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Abstract

In situ analysis has been proposed as a promising solution to glean faster insights and reduce the amount of data to storage.
A critical challenge here is that the reduced dataset is typically located on a subset of the nodes and needs to be written out to
storage. Data coupling in multiphysics codes also exhibits a sparse data movement pattern wherein data movement occurs among a
subset of nodes. We evaluate the performance of data movement for sparse data patterns on the IBM Blue Gene/Q supercomputing
system “Mira” and identify performance bottlenecks. We propose a multipath data movement algorithm for sparse data patterns
based on an adaptation of a maximum flow algorithm together with breadth-first search that fully exploits all the underlying data
paths and I/O nodes to improve data movement. We demonstrate the efficacy of our solutions through a set of microbenchmarks
and application benchmarks on Mira scaling up to 131,072 compute cores. The results show that our approach achieves up to 5X
improvement in achievable throughput compared with the default mechanisms.
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1. Introduction

Data-intensive applications generate large volumes of data.
Data storage performance is considered one of the weakest links
in extreme-scale computing. In order to mitigate this I/O bottle-
neck, computational science applications are embracing in situ
analysis and visualization wherein the analysis computation is
performed at simulation time and a reduced dataset instead of
the entire dataset is written out to storage. This approach helps
reduce the amount of data being written to storage and allows
users to glean scientific insights faster. Several in situ analyses,
such as identification of regions of turbulence and query-driven
analysis, produce sparse data, which needs to be written out to
the storage system. Sparse data is characterized by having a
wide distribution of message sizes for I/O across the compute
nodes. In many cases, because of the analyses performed and
the data distribution, a majority of nodes may not have any data
to write out to the storage system. This data movement pattern
is called sparse in contrast to the dense data movement pattern,
where data is evenly distributed among the compute nodes and
data movement is carried out on a majority of compute nodes.

Sparse data is also being generated by multiphysics applica-
tions, where different physics modules are running on disjoint
compute partitions. Each module may write out data at different
frequencies, probably non-overlapping, leading to a situation
where the entire I/O pipeline may not be utilized to write the
data from any single physics module. Furthermore, sparse data
can be seen in communication between data coupling modules
in multiphysics applications when one physics module needs

data from another physics module to complete a computational
task. The data is transferred between these modules through a
single path, even though multiple paths are available for data
transfer.

Since sparse data patterns are of increasing importance for
computational science applications on leadership-class comput-
ers, optimizing and improving sparse data transfers on such sys-
tems are becoming more important.

In order to support higher bandwidth and to lower the mes-
saging latency, interconnects in supercomputers are becoming
more complex in terms of topology as well as routing policies.
Currently various types of interconnect networks exist, such as
the 3D torus in Cray XE6, 5D torus in Blue Gene/Q, 6D torus
in K-machine, and Dragonfly in Cray XE30. Leveraging all the
available network paths is key to improved performance. Such
network paths are not always fully exploited, however, because
of application communication patterns and underlying routing
policies. Current interconnects for supercomputers route a mes-
sage along a single path. Different messages may have different
paths depending on adaptive routing policies. Adaptive rout-
ing gives several options to route data, resulting in only sev-
eral paths to be selected. This is reasonable due to complex-
ity of interconnect networks at scale under the assumption that
all nodes carry on communication at a time. However, at user
space, this leads to new opportunities for parallelizing message
transfer and multi-path data movement for sparse data move-
ment patterns.

In this paper, we propose a multipath data movement ap-
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proach for sparse data patterns. Our approach is novel and prac-
tical in that it uses idle resources for handling sparse data move-
ment through multiple paths. Moreover, it is implementable at
the application level without needing modification of the under-
lying hardware/software infrastructure. To our knowledge, our
work is the first that proposes multipath data movement on the
Blue Gene/Q (BG/Q) supercomputer for sparse data movement.
More specifically, our contributions include the following.

• We adapt a max flow algorithm to find the possible num-
ber of disjoint paths to move data. We then use a breadth-
first search (BFS) to find the paths.

• We realize multipath data movement by introducing in-
termediate nodes onto these paths. This approach over-
comes the single-path data movement approach in the
BG/Q under the current routing policy.

• We leverage routing policies to reduce the number of in-
termediate nodes, in order to minimize overhead incurred
by them.

• In addition to multipath data movement, we implement
pipelined data movement with the Parallel Active Mes-
sage Interface (PAMI) library to further improve the data
movement throughput.

The remainder of the paper is organized as follows. In Sec-
tion 2 we present related work. In Section 3 we describe the
IBM Blue Gene/Q system that we used in our study In Sec-
tion 4 we present our approach for multipaths data movement,
with the details of our algorithms and techniques to realize our
ideas. In Section 5 and Section 6 we demonstrate the efficacy
of our solutions by using sets of microbenchmarks and appli-
cation benchmarks, respectively. In Section 7 we present our
conclusions.

