summary of the radiotherapy data is
presented in Table 4).

- The addition of systemic treatment (whether cytotoxic or targeted; single or in combination) was
reported dichotomously (yes or no), both during the induction phase (i.e., before the initiation of
radiation treatment course) and the radiation treatment (i.e., during the course of radiation treatment,
simultaneously). Also, individual patient’s vital status was dichotomously reported as ‘1 =alive’ or
‘0 =dead’; as an indicator for overall survival status. Finally, for the ‘HPV status challenge’, HPV status
was offered in the training data set as ‘positive’ or ‘negative’ and left unknown for the test data set, and
similarly the occurrence of local tumor recurrence’ was provided for the training set only in the “Local
recurrence prediction challenge’ as ‘1 =primary tumor recurrence’ or ‘0=no primary tumor
recurrence’, while kept unknown for the test data set for the sake of the challenge. Local recurrence
was defined as evidence of recurrent neoplastic disease within the same subsite or other subsites of the
oropharynx'.
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Tobacco user category Description

Never-smoker Refers to those who smoked < 100 cigarettes in their lifetime and who, at the time of
the diagnosis, did not smoke at all.

Former smoker Refers to those who quit smoking for at least 1 year

Current smoker Refers to those who were still smoking around the time of diagnosis.

Table 3. Terminology classification for tobacco users.

IMRT characteristics

Treatment duration in days; median (IQR) 43 (34-56)
Total prescribed dose in Grays; median (IQR) 70 (60-72)
Number of treatment fractions; median (IQR) 33 (30-35)
Dose per fraction in Grays; median (IQR) 2.12 (1.8-2.2)
Neck boost; n (%) 163 (60.6)

Table 4. Tabular summary of IMRT characteristics.

Treatment strategy and IMRT technique:

Multidisciplinary schematic treatment approach was meticulously detailed by Garden et a along with
MD Anderson Cancer Center protocols of trials studying the implementation of IMRT in locally
advanced oropharyngeal cancer, e.g., NCT01893307 (https://clinicaltrials.gov/ct2/show/NCT01893307?
term = NCT01893307&rank = 1). Assessment of an oropharyngeal tumor starts with a global history and
physical examination. Typically, this is followed by nasopharyngolaryngoscopy procedure with biopsies
of suspicious zones. The vast majority of patients had contrast-enhanced CT scans of the head and neck
performed for the purpose of diagnosis and staging of oropharyngeal cancer, whereas some of them
underwent other imaging modalities, like magnetic resonance imaging (MRI) and/or positron emission
tomography-computed tomography (PET-CT). An institutional transdisciplinary team adopted the
comprehensive management approach for all patients at a tumor board, held on weekly basis. Surgery
was mostly implemented for diagnostic purposes, preceding radiotherapy. Neck dissection after radiation
was reserved for cases, where complete clinical response couldn’t be achieved, mainly estimated by
physical examination, computed tomography, and ultrasonography. The selection of the eligible patients
for systemic treatment and the prescribed regimens was determined according to the extent of the
disease, performance status and associated comorbidities. Consequently, patients with heavy primary
tumor disease burden and/or sizable lymph nodes were routinely assigned concurrent chemoradiation.
Given the well-established correlation between advanced nodal disease and increased incidence of distant
recurrence”, this group of patients were usually prescribed an upfront induction chemotherapy.

Pinnacle planning system (v4 through v9, Philips Medical Systems, Andover, MA) was employed in
radiotherapy treatment planning. Treatment was delivered with a static gantry approach. Patients treated
to only 1 side of the neck were typically planned with a template using 7 beams equidistant through a
190° arc, whereas the template for patients treated to both sides of the neck used 9 beams set equidistant
through 360°. Beam angles and number were reshaped during the optimization process. In general, IMRT
was used to treat the primary tumor and upper neck nodes. The isocenter was mostly set above the
arytenoids, and IMRT was delivered to portals above the isocenter, whereas the lower neck below the
isocenter was treated with an anterior beam, with a larynx and/or full midline block in most cases. Nodes
in levels 3 to 4 were boosted with glancing photon beams and/or electron beams. Additionally, bulky
nodes in the IMRT fields were occasionally boosted with electrons. A ‘whole-field’ IMRT approach was
regularly used in situations in which the patient's anatomy or primary tumor location created concerns
that tumor might be underdosed using the ‘split-field” approach®*. IMRT was delivered using Varian
(Varian Medical Systems, Palo Alto CA) linear accelerators delivering 6-MV photons.

