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Abstract 
 

TeraScope is a framework and a suite of tools for interactively 
browsing and visualizing large terascale data sets. Unique to TeraScope 
is its utilization of the Optiputer paradigm to treat distributed computer 
clusters as a single giant computer, where the dedicated optical 
networks that connect the clusters serve as the computer’s system bus. 
TeraScope explores one aspect of the Optiputer architecture by 
employing a distributed pool of memory, called LambdaRAM, that 
serves as a massive data cache for supporting parallel data mining and 
visualization algorithms.  

 

1 Introduction 
Areas of research such as Geoscience, Astronomy, and High Energy Physics are routinely producing 
terabytes, and soon, petabytes of data from direct data gathering, data post processing, and simulations. 
Algorithmic detection of hidden patterns within these large data sets has been the focus of data mining [6]. 
Visualization used in this context (often referred to as Visual Data Mining) has been valuable as a way to 
verify the detected patterns; and in particular, for when algorithmic specifications of the patterns are 
difficult to derive [2, 3, 8, 9, 10, 15]. In the latter case user-interfaces that allow one to interactively browse, 
query and visualize enormous data sets need to be developed. 
 
The work described in this paper is motivated by several emerging trends. Firstly scientific databases are 
becoming highly distributed. Secondly the cost of high speed networking is increasing at a rate far 
exceeding Moore’s Law- network bandwidth is doubling every 8 months whereas processors are doubling 
in speed every 18 to 24 months. This means that computers, rather than the networks are the bottleneck. 
Thirdly there is an increasing need and potential, facilitated by these high speed networks, for scientists to 
publish terabyte data sets on the Web in a manner similar to the way most netizens can create Web pages, 
so that researchers can make new discoveries by combining data from previously disparate disciplines. For 
example by correlating data from the World Health Organization with data from the National Center for 
Atmospheric Research, one could potentially understand how weather patterns influence the spread of 
diseases. 
 
The Optiputer is a National Science Foundation funded project intended to exploit these trends by 
interconnecting distributed storage, computation, and visualization resources using extremely high speed 
photonic networks[13]. The important difference between this and classical Grid computing is that in this 
new model, the optical networks serve as the system bus for a potentially planetary-scale computer; and 
compute clusters taken as a whole, serve as the peripherals in the computer. For example, a cluster of 
computers with high performance graphics cards would be thought of as a single giant graphics card in this 
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context. In the Optiputer concept, we refer to compute clusters as LambdaNodes to denote the fact that they 
are connected by multiples of light paths (often referred to as Lambdas) in an optical network. Each 
computer in a LambdaNode is referred to as a nodule, and collections of LambdaNodes form a 
LambdaGrid.  
 
TeraScope is an experimental visual data mining toolkit intended to take advantage of the Optiputer 
paradigm. This paper describes the prototype that was developed and demonstrated at the IGrid 2002 
conference in Amsterdam (www.igrid2002.org). Furthermore, this paper describes LambdaRAM, a high 
performance cache, for the Optiputer.  

2 TeraScope 
The vision for TeraScope is to provide a way to fluidly work with massive data sets as interactively as one 
would work with a spreadsheet on a laptop. The goal is not necessarily to massively parallelize 
visualization algorithms so that a terabyte of points can be plotted. The goal is to use parallel algorithms to 
process terabyte data sets to produce visual summaries (which we call TeraMaps) to help the user locate 
regions that are most interesting to them. Once the area of interest has been identified, modest visualization 
algorithms can be used to depict the derived subset of the data (which we call TeraSnaps). TeraScope has 
three goals: 1. to develop a software architecture that will allow a variety of data mining algorithms to be 
easily integrated into the Optiputer framework; 2. to develop ways to create meaningful TeraMaps; 3. to 
provide browsing interfaces and 2D and 3D visualization tools that are intimately connected to data mining 
algorithms. 
 
Before we can begin describing the software architecture of TeraScope, we must first explain the Optiputer 
hardware framework that is currently driving TeraScope. 