2. Related work

Bandwidth optimization for data movement has been stud-
ied in great detail. To optimize throughput, many researchers
have considered a particular system’s interconnection informa-
tion and application’s communication patterns. Essentially, these
two characteristics can be used to map an application’s pro-
cesses to specific processors so that interprocessor communica-
tion can take advantage of that network to maximize throughput
of data movement.

In an MPI-enabled environment, bandwidth optimization
can be done via mapping the application’s MPI processes to the
system’s processors/cores. In [1], the authors provided a tool
for performing a wide variety of mappings for structured com-
munication patterns. The mappings increased the bandwidth
and reduced the latency and congestion. The tool did not take
sparse communication patterns into account, however, and thus
did not realize that multiple paths could be made available for
data movement.

Kumar and Faraj [2] improved MPI Allreduce collective
communication performance using multiple incoming and out-
going links per node communication on BG/Q. The work fo-
cused on MPI Allreduce collective communication, however,
whereas our work targets sparse data movement among a sub-
set of nodes.

Multipath data movement was established by Khanna et al.
[3] by using intermediate nodes when an explicit path setup
was not provided. This work focused on wide-area networks
(WANs) where the exact network topology is hidden from users.
Accordingly, shared links were identified through real exper-
imental network throughput. In contrast, our work is applied
to the interconnection network and the I/O subsystem of super-
computers where the network topology and associated routing
policies are known a priori and the size of the network is much
larger than that of WANs. Our ideas come from the observation
that compute nodes in the BG/Q system have 10 links for com-
munication but that usually only a single path is used for trans-
ferring data between nodes or between nodes and I/O nodes.

Adaptive routing for network load balancing has been also
studied in [4, 5]. In addition, researchers have investigated
adaptive routing for current supercomputers such as Blue Gene/Q
[6] and Cray Cascade [7]. These studies are for low-level net-
working, however, where they are able to route any packet in
any path. In contrast, our study leverages underlying routing
policies to implement multipath data movement in the user space
where we have more detailed knowledge about the data flows
and the patterns.

In the context of I/O forwarding and staging, many studies
have been done to improve I/O performance. A scalable I/O for-
warding framework for high-performance computing systems
was presented in [8, 9]. The authors in [10, 11] proposed an
augmentation for I/O forwarding and asynchronous data stag-
ing for Blue Gene/P and Blue Gene/Q systems, and the authors
in [12] proposed similar methods for Cray systems. However,
those studies assumed that data is dense and uniformly dis-
tributed.

In our previous works in [13–15] we focused on data move-
ment for relatively dense communication patterns. Our work in
this paper extends our previous work [11] to deal with sparse
data movement patterns and extends our work in [14] by em-
ploying a pipeline technique to reduce overhead and large mem-
ory usage caused by copying and injecting large messages. Our
work also uses PAMI to improve the transfer of small messages.

3. Systems for experiments

In this section, we describe the supercomputing systems
in which we developed multipath sparse data movement algo-
rithms and conducted our experiments. The Argonne Leader-
ship Computing Facility (ALCF) maintains several compute-
analysis systems used by the scientific community. Figure 1
depicts the architecture of the primary ALCF resources, con-
sisting of the Blue Gene/Q compute cluster (Mira), the data
analysis cluster (Tukey), and the file server nodes.

Mira [6], with 48 compute racks (48K nodes and 768K
cores) at the ALCF, provides 10 PFlops theoretical peak perfor-
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Figure 1: The ALCF maintains the 768K core Blue Gene/Q compute cluster
(Mira), data analysis cluster (Tukey), and file server nodes.

mance. Each node has a 16-core, 64-bit PowerPC A2 processor,
together with 32 KB cached L1, 32 MB cache L2, and 16 GB
of memory.

The I/O and interprocess communications of Blue Gene/Q
travel on a 5D torus network both for point-to-point and for col-
lective communications. This 5D torus interconnects a compute
node with its 10 neighbors at 2 GB/s theoretical peak over each
link in each direction, making a total of 40 GB/s bandwidth in
both directions for a single compute node. Because of packet
and protocol overheads, however, only up to 90% of the raw
data rate (1.8 GB/s) is available for user data. The machine can
be partitioned into non-overlapping rectangular submachines;
these submachines do not interfere with each other except for
I/O nodes and the corresponding storage system.

For interconnect network traffic, BG/Q supports both de-
terministic and dynamic routing [6]. In deterministic routing,
packets are routed based on dimension-ordered routing, from
the longest first to the shortest last. In dynamic routing, routing
is still dimension-ordered, but it is programmable, enabling dif-
ferent routing algorithms to be used. This approach is called
“zone routing.” There are four zone ids, from 0 to 3. The
routing algorithm selects a zone id based on the flexibility met-
ric and message size. The flexibility value is computed based
on the torus size and hop distance between two nodes doing
communication. The selection of the zone id given the val-
ues is experiment-based and is hard coded in the low-level li-
brary [16]. Routing zone id 0 is longest-to-shortest routing;
however, dimensions with the same lengths can be chosen ran-
domly. Routing zone id 1 is unrestricted routing, in which
packets are routed in a random order. Routing zone ids 2 and
3 are deterministic routing. For these two routing zone ids,
given the size of a certain message, routing is always the same,
and its path is known before it is routed. These are the de-
fault routing algorithms and cannot be changed during run time.
However, one can set which routing zone id to use by using
the PAMI ROUTING environment variable. Since BG/Q uses
single-path data routing, for sending/receiving a message only
one link of the ten available is used; hence, there is one recep-
tion FIFO at the receiver. In addition, for point-to-point com-

munication, the number of hops between two nodes has negli-
gible effect on performance.

