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ABSTRACT

Clear Speech consists of crisp, loud, and slowly spoken sentence(s) for increased intelligibility where the
utterances are distinguishable and audible without much strain on the human ear. For individuals with

auditory comprehension disabilities, clear speech would be easier to comprehend than casual or normal
speech. In this effort, we try to automate the conversion of casual speech to clear speech using machine

translation.

In the current work we develop a Recurrent Neural Network (RNN) that uses parallel corpora with one
set of corpus as input and predicts output by the parameters learnt from another corpus for this
translation. Basing our study from literature, we make use of Deep Bidirectional Long Short term
memory (LSTM) based RNN model because of its proven effectiveness in speech translation domain. To
generalize, we convert voice A to voice B by passing voice A through multiple forward-backward LSTM
exploiting its capability to learn voice B from both past and future time steps in voice A trained to
regress voice B via backpropagation through time.

We performed our preliminary experiments on a male to female speech conversion task, following
which we were able to extend the developed pipeline for casual to clear speech conversion.



1 INTRODUCTION

Speech Conversion is the process of modifying the audio signals in order to transform one speech form
into another. There are many uses for speech conversion, such as translating the speech of one
language to another language, voice conversion from a male speaker to a female speaker, Text-To-
Speech (TTS) conversion, generating new voices and even for entertainment purposes. The task of
speech conversion is not trivial. There is a broad literature in both Audio Processing domain and
Statistical or Machine learning domains. We will be focusing on the latter.

In the early days, Hidden Markov Models (HMM) and Gaussian Mixture Models (GMM) were used to
deal with temporal aspect in Speech recognition [1]. Kain et al. used GMM for spectral voice conversion
for TTS [2]. Toda et al., used GMM of the joint probability of source and target for spectral conversion
[3]. Desai et al., used an Artificial Neural Network (ANN) for voice conversion and performed a
comparative study between ANN and GMM [4].

With the emergence of Deep Learning techniques in recent years, much progress has been made in
Acoustic Modeling [5,6]. Chen et al. used Deep Neural Network (DNN) [7] for voice conversion and
Nakashika et al. used Deep Belief Network (DBN) to learn higher order features for source and target
speaker [8]. The problem with DNNs and DBNs was that they were not able to capture temporal aspect
of the speech spectrum.

Recurrent Neural Networks (RNNs) overcomes this problem by making use of recurrent connections in
the Neural Network that helps retain information over a long period of time [9]. Two decades ago this
would have been a problem, because training RNNs were computationally expensive but thanks to
today’s modern infrastructure and computing power, this is no longer a limitation. Despite having
enough resources, there were still difficulties in training RNNs with long-range dependencies [10].
Additionally, they faced a problem of exploding and vanishing gradients [11].

Long Short Term Memory (LSTM) [12] could memorize or forget long-range contextual information in
sequences by storing temporal information in a memory block. Bidirectional LSTM based RNNs further
extends its capabilities in learning long-range contextual information in both past and future directions
[13,14]. Some of the previous work done using Bidirectional LSTM are in speech recognition [15], TTS
[16], feature enhancement [17] and so on.

We based our initial study on the work done by Sun et al. [18] in Voice conversion using Deep
Bidirectional LSTM based RNN but we apply this technique for Casual to Clear Speech conversion.



2 RECURRENT NEURAL NETWORK ARCHITECTURES

A typical RNN [19] is used for sequential modeling by having hidden-to-hidden connections as opposed

to a feedforward artificial neural network [20]. These hidden-to-hidden connections allow the neurons

in the current hidden layer to use the contextual information’s ‘states’ from the previous time steps as

well as from the previous hidden layer. A representational example of a typical RNN is shown in figure 1
below.
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Figure 1 The basic structure of a typical RNN

We can formalize the interaction of hidden-states and output of the RNN by the following set of

equations.

If x; = [x1, X3, X3 ... Xx7] are the input data sequence, h; = [hq, hy, h3 ... hy] are hidden states and
Y¢ = [¥1,¥2, Y3 .. Y] are the output data sequence, where t = 1 to T, the equations below describe
how each time step in the sequence is calculated:

ht: O'(Xt. th + ht—l' Whh + bh)

yt= htWhy+ by

where Wy, represents input-to-hidden weights, Wy, represents hidden-to-hidden weights, Wy,
represents hidden-to-output weights, by, is hidden biases and b,, is output biases.

A RNN can be unfolded in time and can be seen as time steps [t — 1, t, t + 1] as shown in figure 2.
Each node in this figure represents a layer of network units at a single time step and the same weights
are reused every single time step. That is to say, W,, will be reused for every single time step for the



input-to-hidden connection and similarly Wy, will be reused for every single time step for the hidden-
to-hidden connection.