Target volumes were individualized. After simulation, contours of the target volumes were delineated
and reviewed in our quality assurance clinic as described elsewhere in details. Rosenthal et al. established
the necessity for a comprehensive peer review planning clinic, being an integral component of IMRT
quality assurance®. Gross disease with an 8-10 mm margin was defined as CTV1. Treatment was
prescribed to CTV1. A planning target volume (PTV) of 3 mm was generated around each clinical target
volume (CTV). One or 2 CTVs were created to encompass subclinical disease, including additional
margin on CTV1, anatomic sites of potential direct spread, and uninvolved levels of the neck at risk. The
spinal cord was limited to maximum 45 Gy. The brainstem was typically limited to 50 Gy, but taking into
consideration beam path toxicities, stricter constraints were placed*®. The goal set for the parotid glands
was regularly a mean dose of < 26 Gy, though the clinical setting and proximity of the parotid to gross
nodal disease influenced the priority placed on this goal.

l 9,22
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HPV DNA testing

Yes 245 (85)
No 8 (2.8)
N/A 35 (12.2)

HPV DNA testing technique used

N/A 4 (1.6)
IHC 2(0.8)
ISH 239 (97.6)

P16 testing (IHC)

Yes 222 (77)

No 31 (10.8)

N/A 35 (12.2)
Patients tested for both HPV DNA & p16 214 (74.3)

Table 5. Details of HPV status testing at diagnosis.

HPV detection

All tumors were tested for their HPV status via: evaluating the presence of HPV16 DNA by use of the in
situ hybridization-catalyzed signal amplification method for biotinylated probes and/or the expression
status of p16 via immunohistochemistry (IHC)*’. Recent meta-analysis has shown that the proportion of
HPV-associated OPC has jumped dramatically worldwide from 40.5% in studies enrolling patients before
2000 to 72.2% in studies recruiting patients after 2005 and our cohort showed similar trend*®. In case any
discordance between HPV DNA and p16 testing results was encountered, the p16 status was utilized to
attribute HPV status, attributed to the fact that p16 positivity can encompass a larger number of HPV
strains than in situ hybridization®. Table 5 details HPV status testing.

Imaging characteristics

Contrast-enhanced CT images were restored from the patients’ electronic medical record, with a section
thickness of 1-5 mm (median: 1.25 mm in 84.7% of the cases) and an X-ray tube current of 100-584 mA
(220 mA for 68.1% of the patients) at 100-154 kVp (120 kVp for 66% of the patients). Most of the CT
scans (92%) were obtained using GE Medical Systems scanners, specifically LightSpeed16 (55.2%) and
LightSpeed VCT (27.4%) models.

Display field of view was 25 cm; axial images were acquired by using a matrix of 512 x512 pixels and
reconstructed with a voxel size of 0.048828 cm x 0. 048828 cm along the x- and y-axis. Forty-four patients
had CT scans with a slice thickness (Z-dimension) that was not equal to 1.25 mm (range 0.5 to 5 mm).
One hundred twenty milliliters of contrast material were injected at a rate of 3 mlsec”', followed by
scanning after a 90-second delay. Detailed acquisition parameters are provided in Supplementary Table 2,
including full imaging specifications for each DICOM file, scanner manufacturer and software details,
along with CT protocol.

Manual segmentation of regions of interest (ROIs)

Gross tumor volumes (GTV) for primary tumor (GTVp) constituted our regions of interest for this
project. Gross nodal tumor volumes (GTVn) were additionally segmented, to help give the contestants a
better idea about the extent of disease. Gross tumor volumes were defined as per ICRU 62/83, specifically,
‘the gross demonstrable extent and location of the tumor™. In case of multiple separate metastatic lymph
nodes, gross nodal tumor volume (GTVn) were numbered separately, starting from the most superior
node, which was given the name (GTVnl), then (GTVn2), etc. No GTVn was segmented in case of node
negative (NO) disease or CT scan was performed following a lymph node excisional biopsy.