On Mira, the compute nodes connect to an analysis clus-
ter and file servers through I/O nodes and the QDR IB Switch
Complex. Every 128 compute nodes (forming a pset) have two
bridge nodes; two nodes in the pset have an additional func-
tionality of a bridge node. Each bridge node has an 11th 2
GB/s bandwidth link connecting to an I/O node, making total
4 GB/s bandwidth for I/O per pset. I/O traffic is routed from
the compute nodes to the bridge nodes over the torus network
deterministically and then traverses over the 11th links from the
bridge nodes to the I/O nodes.

PAMI is a low-level communication library for BG/Q [? ].
PAMI provides low-overhead communication by using various
techniques such as accelerating communication using threads,
scalable atomic primitives, and lockless algorithms to increase
the messaging rate. Since MPI is implemented on top of PAMI,
direct use of PAMI would provide higher messaging rates as
well as lower latencies in comparison with MPI.

4. Approach

In this section, we present our multipath approach for sparse
data movement in the leadership systems. We are able to use
multiple paths for data movement through intermediate nodes
called proxies while conforming to default routing policy en-
forced by the underlying infrastructure. We find multiple paths
by adapting the maximum flow algorithm on the graph repre-
senting an interconnect network. We then improve performance
by implementing pipeline techniques and using the PAMI low-
level communication library.

We start by describing the inefficiencies of sparse data move-
ment in the current systems. To overcome such inefficiencies,
we propose novel approaches based on multipaths for sparse
data movement.

4.1. Inefficiency in current data movement

For data transfer between compute nodes on BG/Q, a mes-
sage traverses from a source to a destination node using a sin-
gle path. In the absence of congestion and network failures, the
default routing algorithm forces the message to traverse a de-
terministic single path. Figure 2(a) depicts the single-path data
movement, in which one path is used while the other paths are
idle. With dense, uniform data movement patterns where the
majority of nodes and network links involve communications,
the utilization of system resources is high. With sparse data
movement patterns, however, only specific regions of the sys-
tem involve communications, resulting in a low utilization of
the allocated resources.

Similarly, I/O messages (e.g., writes) from a compute node
travel along a single path to a default I/O node, as shown in Fig-
ure 2(b). When the writes have a uniform distribution of data
size and location, I/O nodes allocated for applications are used
efficiently. With sparse data movements, however, I/O nodes
and interconnect networks suffer from an unbalanced load. Cur-
rent MPI-IO aggregates data into intermediate nodes, but these
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nodes are neither uniformly distributed nor balanced among all
I/O nodes.

We next present a general approach to improve resource uti-
lization for data movement. We then present our approach for
sparse data movements.

4.2. Data movement using multiple paths

One way to improve the utilization is to employ multiple
paths. We can assign multiple routing paths for multiple mes-
sages from a node. Theoretically, multiple messages would
concurrently follow multiple non-overlapping paths, and the
data movement therefore would achieve multifold improvement.
At the programming level, however, the BG/Q supercomputer
does not allow paths for messages to be set up explicitly. Never-
theless, we can still implement concurrent data movements via
multiple paths in user space by using proxies while following
disclosed default routing policies. Doing so greatly simplifies
the deployment of our heuristics and provides us with valuable
validation and feedback for our approaches.
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Figure 2: Data transfer with and without proxies

To route data using multiple paths on a single-path-allowed
system, we introduce intermediate nodes that are also compute
nodes running the application and routing data at the same time.
Following the default routing policy, we first route data from
sources to the intermediate nodes and then from intermediate
nodes to destinations. As shown in Figure 2(c), by adding in-
termediate nodes, we make sure that we use as many I/O nodes
as possible. Currently our routing function on the intermediate
nodes causes overhead. We expect, however, that future sys-
tems will provide the functionality on nodes needed to achieve

higher data movement throughput. Knowing the routing pol-
icy, we should choose the locations of intermediate nodes to
minimize the shared links and therefore maximize the through-
put of data movement. Similarly, in Figure 2(d), by adding the
intermediate nodes, we can increase the number of I/O nodes
and accordingly balance I/O workload. Clearly, using multiple
paths in sparse data movement is critical for utilizing resources
efficiently and subsequently for improving performance.

In the following sections, we describe our approach and as-
sociated techniques in detail.