2.1 The Hardware Architecture 
Figure 1A depicts a typical architecture for a 
modern day PC. Highlighted in yellow are the 
caches that are a routine part of the 
components of the architecture. For example, 
the graphics card has onboard fast graphics 
RAM, the CPU has L1/L2/L3 caches, and so 
on. Data from the disk are transferred to the 
CPU via the PCI bus, whereas data from the 
CPU is transferred to the graphics card via 
AGP. Figure 1B shows one possible 
configuration of the Optiputer mimicking the 
standard PC architecture except using clusters 
of computers, optical switches, and multi-
gigabit network connections. A similar 
configuration to this was used for IGrid, 
although this particular layout is our present 
configuration. Illustrated are three classes of 
LambdaNodes. All the LambdaNodes are 
connected using gigabit network interface 
adapters. The LambdaDataNode is primarily a 
cluster with large RAIDed disks. The 
LambdaComputeNode is a cluster with large 
amounts of physical memory and multiple 
CPUs. The LambdaVisualizationNode is a 
cluster with high-end commodity graphics 
cards (such as the Nvidia Geforce 4 Ti).  All 
network links are presently 1 Gb/s except for 
the link from Amsterdam to StarLight (at 
10Gb/s). 

Disk 

CPU

Graphics 
Card 

RAM

I/O 
Controller Hub 

Memory
Controller Hub 

Primary /
Secondary 

cache

Disk
cache

Graphics 
RAM 

 

AGP 

PCI 

Chicago Amsterdam
(SARA) 

Chicago
(LAC) 

StarLightλDataNode

Chicago 
(StarLight) 

Chicago 
(EVL) 

Chicago 

λComputeNode

λVizNodeOmninet

λRAM

λDataNode

10Gb/s 

(A) 

(B) 

Figure 1. Comparison of a modern CPU 
architecture with one possible configuration of 
the Optiputer. 
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Starlight is a project managed by the University of Illinois at Chicago, to provide an IP-over-Dense Wave 
Division Multiplexing (DWDM) peering point for national and international optical networks. The goal is 
to develop a “petri dish” for growing an experimental, photonic Grid whereby clusters of computing 
resources can directly “dial-up” lambdas between them and use the extreme quantities of bandwidth (on the 
order of 1-10 Gigabits/s) as a long distance system bus [18]. OMNInet is a project operated by 
Northwestern University and supported by Nortel Networks, SBC Communications Inc. and Ameritech to 
assess and validate next-generation photonic technologies, architectures and applications in metropolitan 
area networks [19]. In our present testbed EVL’s clusters connect to OMNInet, which peers with Starlight 
to reach Amsterdam. 
 
Just as the L1/L2/L3 caches in a CPU are used to overcome the slow data rates and high latencies between 
RAM and the CPU; in the Optiputer, LambdaRAM performs the same functions for metropolitan and 
international networks. In the illustrated prototype only a single LambdaRAM cache was implemented as 
the task (described below) was more computationally intensive than visualization intensive.  
 
The LambdaDataNodes consist of LAC’s Project Data Space clusters. Project Data Space’s goal is to 
provide the software infrastructure to allow researchers to publish data on the Web in the same way they 
would publish documents [5]. Project Data Space’s transport protocol (DSTP) is analogous to HTTP for the 
Web[1]. Data retrieved from DSTP servers are streamed at the maximum capacity of the network using an 
aggressive data transmission scheme called SABUL (Simple Available Bandwidth Utilization Library)[16], 
which is based on enhancing UDP with negative acknowledgments to provide reliable data transmission 
while overcoming the bottlenecks of TCP. 

2.2 Driving TeraScope on the Optiputer 
The LambdaVisualizationNode at EVL is connected to a tiled display. TeraScope is designed so that the 
results of a particular query can be displayed on any one of the screens of the tiled display. Tiled displays 
have been largely used in the past to display a single high resolution image of a data set. TeraScope instead, 
uses the tiled displays to mosaic visualizations so that the user can view several visualizations 
simultaneously. Using a Web browser, a user can submit a query to TeraScope. TeraScope decomposes the 
query and sends it to multiple nodes on the LambdaComputeCluster. Residing on the 
LambdaComputeCluster is a program to perform data mining calculations. In this particular instance the 
clusters perform Pearson’s correlation calculation over all the attributes of the data to rank the 
“correlatedness” of pairs of attributes in a multidimensional data set. The correlation is performed by each 
of the nodes sending parallel queries to remote DSTP servers, which in return, will stream the subset of the 
query results back. These subsets are stored on LambdaRAM, and the data mining engine works from the 
local copy on LambdaRAM. The final results of the correlation are tallied up and sent back to the querying 
interface which loads the 
reduced data set and 
visualizes it on one of the 
tiles on the tiled display. The 
Web interface also allows 
multiple visualizations to be 
produced simultaneously, in 
which case each of the 
LambdaVisualizationNodes 
that drive the tiled display 
will receive a copy of the 
data to visualize using a 
variety of different 
visualization tools. 