Tumor volumes were manually segmented on each individual patient’s diagnostic contrast-enhanced
CT axial images and simulation CT images by the collaborators independently. They were blinded to
relevant clinical meta-data and their segmentation was revised by a radiation oncologist (HE), along the
regulations we followed for previous projects*'. The segmentation process was governed by the guidelines
of the International Commission on Radiation Units and Measurements (ICRU) report 83. Segmentation
primarily relied on the findings from physical examination, fiberoptic nasopharyngolaryngoscopy and
imaging studies. Manual segmentation was performed by using commercial treatment planning software
VelocityAl 3.0.1 software.

Data de-identification

We used an open-source tool to de-identify DICOM files, DICOM Anonymizer version 1.1.6.1
(https://sourceforge.net/projects/dicomanonymizer/). This program is designed to replace the patient tags
in all the DICOM files in a folder (and sub-folders) with other strings assigned. It neither changes the length
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Tag (Group, Element) Attribute name

(0008,0012) Instance creation date
(0008,0013) Instance creation time
(0008,0020) Study date

(0008,0021) Series date

(0008,0022) Acquisition date

(0008,0023) Image date

(0008,0050) Accession number

(0008,0081) Institution address

(0008,0090) Name of Physician

(0008,1010) Station name

(0008,1040) Institutional departmental name
(0010,0021) Issuer of patient ID

(0010,0030) Patient’s birth date

(0010,1040) Patient’s address

(0020,0010) Study ID

(0032,1032) Requesting physician
(0040,0244) Performed procedure step start date

Table 6. DICOM PHI tags replaced with anonymized data.

Cut out PHI from Alter tags that state UIDs were not
descriptive tags times or dates changed

Apply ImageJ post- Apply DICOM
hoc; to visually Anonymizer software to
review images to rule visually check cohort
out that any PHI de-identification status

prevails to appear per attribute

Keep image
acquisition properties
and device
specifications

Figure 3. Work flow of DICOM PHI anonymization.

of the DICOM tag nor alters Unique Identifiers (UIDs). The following DICOM tags were
de-identified: patient’s name, patient’s identifier (ID), patient’s birth date, study description, manufacturer,
instance creation date, instance creation time, study date, series date, acquisition date, image date, performed
procedure step start date, accession number and study ID*'. These DICOM tags were chosen based on a
custom confidentiality profile that we’ve adopted in accordance with the Health Insurance Portability and
Accountability Act (HIPAA), as designated by the DICOM standards committee Attribute Confidentiality
Profile (DICOM PS 3.15: Appendix E; ftp://medical.nema.org/medical/dicom/2011/11_15pu.pdf),
which describes a standard procedure and documentation for removal of protected health information
(PHI) from DICOM images’*. Table 6 depicts the PHI tags, embedded in the DICOM metadata tags that
were de-identified. A final DICOM de-identification quality assurance was applied using a software, named
Image] (https://imagej.nih.gov/ij/), which collects attributes per patient in a report that was scanned to
guarantee optimal anonymization accomplishment by the implemented DICOM anonymizer software.
Figure 3 portrays DICOM de-identification workflow.

Competition leaderboard

We opted to run both competitions as public competitions, where anyone can participate. We then set
the evaluation metric of both competitions to be area under receiver operating characteristic curve
(AUC). We divided our data set into training and test data sets, evenly split according to outcome classes,
i.e, HPV status/local recurrences, with separate CSV files and DICOM folders. For the test set, the
outcome column was obscured. Patients, disease and treatment characteristics for the training and test
sets are tabulated in Supplementary Tables, Supplementary Tables 3 and 4. Afterwards, Kaggle in Class
further split the test set into private and public subsets, each scored separately. Results for the public
records appear in the ‘public leaderboard’, which shows some relative performance during the
competitions that was continuously updated calculated on contestants’ submissions. Figures 4 and 5
depict how the final ‘public leaderboard’” for the ‘HPV status challenge’ and the ‘Local recurrence
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# Alw Team Name Score @ Entries Last Submission UTC (Best - Last Submission)
The_Courtyard 1.00000 5
15 BIG-S2_Veera_HPV 0.86667 5
" Nguyen Khanh 0.84306 8
4 JA 0.83750 6
2 gailasal 0.82986 5
6 2 USF-Moffitt 0.77917 13
2 JunlinYang 0.75972 17
8 2 tyler 0.74583 5
turingcomplete 0.72917 6

Figure 4. Final public leaderboard for the HPV status challenge.