Output layer @ @

Hidden layer > hiq > " hyy ——

Input layer é é

Figure 2 Unfolded RNN

2.1 BIDIRECTIONAL RNN

A Bidirectional RNN [21] (see figure 3) makes use of both the past and the future contextual information
for every time step in the input sequence in order to calculate the output sequences. It has two separate
hidden layers with forward states and backward states which computes the contextual information by
iterating through t = 1 to T in the forward or positive direction and t = T to 1 in the backward or
negative direction. Backward states are analogous to reversing the time steps in the forward states. The
forward and backward hidden states are computed and merged using the following equations:

h{ = a(xt. W nr + h{—l' W + bhf)

h? = O'(Xt. W b + hb,, . Wbpp + bhb)
=nl.w hb . w b

Ve ;- hfy+ t - hby+ y

where h{ and h? represents the forward states and backward of the hidden layer with connections in
forward and backward directions respectively. W_hf and W_hb represents weights for the forward and
backward directions respectively. Output y; is obtained by summing the parameterized hidden states

for every time step.
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Figure 3 A Bidirectional RNN

2.2 LONG SHORT TERM MEMORY (LSTM)

Long Short Term Memory blocks were introduced by Hochreiter and Schmidhuber [12], which allowed
the recurrent neural networks to capture long-range contexts in a sequence. The LSTM blocks also
overcame the vanishing gradient [10] problems in the Recurrent Neural Network training. These
memory blocks are similar to a computer’s memory where information can be read from, written to,
and stored or reset. LSTM block consists of a self-connected cell and three gates that decide when to
perform write, read, and reset operations using input gate, output gate, and forget gate respectively.
Figure 4 shows a LSTM block. Cells are responsible for the learning process, back-propagating error

through time and updating weights during training. The hidden layer activations in a memory unit are
calculated using the following equations:

ip= 0 (Wyj.xg + Wy heq + Weioceq + by)
fe= 0 Wyp.xt + Wyp heoq + Wep.cooq + by)

ct = fr-Cr_q + g .tanh(Wye . x¢ + Wye . heoq + be)
0= 0 Wy .x¢ + Wyo he_q + Wy .ct + by)

h; = o .tanh (c;)

where i, f; and o, represents input gate, forget gate and output gate respectively and c; are the cell
states. All the gates have sigmoid activations and cells have tanh activations. In the LSTM block diagram,
the gates are multiplicative but the cell basically sums the new input state with its previous state.
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Figure 4 LSTM Block [12]

2.3 BIDIRECTIONAL LSTM BASED RNN (BLSTM)

Combining the advantages of both Bidirectional RNN and LSTM, we can exploit the long-range context
dependencies in the past as well as the future time steps while performing sequential modeling. Figure 5
shows the unfolded BLSTM model for three time stepst — 1,¢,t + 1.
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Figure 5 unfolded BLSTM based RNN model

The input is fed into both the forward and the backward LSTM layer. The output layer or the next hidden
layer (consisting of forward and backward LSTM layers) receives an input by joining the forward and the
backward LSTM layers. There are no hidden-to-hidden connections between forward and backward
layers. The equation for the output y; is similar to that of Bidirectional RNN. We developed BLSTM for

speech conversion and from here on, we will be referring to this particular model in our established
pipeline.



3 METHODOLOGY

The approach to converting Casual speech to Clear speech involved a multi-process pipeline which will
be discussed in detail below. Figure 6 displays the entire processing pipeline.

Aperiodicity
STRAIGHT
- STRAIGHT <
Parameter > FO > 80018, A
extraction transformation Synthesis
Recovered
Spectrum Spectrum
A
Y
SPTK (mcep) SPTK (mgc2sp)
A
Y
Mel-generalized Converted
Cepstrum (MGCs) MGCs

Bidirectional LSTM based RNN

Figure 6 The system architecture

3.1 PARALLEL SPEECH CORPUS

A parallel speech corpus is a collection of pairs of spoken sentences in which each sentence in the pair
has the same content but is spoken in different ways, either by the same speaker or a different speaker.
For our training, we are using two corpora; The first is from the CMU ARCTIC Databases [22] and the
other from the Basic English Lexicon (BEL) corpus [23]. From the ARCTIC Corpus, we used the Scottish
English male speaker (AWB) and an US English female speaker (SLT). The second corpus consists of
parallel sentences spoken by the same female speaker using two different styles of speech, defined as
Speech A and Speech A’ respectively. Speech A is a normally spoken sentence, which we defined as
casual or normal speech. Speech A’ is a slow, clearly and/or intelligibly spoken sentence, which we
defined as clear speech. Our initial experiments were focused on converting male to female speech from
the ARCTIC corpus but this model can be easily extended to a Casual-to-Clear speech conversion model.