4.3. Multipath computation algorithms
We model our data movement problem as a multipath com-

putation problem when the interconnect network is given as
a directed graph where vertices represent compute nodes and
edges represent links connecting compute nodes. The band-
width on each link is the capacity of the corresponding edge.
On BG/Q where the compute nodes are allocated in a contigu-
ous block, we can easily create a directed graph model for the
allocated partition.

The model can have single or multiple sources and destina-
tions. If more than one node is acting as source nodes and/or
destination nodes, we create a logical source and/or a logical
destination node and connect the logical node with real ones
using logical links with infinite capacity. Our goal is to find
disjoint paths that connect sources to destinations, yielding the
highest possible throughput. To find such disjoint paths result-
ing in maximum flow, we use the Ford-Fulkerson algorithm
[17] extended with a breadth-first search (BFS). The algorithm
is employed due to its simplicity and low runtime. The algo-
rithm has the runtime O(|V |2 ∗ |E|), with |V | being the number
of vertices and |E| being the number of edges. The runtime
of the algorithm scales well with interconnect networks of su-
percomputers where |E| >> |V |. Other algorithms can also be
employed to find disjoint paths such as one in [18].

In our work, we assume that the size of the data at the nodes
that needs to be transferred out is approximately the same. Data
has the same priority across all the nodes. The network is clean,
so the capacity on each edge is entirely dedicated to our data
movements.

Our implementation of the Ford-Fulkerson algorithm is as
follows. We create a residual graph with full capacity and up-
date it as we traverse the graph to find a path from a source node
to a destination node. We use BFS to travel on the graph. We
start at the source node and expand unvisited neighbors along
each outgoing edge with positive capacities. The neighbors are
then added to a queue and marked visited. As we travel, we
record the previous node of each visited node. We continue the
process until we reach the destination. As soon as we reach the
destination, we traverse back to the source and update the resid-
ual graph. We continue the process until there is no path to go
from source to destination with positive capacity.

Our modified Ford-Fulkerson algorithm produces the maxi-
mum flow together with paths that achieved that maximum flow.
From the result, we know at most how many paths a source may
have. We assign paths to each source node in an incremental
way, as described in Algorithm 1.
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Algorithm 1 Multipath computation algorithm
Use Ford-Fulkerson to find total number of disjoint paths P.
for int i = 0; i < P; i++ do

for each s in set of sources S do
Find a path to one of its destinations, using BFS.
When reaching its destination, go back and update the
residual graph.
Save the path for later transfers.

end for
end for

In this algorithm, we iterate through the set of source nodes.
For each source node, we find a path from source to destination
and update the residual graph. We repeat the process until we
run out of paths. In this way, paths are given in the increas-
ing order of paths to the sources iteratively. By doing so, both
short paths and long paths are distributed among the sources.
Some sources may have more paths or have longer paths. Bal-
ancing between sources will be considered in future work. In
a dense data movement pattern, there is usually one path for a
source, but for a sparse data movement, multiple paths can be
found. For symmetric data movement where all nodes move
data in the same way, we can always find the maximum number
of paths. However, if the data movement paths at source nodes
are not the same, it may not return the maximum number of
paths, resulting in less than maximum flow, but multiple paths
can still be found.

The modified Ford-Fulkerson algorithm produces the max-
imum flow between two groups of nodes, as well as arbitrary
paths resulting in maximum flow. However, these paths do not
conform with default routing policies implemented in super-
computers. Therefore, to use the paths, we need to adjust the
flow at every vertex on the paths; that is, we need to send data
from one vertex to another one, make a copy, and send it to
the next vertex on the paths. This implementation slows the
data movement rather than speeding it. With a certain num-
ber of proxies introduced the performance gained is lower than
the single-path data movement performance. Therefore, the
number of paths as well as number of proxies is important in
multiple-paths data movement.

4.4. Leveraging routing policies to reduce number of proxies
To route data between nodes in BG/Q, we use a default rout-

ing policy. On multiple paths we found that if the data move-
ment between any two nodes on the path conforms with the
default routing policies, we can remove nodes between the two
nodes. By doing so, we can still guarantee that data is moved
along the desired path while reducing the number of proxies
introduced, therefore increasing the performance. Our goal is
to find as many subpaths as possible that conform with the de-
fault routing paths, thereby minimizing the number of proxies.
To this end, we introduce routing rules into the maximum flow
algorithm that we use.

In our algorithm, to go from a source node to a destination
node, we explore unvisited neighbors and add them to a queue.
As we explore and add next vertices in arbitrary order, the paths

produced are also arbitrary. To make them conform with default
routing policies, we use the routing policies to control the or-
der in which we add the neighbors into the queue. Besides the
constraint of routing, we also have another constraint for the
number of proxies used along a path. As the number of proxies
increases to certain number the discovering path degrades the
performance, therefore being no longer useful. We need to dis-
card the path to find a new one. In the following, we explain
how to leverage routing policies on BG/Q.