2.3 The TeraScope Softw
Figure 2 shows the overall soft
TeraScope consists of the visu
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are Architecture 
ware modules that are layered to produce TeraScope. At the highest level, 
alization tools that reside on the LambdaVisualizationNodes. These tools 
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were developed with the Visualization Toolkit [11] and the Fast Light Toolkit (FLTK) [21]. Quanta [7], the 
high performance communication library, is used to communicate between the LambdaVisualizationNode 
and the LambdaComputeNode to signal the compute nodes to perform the parallel queries of the remote 
Dataspace data stores. Quanta is also used for fetching the resulting sub-sampled data sets from the 
LambdaComputeNode to be visualized on the LambdaVisualizationNode. Residing on the 
LambdaComputeNode is a software framework for executing data mining algorithms such as Pearson’s 
correlation. The framework relies on LambdaRAM and MPI (the Message Passing Interface) [12]. 
LambdaRAM is also implemented over MPI. 

2.3.1 LambdaRAM 
LambdaRAM is based on the concept of Network Memory. Prior work in Network Memory (NetRAM) has 
mainly focused on local area or system area networks because there simply has never been sufficient 
bandwidth over a wide area network to carry data from memory to memory at rates that are close to 
memory access rates [4]. The unique difference on the Optiputer is that the high speed optical network that 
interconnects its components, makes NetRAM over wide areas practical. The concept behind NetRAM is to 
provide a massive pool of physical memory that is distributed over separate computers. In most current 
computers, when a program runs out of physical memory it uses its disk drive as virtual memory. The 
program swaps its data from physical memory to virtual memory as needed. NetRAM changes this 
paradigm by instead swapping memory to a remote computer rather than to local disk. The advantage of 
doing this is that it can take significantly less time to swap data to a remote computer using a high speed 
metropolitan network, than it does to save the data to disk. For example, a SAN such as Myrinet can have 
as much as a Gigabit of bandwidth with a latency of a few microseconds, our interconnected LambdaNodes 
will have a bandwidth of 10 Gigabits/s and latencies of approximately 2-5ms; whereas a disk drive only has 
300Mbits of bandwidth with a seek time of 10ms.  
 
LambdaRAM’s implementation of NetRAM currently provides only Read access. However, even this 
limited capability has significant 
utility. Most data mining and 
visualization algorithms involve the 
reading of data and the generation 
of a derived result. Rarely is the 
original data modified. In order to 
optimally match the incoming flow 
of the data with the data access 
patterns of the data mining and 
visualization algorithms, an 
application developer must know 
when and how much data needs to 
be prefetched so that the data is 
available just in time. Since this is 
a difficult problem to solve, the 
algorithms are typically modified 
so that they can perform all the 
required calculations on a single 
pass of the data stream. This is 
clearly not possible for all 
algorithms- some algorithms 
simply need to access data values 
more than once. LambdaRAM is 
intended to alleviate this problem 
by allowing the programmer to concentrate on the semantics of the algorithms rather than the optimization 
of the data fetching. 
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Figure 3. Structure of LambdaRAM  

 
In LambdaRAM, each nodule (a single PC) of the LambdaNode holds a local block of memory, called the 
NetRAM segment, and a Working Set. Each nodule’s Working Set has its own memory controller and  
page table, whereas there is a single central page table for all the NetRAM segments that are distributed on 
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the LambdaNode. Hence there are two levels of caches. The Working Set serves as the onboard nodule 
cache, whereas the NetRAM segment serves as the LambdaNode cache that fetches data from the remote 
data stores. The structure of LambdaRAM is shown in Figure 3. Its algorithm for memory retrieval is as 
follows: 

(1) When a particular piece of memory is accessed, the request is sent to the Working Set Controller. 
(2) The Working Set controller searches for the location of the memory page in the Working Set’s 

page table. If the page is available in the Working Set, Step 3 is performed. Otherwise Step 4 is 
performed. 

(3) The located page of memory is returned as a pointer to the program. Step 10 is then performed. 
(4) If the page does not appear in the local Working Set, a page fault occurs in the Working Set 

Controller. 
(5) The page fault causes the Working Set Controller to look for the page on one of the nodules of the 

LambdaNode. This is achieved by sending a request to the central NetRAM memory controller. 
(6) If the NetRAM memory controller is able to identify the nodule on which the sought page resides, 

Step 7 is performed. Otherwise Step 8 is performed. 
(7) The memory page is retrieved from the nodule and stored in the local Working Set. The Working 

Set Controller may need to decide which page might have to be swapped out. This is decided 
employing the Second Chance algorithm [20]. Having updated the Working Set’s page table, Step 
3 is performed.  