“ Alw  Team Name Score @ Entries  Last Submission UTC (Best - Last Submission)
JunlinYang 0.84122 1 5un, 28 Aug 2 :25:4
2 2 turingcomplete 0.81419 14
" oaul & yall 0.80574 6
.1 Nguyen Khanh 0.73986 4
JA 0.69003 4 Mor
i NinoArsov 0.68919 3 2
7 13 USF-Moffitt 0.64696 14 Mon, 12 Sep 2016 22:17:21
2 Arjun 0.64020 3
" BIG-S2_Veera_LRP 0.59966 12 Mor
3 ECELLWARRIORSIIH 0.59797 -
UniNA 0.54392 7 Mon, 12 Sep 2016 23:58:0
Courtyard 0.50000 2
albert 0.50000 2
5 Vibhas Goyal 0.47297 2

Figure 5. Final public leaderboard for the Local recurrence prediction challenge.

prediction challenge’ looked, respectively. Kaggle in Class administration withholds the answers for this
data set to compare against the competitors’ predictions. When the competition was over, each
competitor’s top submission was selected and evaluated based on the remaining portion of the test set
that was kept hidden from the competitors till the end, or the private fraction. Competitors were never
sent a feedback about their scores on this portion, so it is the ‘private leaderboard’. Final competition
results were derived from the ‘private leaderboard’, and the winner was the person or team at the top of
the ‘private leaderboard’; to eliminate the possibility a model that overfits to the specific noise in that data.
Figures 6 and 7 illustrate the ‘private leaderboard for ‘HPV status challenge’ and ‘Local recurrence
prediction challenge’, respectively.

Competitions

Contestants were invited to download the DICOM-RT files, along with clinical meta-data tables, with
subsequent mechanistic analysis, that includes the performance of individual risk assessments. The region
of interest for robust texture analysis was the primary gross tumor volume, which is denoted as GTVp.
We also provided segmented gross nodal tumor volume or the GTVn, for future projects that will dig into
potential predictive radiomic biomarkers, indicative of patterns of failure. The ultimate goal was the
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# Arank Team Name Score @ Entries  Last Submission UTC (Best - Last Submission)
" BIG-S2_Veera_HPV 0.91549 5 Mon, 12 Sep 2 23:35:54 (-2.2
2 2 JA 0.80047 6
Nguyen Khanh 0.74883 8
n oayil yall 0.69190 S
22 JunlinYang 0.67254 17
12 tyler 0.66491 5
i USF-Moffitt 0.65200 13 Mon, 12 Sep 2016 22:08:02
1 turingcomplete 0.58275 6
8 The_Courtyard 0.52054 5

Figure 6. Private leaderboard for the ‘HPV status challenge’.

# Arank Team Name Score @ Entries  Last Submission UTC (Best - Last Submission)
13 Nguyen Khanh 0.92405 4 Sun, 11 Sep 2016 18:09:25 (-30.4
2 M adlil ol 0.91930 6
" turingcomplete 0.90506 14
" JA 0.86709 4
4 JunlinYang 0.80538 1
1n  USF-Moffitt 0.71203 14
7 12 BIG-S2_Veera_LRP 0.69620 12 Mon, 12 Sep
12 ECELLWARRIORSIIH 0.68671 4
" Arjun 0.67405 3
1" UniNA 0.66772 7
5 NinoArsov 0.50000 3 Sat, 13 Aug 2016 00:09:13 (-0.2
12 Courtyard 0.50000 2
albert 0.50000 2 Mon, 12 Sep 2016 04:44:02
Vibhas Goyal 0.44937 2

Figure 7. Private leaderboard for the ‘Local recurrence prediction challenge’.

development of an algorithm that yields the HPV status or the probability of local failure in OPC
patients, based on their particular radiomic signatures. All the previous steps constituted the workflow of
our dedicated machine learning projects, as previously depicted in Fig. 1.

The winning algorithms were presented by the winners at the full-day CPM satellite workshop, as a
part of the program of MICCAI 2016 (http://www.miccai2016.org/en/). The top-winners from each
challenge were invited to share their approach and algorithm to the ‘Data Science’ community via an
online video conferencing.