3.2 PHONEME ALIGNMENT WITH LINEAR TIME WARPING

In the parallel corpus, each pair of sentences has different lengths. The start and end time of the two
sentences could be different, and in most cases, are different. This difference can be seen at the



sentence level, word level or phonemic level. In figure 7, the sentence “Will we ever forget it?” is spoken
differently in the two corresponding parallel utterances. You could clearly see, the male and the female
speech differ in sentence length. Both in terms of the start and end times at word level as well as the
phonemic level. Our target was to make the two corresponding sentences align at the phonemic level.

Figure 7 Waveform of male (top) and female (bottom)' speakers speaking the phrase, "Will we ever forget it?"

To accomplish this, we perform linear time compression on the auditory waveform of the male speaker
so as to align to the female speaker. After the alignment is done, we should be able to get a linear
relationship across the time steps of the two waveforms. The Python programming language was used
to extract Phoneme ‘anchor points’, which were the end times of phonemes identified in the speech.
These anchor points and their parent sound files were then processed using the TSM toolbox [24] for
MATLAB?, which uses the WSOLA time-scale modification algorithm [25] to perform the actual
phoneme-alignment and time-warping. Figure 8 shows the results of this transformation process.

I‘ "’i‘,] I[I

‘I‘l'll ||'\|I‘.‘
|

Figure 8 Waveform of “Will we ever forget it” by male (top) and female (bottom) speakers after alignment

! https://www.mathworks.com/
’ For a detailed review, see [26]



3.3 FEATURE EXTRACTION

Feature extraction in this context is the process in which we extract a compact representation of speech
that holds good statistical properties and makes it feasible for training a RNN. Tandem-STRAIGHT [26] is
used to extract what we call STRAIGHT parameters. When a sound file is given as an input to Tandem-
STRAIGHT, it breaks down the waveform into three parameters, namely Aperiodicity, FO and residual
Spectrum. The parameter that goes as an input to the RNN is derived from the residual Spectrum. The
residual Spectrum has a dimension of approximately 500 spectral components and a sequence length
equal to the number of frames of a given speech sequence. This results in an input that is far too dense
to be supplied to the neural network which would otherwise yield impossibly long training times.
Therefore, we take this residual Spectrum and extract Mel-generalized Cepstral (MGCs) Coefficients®
using SPTK [28].

MGCs are well suited as input to our model, due to the fact that:

a) They are a very concise representation of spectral waveform, compressing the 500 Spectral
components into 50 Coefficients.

b) They operate on Mel-frequency scale which is a very good approximation of how a human
ear perceives sound.

c) They capture very good statistical properties which makes it ideal for machine learning.
MGCs take the form of 50 Coefficients corresponding to each time step or number of frames
in the sequence.

As suggested in [18], we withhold the first energy component from these 50 MGC Coefficients which left
us with 49 dimensional coefficients for each frame in the sequence. Thus, a 49 x Number of frames
matrix is used as inputs to our RNN. We extracted the MGCs for both source and target speech
independently.

This process of extracting the MGCs from the residual Spectrum is reversed following the output MGCs
from our model. As seen in figure 6, we use the converted MGCs to recover the spectrum using the
SPTK's mgc2sp method. This recovered spectrum is used to synthesize waveform using STRAIGHT
synthesis. The other two STRAIGHT parameters are handled a bit differently. We do not change the
aperiodicity as it does not make a significant difference for source to target speech conversion and
therefore we pass it directly to STRAIGHT. Source FO is linearly converted to target FO by using z-score
transformation which is obtained using the following equation [29]:

Otarget

lOg foconverted = Htarget + ( logfosource — HUsource )

O-SO‘LLTCQ
where sigma(source) and sigma(target) are the standard deviations of the source and the target FO
respectively, mu(source) and mu(target) are the means of the source and target FO respectively. This
conversion will give you the pitch of the target speech. Thus, recovered spectrum, unchanged
aperiodicity and z-score transformed FO are used to synthesize the converted speech or waveform.

> For a detailed review, see [26]



3.4 DATA NORMALIZATION

We normalize the inputs, the 49-dimensional Mel-cepstrals, so as to make the distribution have a zero
mean and unit variance. We perform this operation by simply by subtracting the mean from each
sample and dividing by standard deviation across the 49-dimensional coefficient axis.