In the Blue Gene/Q system, data is routed by the longest-
dimension first and the shortest-dimension last policy. As soon
as a message moves out from a source node, it routes along the
highest dimension; it may need to change dimensions five times
at most. For a message routing along a desired path, whenever
the message routes from a higher to lower dimension, we do
not need a proxy. But if we route a message from lower to
higher dimension, we would need a proxy. We introduce the
routing constraint and number-of-proxies constraint of BG/Q
into breadth-first search as follows:

• The order of edges to add into the queue of BFS is reverse-
of-routing orders. This is to make sure that the lowest-
priority dimension can be discovered first. The lowest-
dimension-first path would need more proxies; being able
to select the next nodes first would reduce the number of
proxies along the path. By doing so, we can balance the
number of proxies among multiple paths.

• If a message travels from an edge to another edge with
lower routing priority, do not use proxies. Whenever a
message travels from an edge to another edge with higher
routing priority, we need to add a proxy (the shared node
between the 2 edges).

• Constraint on total number of proxies: if the number of
proxies used is more than the constraints, no longer ex-
plore that direction.

4.5. Pipeline technique for data movement

Since we have to transfer data from the source node to the
proxies first, and then from the proxies to the destination, we
need to store data at a proxy. If we store the entire message at
the proxy, it takes time to wait until the entire message arrives
and then start injecting the message into the network to the next
proxy. To reduce the time to wait, we split the message into
smaller messages and transfer the messages using a pipeline
such that storing messages and sending messages at a proxy
can run concurrently.

For each proxy, requests to wait for data are posted at the
beginning. After that, the proxy needs to iterate through the list
of requests while checking whether data is ready to forward. To
implement the pipeline, we create two threads at each proxy:
one thread for receiving data and the other for forwarding data.
A message is split into smaller messages with a certain size
called the window size. The size of the window depends on the
message size and is determined based on experiments. Within
each message we embed the information of how data will be
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processed at the next node such as destination, address of the
message in the destination’s buffer, and the path Id that the next
node should use to forward the message. The pipeline tech-
nique can be used in any system and yields significant improve-
ment as we show in Section 5. With small messages, however,
we still suffer performance degradation. The reason is that the
control overhead in small messages is significantly large com-
pared with the message size itself. Using low-level commu-
nication libraries can help reduce the control overheads. On
BG/Q, PAMI is a low-level library for communication that im-
proves the transfer of small messages. In the next subsection,
we present our work of using PAMI on BG/Q to improve data
movement throughput.

4.6. Improving data movement performance using PAMI
PAMI supports both one-sided and two-sided communica-

tion. It supports both small immediate communication and ren-
dezvous large-message communication. In our study, we use
one-sided communication for messages transfer and immedi-
ate send for control data. In sending and receiving data events,
PAMI supports a callback function to let a sender and receiver
know whether the event of sending/receiving has been done at
either side.

Source Proxy Destination

main thread comm thread

PAMI_Put

PAMI_Put

PAMI_Put

Put done

PAMI_Send
_immediate

comm threadmain thread

Copy 
control 
data

PAMI_Put

PAMI_Put

PAMI_Put

main thread comm thread

Figure 3: Using pipelining technique with PAMI to eliminate the waiting time
at proxy and reduce control overheads

As depicted in 3, in the main thread of the source, we keep
transferring data to windows of its proxies using PAMI Put. Its
comm thread running on the background is notified whenever
the data is completely put on a proxy’s side. The comm thread
then uses PAMI Send immediate to let the proxy know that the
data is ready. It also sends the control data of where and how
to process the data with the PAMI Send immediate. Each proxy
needs to set up a callback function to process the control data
sent to it. The callback function copies control data to a queue
and informs the main thread. The main thread at each proxy
plays the same role as the main thread of the source node. The
size of the window for each message size is also determined
empirically.

Our approach is implemented at user space, on top of sys-
tem’s routing algorithms. It takes advantage of routing algo-

rithms provided by the system and other provided mechanisms
such as fault tolerant and thus relies on the system to provide
stability or to reroute messages if errors occur.

In the next section, we present the efficacy of our solution
on Mira through a set of microbenchmarks.

5. Microbenchmarks

In this section, we elucidate the efficacy of our approaches
using a set of microbenchmarks. We introduce proxy nodes to
implement multiple paths for data movement in the user space.
By doing so, we introduce extra processing time at the prox-
ies to receive, buffer, and forward the data. We can mitigate
the effect of this at the proxies by using a pipelining mecha-
nism to overlap these stages; and we further improve the per-
formance by overcoming the overhead in MPI’s data move-
ment by leveraging PAMI, the lower-level BG/Q messaging
layer. In the following subsections we show that we can achieve
close to peak achievable bandwidth when transferring data be-
tween two nodes, with data being forwarded by using an in-
termediate node. For most of the experiments below, we used
MPI Put/PAMI Put (one-sided communication) to transfer data
with 1 MPI/PAMI rank per node. For each data transfer we vary
the data size in powers of 2. Each experiment was repeated 20
times, and the average of the results are reported. We start with
benchmarks showing the efficacy of pipeline technique using
MPI.