Code availability

e DICOM Anonymizer version 1.1.6.1 is the open-source tool we used to de-identify DICOM files. The code for
this tool is available online and readily accessible at https://sourceforge.net/p/dicomanonymizer/code/HEAD/tree/

¢ Image], a free software offered by the National Institutes of Health, USA, as a public domain Java processing
program. The code for the software is accessible at: https://imagej.nih.gov/ij/.

e Smoking pack-years were computed using an online calculator helps to produce a numerical value of
lifetime tobacco exposure, openly accessible at http://smokingpackyears.com/.
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Data record Description

Training set of clinical meta-data.csv | A.csv file that encompasses clinical meta-data, regarding the patients assigned to the training set.

Training DICOM files set.zip A compressed folder that contains anonymized DICOM files of the training data set. The subfolders are named according to
each patient's ID after de-identification. Each individual patient's subfolder includes a DICOM file, named str.dcm, which
comprises the set of segmented structures, i.e., primary and/or nodal disease.

Test set of clinical meta-data.csv A.csv file that encompasses clinical meta-data, regarding the patients assigned to the test set.

Test DICOM files set.zip A compressed folder that contains anonymized DICOM files of the test data set. The subfolders are named according to
each patient's ID after de-identification. Each individual patient's subfolder includes a DICOM file, named str.dcm, which
comprises the set of segmented structures, i.e., primary and/or nodal disease.

ReadMe.csv Supplementary Information about the headings of the columns in the data sets.

Sample result submission.csv A sample submission file in the correct format that includes an ID column like that in the solution file, plus a column with
the predictions.

Table 7. Description of data records uploaded to the figshare repository of the HPV and local
recurrence prediction challenges ‘cited separately under (Data Citation 1) and (Data Citation 2).

Data Records

This data descriptor describes data that were used for head and neck radiomics challenges, designed for
teams involved in machine learning to test their ability to leverage radiomics and/or machine learning
workflows. This OPC data set (n=288) encompasses anonymized clinically curated contrast-enhanced
CT scans (73,230 DICOM-RT files, including 288 DICOM-STRUCT files) that show primary tumor and
nodal disease as segmented by expert radiation oncologists. The 2 challenges were a part of a spate of
activities related to the Computational Precision Medicine (CPM) satellite activities at MICCAI 2016
(http://www.cpm-miccai.org) hosted at the machine learning challenge website Kaggle in Class. Data is
also available from figshare (Data Citation 1 and Data Citation 2).

Relevant clinical meta-data files are also provided as.csv sheets. Table 7 details the various data
records, along with a brief description. The CT images follow the standard DICOM format are organized
by anonymized patient ID number (Patient_ID), and can be cross-referenced against the data table using
this identifier.

Technical Validation

Pinnacle treatment planning system (Philips Radiation Oncology Systems, Fitchburg, WI) engages a
collapsed cone convolution (CCC) algorithm, for optimal dose calculation™.

ClinicStation (Electronic Medical Record System), a custom-built electronic medical record system by
MDACGC, that started in 1999 with subsequent significant improvement in 2007 that allowed further
new capabilities, as integrating research data and accessing data from virtually every electronic source
within the institution, among others, thus serving great role in patient care and research. http://www.
clinfowiki.org/wiki/index.php/ClinicStation

VelocityAlI 3.0.1 software (powered by VelocityGrid), our institutionally-adopted contouring platform,
was used for segmenting ROIs. http://www.velocitymedical.com/

Usage Notes

DICOM, as a standard platform for managing medical images and related information, is indispensable

to radiation oncology workflow™*. As a consequence, various radiotherapy-specific DICOM objects

(i.e., DICOM-RT) were created, e.g., DICOM-STRUCT which refers to DICOM structure set, among

others. Various validated open-source softwares that can be applied as texture analysis toolboxes™”.
Here are some of the most commonly used computational resources:

 IBEX (Imaging Biomarker Explorer)—an open-source platform for image feature extraction, primarily
developed using MATLAB and C/C++ programing languages; http://www.ibex-lib.org/download

e MazDa—a computer program for calculation of texture parameters, written in C++ and Delphi©;
http://www.eletel.p.lodz.pl/programy/mazda/index.php?action = mazda

e CGITA—another open-source texture analysis toolbox, built in the MATLAB environment; http://
code.google.com/p/cgita
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