3.5 TRAINING BIDIRECTIONAL LSTM BASED RNN

3.5.1 FULL SENTENCE INPUTS

We train the Bidirectional LSTM based RNN on one complete sentence at a time making use of full
contextual information from both the past and the future time steps, or more precisely, using both the
forward states and the backward states in the hidden sequence. Corresponding to each input sequence,
we obtain a converted output sequence. We will talk about this in details in the following sections.

3.5.2 ZERO PADDING AND MASKING

The input shape takes the shape of tensor with dimensions (number of samples, sequence length,
number of features). The number of features remains the same for each sequence since we have a 49-
dimensional input sequence. But input sequences are not of the same length, that is to say they vary in
sequence lengths. Our model takes a fixed tensor as inputs, so we added zero padding and masking to
the RNN inputs. Zero padding is simply adding matrix of zeroes at the end of the sequence to match the
maximum length sequence in the training samples. Masking is a matrix of 1s and Os that tell the RNN
what the actual sequence length was. This is done by adding 1s for the actual sequence length and Os for
the extra padding.

3.5.3 BACKPROPAGATION THROUGH TIME

The training in a bidirectional LSTM based RNN is similar to a typical RNN because there are no
connections between the forward and the backward hidden layers. We can therefore train the forward
hidden layer just like a regular RNN and we can train the backward layer by reversing the direction of
the training loop. We then join the hidden states for the particular hidden layer giving us the output h;
for that layer. Below is the training loop in Bidirectional LSTM based RNN (reproduced from [21]):

1. Forward Pass

fort=1toT:
Forward pass for the forward state storing the activations at every time
step

fort=Tto 1:
Forward pass for the backward state storing the activations at every
time step

forall t:

Forward pass for all the predicted outputs using activations from both
the forward and backward layers (this will the output of the current
hidden layer)



2. Backward Propagation Through Time

forall t:
Backward pass for the output layers, calculating the derivatives for each
time step (the output layer can be the succeeding hidden layers)

fort=Tto 1:
Backward pass for the forward states using the calculated derivatives
from the output layers

fort=1toT:
Backward pass for the backward states using the calculated derivatives
from the output layers

3. Update Weights

3.5.4 PREDICTION

After the training is complete, we query the model with source speech or in this case source MGCs, and
we want to be able to predict the converted MGCs. The equation below gives the output of the
Bidirectional RNN and the output is calculated by [30]:

P<L> = o W/ .kl + WP .h? + b,)
Xd (d#t)

We can apply a similar equation to Bidirectional RNN with LSTM memory blocks as well. Thus for
predicting the converted sequence at each time step, we use the sum of the parameterized forward and
backward states taking advantage of the long-range past and future contexts which comes from the
LSTM block output.

3.5.5 EXPERIMENT

We performed a supervised learning algorithm for this conversion where the input to our model was a
male speaker and the target was a female speaker for the first corpus. Similarly, for the second corpus,
the input was casual speech and the target was clear speech.

Our network architecture was [ 49, 128, 256, 256, 128, 49] where each value represents a hidden
dimension for bidirectional LSTM layers. Each hidden layer has a forward and a backward LSTM layer
with those many hidden units. Our objective was to minimize the L2 norm loss between the prediction
and the targets. We used Adam optimizer [31] as our update function with a learning rate of 1e-3 and
trained the model for 1000 epochs. A NVIDIA Quadro M4000 GPU was used for training. The model
developed and training performed was using the deep learning libraries theano [32] and theano based
lasagne [33].



3.5.6 CONVERSION OF RNN OUTPUT INTO SPEECH

Once we obtain the converted MGCs of the target speech, we can now reverse the process of feature
extraction in order to get the converted waveform or speech. First and foremost, we need to
denormalize the MGCs which can be done by using the female data statistics in terms of mean and
standard deviation. The following equation will denormalize the MGCs:

myCdenormalized = /-ltarget_mgc + Gtarget_mgc * MYGCoutput

Initially before passing the MGCs to our model, we withheld the first coefficient vector which is the
energy component from 50-dimensional MGC Coefficients. We need to add the energy component back
again in order to recover a spectrum from the denormalized MGCs. This recovered spectrum is then fed
into STRAIGHT synthesizer along with linearly converted FO and aperiodicity which gives the synthesized
waveform. This conversion process can be seen in Figure 6.