5.1. Efficacy of proxies and pipeline technique

In this microbenchmark we transfer data between two nodes
through an intermediate nodes using pipelining, and we com-
pare results with transferring data without using the pipeline
and with a direct transfer (default) scheme. We varied the data
size from 1K to 128 MB.
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Figure 4: Using pipelining technique to mitigate the waiting time at proxy
nodes

Figure 4 shows that transferring data through a proxy with-
out using pipelining results in a 50% hit in performance over a
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direct transfer. The reason is that the proxy needs to wait un-
til all the data is ready before forwarding it to the destination.
By using pipelining, for a message less than 64 KB, pipelin-
ing does not improve performance; however, for a message size
larger than 64 KB, pipelining demonstrates an improved per-
formance. At a message size of 1 MB, 2 MB, and 4 MB, we
achieve 70%, 80%, and 90%, respectively, of the direct trans-
fer bandwidth; and with larger messages, we achieved a sim-
ilar performance. Thus, with large messages, the pipelining
technique can be used to transfer data through proxies. With
small messages, however, the performance gained is insignifi-
cant. Much of the performance overhead is due to the under-
lying rendezvous protocol design in MPI on BG/Q. In the next
subsection, we show the efficacy of using PAMI on transferring
small messages.

5.2. Efficacy of PAMI on multiple paths data movement

In this subsection, we demonstrate that with the optimal
window size for pipelining and PAMI we can gain near-maximum
performance by direct transfer.
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Figure 5: Using PAMI with pipeline technique to mitigate the waiting time at
proxy and reduce overheads

In this experiment, we transfer data from a source node to a
destination node through a proxy with pipelining and use PAMI
with 1 proxy compared with the previous approach using MPI.
We use PAMI Put to transfer data and PAMI Send immediate
to transfer control information. We vary the data size from 1
KB to 128 MB. The results are shown in Fig. 5.

As the figure shows, for message sizes less than 16 KB, us-
ing PAMI and pipeline results in a better throughput than does
direct transfer using MPI. The reason is that PAMI has less con-
trol overhead than does MPI. With messages having sizes from
32 KB to 2 MB, our solution’s throughput is close to direct
transfer using MPI. With messages larger than 2 MB, the per-
formance is similar to that with MPI and achieves the maximum
of 1.7 GB/s that one can achieve using a single link/route on
BG/Q. Thus, using pipelining together with PAMI is an attrac-
tive alternative for data movement using a proxy node.

So far, we have demonstrated that with a pipeline technique
and PAMI we can gain near-maximum throughput for a single
path. Next, we evaluate the efficacy of using multiple paths for
data movement between a source and a destination. In this ex-
periment, we use a partition of 512 nodes on BG/Q and transfer
data between two nodes. With this allocation (and larger ones)
we start to see the benefit of a full torus on all dimensions where
each node has 9 neighbors (10th link is on the same node).
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Figure 6: Using 9 paths to transfer data between two nodes

In our experiment, we increase the number of paths used
for transferring data from one path to nine paths as we vary the
message size from 1 KB to 128 MB split equally among all
paths. As Fig. 6 shows, by exploiting all 9 links to transfer
data we achieve a throughput of 12 GB/s or 80% of 15.3 GB/s
max achievable throughput per transfer by exploiting all nine
links. For messages larger than 32 KB, we increase the number
of paths, the performance increases linearly from 2× to 7.8×
over the default direct transfer used by MPI. We can also see
that with small messages, using all nine paths actually degrades
performance because of the control overhead. The number of
paths should be chosen according to message size: that is, if the
message size is less than 4 KB, we need a single path; between
4 KB and 16 KB we need two paths; between 16 KB and 32
KB we need three paths; and so on. Thus, depending on the
message size, we should choose an appropriate number of paths
to achieve the best performance.

The microbenchmarks show that using multiple paths for
data movement with pipelining and PAMI can achieve signif-
icant improvement on BG/Q. To achieve the best performance
(i.e., highest throughput), we need to dynamically choose sev-
eral factors, including the optimal window size and the number
of paths; and we need to adjust the size of data for each path
since some paths are longer with more proxies than others. The
microbenchmarks also show that the performance gained would
suffer significantly when the number of proxies increases. In
the next section, we show how our solution effectively lever-
ages routing policies in order to reduce the number of proxies
needed and thereby increase total performance.
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5.3. Efficacy of leveraging routing policy on performance
In this experiment, we use nine paths to transfer data from

a source node to a destination node. The number of proxies in
between the 2 nodes on different paths varies from one to four.
By applying our algorithm for leveraging routing policies we
can reduce the number of proxies on the longest paths to three.
The performance results are shown in Fig. 7.
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Figure 7: Leveraging of the routing policy to reduce number of proxies intro-
duced

The performance gained is modest, only ∼10% for medium-
sized messages. This is due to the small number of proxies re-
moved in comparison with number of proxies remaining. For
small messages, control overhead dominates and cancels the
improvement. With large messages, the time to transfer the ac-
tual data makes the improvement negligible. In certain cases
where longer paths exist, however, we believe that performance
gains can be improved further with this scheme.