(8) If the page does not reside on any of the LambdaNode’s nodules, a NetRAM fault occurs. 
(9) This prompts NetRAM to perform a query to the remote Data Space server to retrieve the needed 

data. The NetRAM memory controller decides which page is swapped out and updates the page 
address in NetRAM’s central page table. The requested page is moved to the Working Set of the 
nodule originally requesting the data. Step 3 is then performed. 

(10) End of the memory access. 
 
Note that the page size for the Working Set need not be the same as the page size for NetRAM. In fact, to 
maximize bandwidth utilization, NetRAM’s page size is currently set to be 3 times larger than the Working 
Set’s page size. Furthermore, at the present time, NetRAM strictly acts as a virtual memory system rather 
than a prefetching cache- ie no predictive fetching 
is performed. Algorithms for prefetching are 
currently being examined. 

2.3.2 TeraScope Visualization Tools 
Terascope consists of a variety of information 
visualization tools which are described below. 
Recall that the goal is not to draw a terabyte of data, 
but to produce meaningful visual summaries of the 
data (called TeraMaps) from which relevant 
subsets (TeraSnaps) can be visualized on modest 
systems. The derivation of these visual summaries 
is what requires the processing power of an 
Optiputer. 
 
3D Histogram – This tool traverses all the 
requested data points and computes a correlation 
value between every pair of attributes (Pearson 
Correlation) in a multidimensional data set. The 
correlation is then used to color code an overview 
map of the data set which is a collection of 3D 
histograms that show the relationship of one 
attribute to another. 
 
2D Scatterplot and Parallel Coordinates – These 
tools make use of the Pearson correlation calculation described above to color code the 2D scatterplot. 
Furthermore the correlation function is used to prioritize the set of attributes that should be placed next to 

Figure 4. 3D Histogram of atmospheric data 
from the National Center for Atmospheric 
Research. Red means there is a high 
correlation between two attributes along the X 
and Y axes. The height of the terrain means 
there are a large number of samples at that 
particular location in the data set. 
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each other in a parallel coordinate plot. Placing highly correlated attributes next to each other in a parallel 
coordinate plot helps “untangle” the many lines that cross parallel coordinate diagrams. 
 
3D Scatterplot – Given four attributes (x,y,z, and 
a scalar attribute), this tool produces both a 
scatterplot and splat plot highlighting the areas of 
greatest data concentration. 
 
EarthView – This is analogous to a 2D scatterplot 
except that the scalar values are plotted on a sphere. 

3 Results 
TeraScope was built in stages. The first prototype 
included only the visualization tools, and these 
tools interfaced directly with the data retrieved 
from the DSTP servers. All correlation calculations 
in the 3D histogram and 2D scatterplot were 
performed in the visualization tool. The test case 
consisted of 100GB of generated data from  
National Center for Atmospheric Research’s 
(NCAR) Community Climate Model (CCM3). This first prototype was demonstrated at SC2001 in Denver, 
Colorado. 

Figure 5. 3D Scatterplot of precipitation and 
CO2 levels over the Earth. 

 
The second prototype of TeraScope included the LambdaRAM augmentation and was demonstrated at the 
IGrid 2002 conference in Amsterdam, The Netherlands. At IGrid, TeraScope queried processors at LAC, 
Amsterdam, Chicago, and Halifax and produced visualizations on the show floor on a tiled display. 
Unfortunately reliable experimental data could not be gathered during the conference. Work is underway 
now to benchmark TeraScope to determine how much time it takes for each phase of the process (from data 
retrieval to visualization,) and to evaluate the effectiveness of LambdaRAM. 

4 Discussion and Future Work 
This paper has provided an overview of a project 
recently underway to develop interactive visual 
data mining tools for exploring massive data sets, 
using the Optiputer paradigm. At the time of the 
writing of this paper, a prototype of TeraScope had 
been demonstrated at IGrid 2002. With the 
TeraScope framework in place, future work will 
focus on the development of new tools for creating 
visual summaries; performance monitoring of the 
first LambdaRAM prototype; and augmentation of 
LambdaRAM with adaptive prefetching 
capabilities. 
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