4 RESULTS

The following section shows the results obtained from our developed speech conversion system. The
results will focus on the output of the Bidirectional LSTM based RNN model in order to convert one
speech into another. We will discuss the results obtained from both male to female conversion and
Casual to Clear Speech conversion. Although the results achieved were on an overfitted model, with
longer training and hyperparameter optimization, we can achieve desired results on validation data with
our developed system. We can divide our results into three main stages: Converted MGCs, Recovered
Spectrum and Synthesized Speech.

l. Converted MGCs
This is perhaps the most important result obtained from our Recurrent Neural Network part of
the system. Using the parameters learnt by the model, converted MGCs are the predicted
sequences when we query the model with a source speech. Figures 9 and 10 show a comparison
of MGCs obtained from source, target and model output of casual to clear speech conversion.
Converted MGCs take a shape of (MGC Coefficients = 50, sequence length).

Figure 9 Male (top), Female( middle), and Output (bottom) MGCs of the ARCTIC corpus
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Figure 10 Causal (top), Clear (middle), Output (bottom) MGCs of the Causal-to-Clear speech corpus

Although the MGCs are not known to have very meaningful structures in them, we were
surprised to see high energy bands (also referred to as harmonics) which showed matching
shapes across target and output MGCs, acting as an informal validation technique.

Recovered Spectrum

Figures 11 and 12 shows the recovered spectrum of source, target and model output spectra.
From our observations, recovered spectrum was very sensitive to the quality of the converted
MGCs. If the converted MGCs did not closely match the target MGCs or there the model was
trained enough, we observed some frames with abysmal values which affected the overall
synthesis of Speech. For the waveform to be of good quality, our recovered spectrum needs to
be well constructed. Thus, this makes the recovered spectrum to be the metric of utmost
importance after learning curve and regression loss to give us an indication of how well our
model is performing. Recovered Spectrum takes a shape of (Spectral Component = 513,
sequence length).
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Figure 11 Male (top left), Female (top right), and Output (bottom) recovered spectrums from the ARCTIC corpus



Figure 12 Casual (top-left), Clear ( top-right), Output (bottom) recovered spectrums of the Casual-to-Clear speech corpus

Recovered Spectrums can be read from the bottom up: the red areas are high energy values and
the blue areas are low energy values. Red areas indicate that there are spoken words or
utterances at those time steps in the sequence. If we closely observe the top-right and the
bottom Spectrums, we see a striking similarity between the two, but we can also see some
differences as well. For instance, in the male-to-female conversion, the output spectrum does
not have dark red values. This is an ideal output, in practice without having an overfitted model,
we should see some deteriorations in the Output recovered spectrum.

Synthesized Speech

This is the final step where we synthesize speech waveform from the recovered spectrum and
can listen to the sound. This section is kept only to show visually how the produced speech looks
like. Figures 13 and 14 shows the spectrogram of the source, target and converted speech.
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Figure 14 Male (top), Female (middle), Output (bottom) of the synthesized speech of the Clear-to-Casual speech corpus

In the male-to-female conversion, when we heard the Output sound, we observed two things:
First, it closely resembled the female voice and second, it sounded a bit mechanical as compared
to the female target speech. In the very first utterance, the high energy bands are upward facing
in the case of the female target spectrum(middle) and facing downwards in the case of the
Output spectrum(bottom).

In the Casual-to-clear speech conversion, if we observe closely, we can see the time-stretching
in the casual speech spectrum (top) and a crisp high raising bands in the clear speech spectrum
(middle). This difference is because of the vowel space expansion in the case of casual speech



and a clearly spoken sentence in the clear speech. The Output spectrum(bottom) closely
matches with the target spectrum (middle).



5 CONCLUSION

In this study, we were able to establish a workflow for end-to-end speech conversion using Bidirectional
LSTM based RNN architecture. Moreover, we were able to conclude that the use of LSTM and bi-
directionality are a contributing factor when a RNN based approach is used for speech conversion. From
our observations we found that the convergence of Casual to Clear speech conversion was twice as fast
as that of the male to female voice conversion. This could be due to the sequence lengths in the Casual
to Clear speech corpus were shorter.

An important question that still needs to be answered is that we were able to successfully convert one
speech into another only after adding the first energy component from a target MGC instead of the
source MGC itself. This could be a hindrance when we want to predict a sequence from the model learnt
without knowing a priori what the target output looks like.

One of the observations we made, were the Cepstral features required to synthesize the converted
speech were very sensitive to any kind of distortions or noise.



6 FUTURE WORK

This study is a first step towards conversion of Casual speech to Clear speech. In the future, this
Recurrent Neural Network model should be able to convert source speech without knowing the actual
targets. To that end, one possibility is being able to specify by what percentage we want to expand the
casual speech. A generative Bidirectional LSTM based RNN can be useful in that case since we would like
to predict sequences without prior knowledge of what the clear speech sounds like. Comprehensive user
studies are required for evaluation of the converted speech, both subjective and objective evaluations.
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