5.4. Optimization of window size
To use pipeline efficiently, we need to determine optimal

size of transfer window for pipelining for each message size;
A single message is split into a number of transfers. Figure 8
depicts the effect of transfer sizes on data movement. In this
experiment, we vary the message size from 16 KB to 32 MB
and the transfer size from 512 bytes up to 2 MB or the mes-
sage size if the message size is less than 2 MB. We increase the
transfer size and message size twice after each step. We transfer
the data using PAMI Put from the source node to a proxy node
and then to a destination node in a partition of 32 nodes, using
only one process per node. These nodes were 2 hops away from
each other, but a different selection of nodes would produce the
same results. The results are shown in Fig. 8

We can see that for messages with size less than 16 KB,
direct transfer results in better throughput. The reason is that
control overhead is higher when transferring a few small mes-
sages instead of transferring a single message. With messages
with size 16 KB or larger, the pipeline technique results in bet-
ter performance with an optimal transfer size. Depending on
message size the optimal size varies; that is, to transfer a 2 MB
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Figure 8: Window size and performance when using PAMI

message, a transfer size of 128 KB results in the best through-
put. From the figure we also see that if we choose a nonop-
timal transfer size, the performance drops significantly. Thus,
the transfer size for pipelining is critical in order to achieve the
highest bandwidth in multipath data movement.

5.5. Efficacy of multipath data movement between two groups
of nodes

In this subsection, we show the efficacy of our solution in
moving data between two groups of nodes in Mira. This is typ-
ically the case for coupling the data between multiple physics
modules.

In BG/Q compute nodes are allocated as a contiguous block.
In this experiment, we transfer data from a contiguous block of
64 nodes to another contiguous block of 64 nodes in a 512-node
partition using multiple paths and a single path with MPI Put.
We use one process per node, and each node from the source
block transfers a message to its corresponding node in destina-
tion block in a symmetric way. We vary the message size from
1 KB up to 128 MB. The results are shown on Fig. 9

With the data movement requirement, the Ford-Fulkerson
algorithm returned maximum flow with at most three paths per
node. As the figure shows, with a message size more than 2 MB
we can achieve 4.7 GB/s or almost 3× better than single-path
data movement. This result shows that our solution can work
well for data movement between two blocks of nodes when the
data movement paths are symmetric.

6. Synthetic and application I/O benchmarks

In this section, we demonstrate the efficacy of our approaches
using a set of synthetic benchmarks and application-level bench-
marks.

6.1. Synthetic benchmarks

We perform a weak-scaling study with two sparse data pat-
terns, and we scale the number of cores from 2,048 to 131,072
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Figure 9: Data movement throughput between two groups of 64 nodes each in
a 512-node partition on Mira

cores on the Mira BG/Q system. We use a synthetic I/O bench-
mark wherein the I/O distribution has the following patterns:

• Pattern 1: Uniform distribution of data, where the data
size of an MPI rank is uniformly distributed between 0
and 8 MB. Data is generated by using the srand() and
rand() functions in C/C++ and using the time(NULL) as
a seed. The total data size is about 50% of the dense data
size. The distribution of the data is shown in Fig. 10

• Pattern 2: Pareto distribution of data, where most of the
MPI ranks have a data size of 0 bytes or very small size,
and a few of MPI ranks have a data size of approximately
8 MB. The total data size written out is about 20% of the
dense pattern size. The distribution of the data is shown
in Fig. 11

Pattern 1 is typical of applying an analysis to the entire
dataset; depending on the result of the analysis, we might have
sparse patterns across the entire volume.
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Figure 10: Pattern 1: Histogram of data sizes for 1,024 processes using the
time(NULL) function with size from 0 to 8 MB

Pattern 2, on the other hand, represents an in situ analysis
applied to a region of interest, such as a region of turbulence,
that spans a small subset of MPI ranks and needs to be written
out to storage.
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Figure 11: Pattern 2: Histogram of data sizes of 1,024 processes using Pareto
distribution function with size from 0 B to 8 MB

On BG/Q, I/O data is routed from the compute nodes to the
I/O nodes through a set of special compute nodes called bridge
nodes. In this benchmark, we use our multipath data movement
heuristic to transfer data along multiple paths from the com-
pute nodes to the bridge nodes and then write this data out. We
perform two experiments. First, we write the data to /dev/null
on the I/O nodes so as to mitigate the effects of the storage
systems and understand the efficacy of our data movement al-
gorithm. Next, we write the data out to the GPFS parallel file
system to get the overall end-to-end I/O performance. In the
benchmark, we use the two sparse data patterns. For Pattern 1,
we select 10% of the nodes to write data out, while the other
nodes do not write out any data. For Pattern 2, every node has
data, but the data size varies: some nodes have a lot more data
than other. On Pattern 1, we write roughly 8 GB at 2,048 cores
and 274 GB of data at 131,072 cores. On Pattern 2, we write
3.4 GB at 2,048 cores and 119 GB of data at 131,072 cores. We
compare the performance of performing I/O for the two data
patterns using our approach and default MPI collective I/O.

Figure 12 depicts the performance of our topology-aware
multipath data movement approach in comparison with the de-
fault MPI-I/O for the two sparse data patterns as we scale from
2,048 cores to 131,072 cores on the Mira BG/Q system. On Pat-
tern 1 (uniformly distributed data), we observe a 2× improve-
ment at 2,048 cores. The performance increases as we scale,
and we achieve up to 3× at 131,072 cores. On Pattern 2 (Pareto
distributed data), we gain 1.5× improvement at 2,048 cores and
2× improvement at 131,072 cores. In the default MPI collec-
tive I/O case, the data movement uses a single deterministic
path from the compute node to the bridge node and is unable
to fully exploit all the available paths in the 5D torus of BG/Q
for sparse data. Thus, we observe that leveraging network inter-
connect topology and multiple paths plays an important role at
small scale and is critical at large scale. With the increased use
of in situ analysis for supercomputing, sparse data patterns for
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Figure 12: Efficacy of the approaches to move the data to /dev/null on the I/O
nodes

I/O are becoming increasingly important, and our approaches
help provide more insights for improved performance.

Figure 13 depicts the end-to-end performance of our topology-
aware multipath data movement approach in comparison to the
default MPI-I/O for the two sparse data patterns as we scale
from 2,048 cores to 131,072 cores on the Mira BG/Q system to
write this data out to the GPFS storage system. For both pat-
terns, we observe a 2× improvement in performance at lower
core counts and up to 5× improvement as we scale to larger core
counts to 128K cores. This is primarily due to the fact that our
multi-path fully exploits all the available network paths to the
I/O nodes and hence the storage systems for sparse data move-
ment wherein multiple resources are potentially idle as in the
case of the default MPI-I/O; data is routed along a determinis-
tic single path. Thus, we observe the benefits of our approaches
at scale for end-to-end data movement to the storage system.
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Figure 13: End-to-end I/O throughput to the Mira GPFS parallel filesystem for
the sparse patterns

6.2. HACC I/O Application Benchmark

HACC (Hardware/Hybrid Accelerated Cosmology Code) [19]
is a large-scale cosmology code suite that simulates the evolu-
tion of the universe through the first 13 billion years after the
Big Bang. The simulation tracks the movement of trillions of
particles as they collide and interact with each other, forming
structures that transform into galaxies. During runtime, HACC
writes data periodically to the storage system both for check-
points and for I/O of the in situ analysis performed at simula-
tion time. In this benchmark, we use HACC I/O, an I/O bench-
mark written to evaluate the performance of the I/O system for
HACC. We first evaluate the data movement performance from
compute nodes to I/O nodes by writing to /dev/null. Next, we
compare the end-to-end throughput of our mechanisms to de-
fault MPI collective I/O on HACC I/O to write the data to the
GPFS parallel filesystem of Mira. In this experiment, we scale
our experiments from 2,048 up to 131,072 compute cores to
simulate the collision of 7683 to 2, 8163 particles. We write
only 10% of the generated data, which varies from 2 GB to 85
GB. The data is written from processes with MPI ranks within
the range [4*num processes/10, 5*num processes/10], with the
num processes being the total number of MPI ranks in our ap-
plication. We collect the bandwidth information and report the
average of 10 runs. Figure 14 depicts the achievable perfor-
mance of writing the data to the GPFS parallel filesystem on
Mira.

From the figure we observe an overall improvement of 50%
throughput improvement for I/O. On GPFS, the locking over-
head of the filesystem limits the achievable performance of a
single shared file I/O. However, our multipath algorithm im-
proves the overall data movement performance to the I/O node
and hence improves the end-to-end performance. As a result of
the in situ analysis, applications will tend to perform more I/O
operations with significantly reduced data sizes. Thus multipath
data movement will be of paramount importance for sparse I/O.
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7. Conclusion

In this paper, we present our solution of using multipath
data movement on leadership-class computer systems to im-
prove the performance of sparse data movement. We present
our graph models for different interconnect networks. We then
use and enhanced Ford-Fulkerson algorithm to find the maxi-
mum flow and multiple paths, in order to gain the maximum
flow in transferring data between two nodes or two groups of
nodes. The data movement throughput is then improved further
with pipelining techniques and using PAMI. We demonstrate
the efficacy of our solutions through a set of microbenchmarks
and application benchmarks. On the Mira Blue Gene/Q sys-
tem, we achieve up to 5× improvement in performance for data
movement using our approach for sparse data patterns.
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