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SUMMARY

This  thesis  presents  SocioScape,  an  interactive  visualization  tool  that  embodies  a 

methodology  for  the  visual  analysis  of  spatial  and  temporal  group  dynamics  in  social 

networks. The methodology introduces a novel visual representation technique suitable for 

dynamic social networks. This representation provide an advantage over dynamic graphs 

by explicitly illustrating the evolution of social  groups and association choices  made by 

actors  over  time.  The  representation  is  combined  with  a  well-established  technique  for 

depicting spatio-temporal data, allowing analysts to investigate the effect of the physical 

positioning of actors and their movement in the environment on their social behavior. This 

integration  also  facilitates  the  investigation  of  potential  hypotheses  that  explain  the 

emergence  of  the  observed  social  structure  structure.  A  case  study  demonstrates  the 

usefulness of the tool. The primary contributions of this thesis include:

1. A novel visual representation method for dynamic social networks that departs from 

traditional graph-based visualizations, revealing the evolution of social groups and 

association choices that actors make over time.

2. A methodology that integrates abstract representation of social interactions with a 

spatio-temporal visualization to allow analysis of the role of environment in shaping 

the underlying social structure.

3. A case study in which the methodology was used by behavioral ecologists to explore 

the social behavior of two animal populations of endangered species.
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1. INTRODUCTION

The  field  of  social  network  analysis  has  witnessed  an  unprecedented  growth  in  its 

applications  during  the  past  few  years.  Its  techniques  have  been  used  by  a  variety  of 

scientific  fields  including  epidemiology  (8,  9),  molecular  biology  (10,  29),  ecology  and 

conservation (5, 7), intelligence and counter-terrorism (23). Social network analysts have also 

began to incorporate time in their models producing a new class of networks known as 

dynamic social networks (4). 

Visual analysis of imagery depicting social network datasets has been essential to the 

advancement of the field (15). Although there are a number of well established techniques 

for  visualizing  classical  static  networks,  these  techniques  suffer  from  limitations  when 

applied to  dynamic  networks  that  change with time.  Furthermore,  these  techniques  are 

primarily  concerned  with  visualizing  the  observed  structures  the  social  system  being 

studied. Thus, the vast majority of graphical representations of social networks were purely 

abstract, and presented out of context of the physical or virtual environment in which the 

interaction takes place. This makes them ineffective for exploring potential explanations for 

the emergence of the underlying social structure.

This  thesis  advances  the  current  state  of  the  art  by  proposing  a  novel  interactive 

visualization methodology for the analysis of dynamic social networks in the context of the 

physical environment in which the interaction takes place. By tightly integrating a spatio-
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temporal  visualization  with  abstract  depictions  of  the  dynamic  social  interaction,  the 

methodology facilitates hypothesis forming on how  the observed social structure emerged 

in the first place, and how it is effected by external environmental influences.

1.1 Overview of social network analysis  

Social  networks  are  abstract  representations  of  relationships  between  social  entities 

(actors). The most common technique to depict a social network is modeling it as a graph. 

Actors are represented by nodes,  and an edge between two nodes indicate that the two 

actors are socially linked. The actors in the network could refer to individuals, animals, or 

institutions, and the links between these actors could be friendship relationships, physical 

contact,  scientific  literation  co-authorship,  or  competition.  Figure  1.1  shows  a  synthetic 

social network visualized as a graph.

Social  network  analysis  is  the  formal  study  of  social  networks  by  utilizing  formal 

modeling methodologies. A fundamental premise in the field is the understanding that the 

social structure and the ties between the actors have a major influence on the actors and 

Figure 1.1: Synthetic social network data visualized as a graph. Actors are depicted with 
circles. A line between two actors represents a relationship between the pair.
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their  behavior  within  the  network  (1,  2).  Therefore,  social  network  analysts  are  usually 

interested in the structural properties of the network,  as opposed to the attributes of its 

actors.

Despite the fact that social interaction is a dynamic process that happens over a period 

of time, social network models have traditionally treated the network as a static entity. The 

ordering of interactions between the actors have often been discarded, and the resulting 

network  presented  the  aggregate  social  interactions  between  its  actors.  That  is,  a  link 

between  two  actors  is  inserted  into  the  network  if  these  two  actors  were  observed 

interacting at any point in time. This trend to constrains social networks to largely static 

models was perpetuated primarily by the lack of data collection tools that could accurately 

sample the social network at fine-grained intervals. Another contributing factor was the lack 

of sufficient analytical and computational tools to deal with datasets incorporating time.

1.2 Dynamic social networks  

Although static models of social networks were, and continue to be, very popular (11), 

they suffer from a number of limitations when applied to some real-world problems. A static 

model can not be reliably applied to study dynamic processes such as disease transmission 

because the model does not address the ordering and concurrency of interactions. These two 

aspects are very important when studying processes that occur and evolve over a period of 

time.

 Thanks  to  advances  in  data  collection  technologies,  social  networks  can  now  be 

sampled at a much higher frequency. This gave rise to a new class of social networks that 
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explicitly incorporated a notion of time (4). Rather than representing the network as a single 

static graph, a dynamic network can be thought of as a series of graphs, with each graph 

representing a snapshot of the interactions between actors at a particular moment. Dynamic 

social networks allowed analysts to study dynamic processes that occur in the network over 

time. They also offered a new way to think about the social system as an evolving structure.

1.3 Brief history of the development of social network analysis  

This  section  gives  a  brief  history  of  social  network  analysis.  For  a  more  detailed 

discussion, the reader is referred to (1) and (2).

The development of the field of social network analysis can be traced to empirical work 

in sociology and anthropology in the early 18th century. While the analytical methods used 

in social networks are broad enough to be applied to a wide-variety of fields unrelated to 

sociology,  the  development  of  these  methods  is  strongly  grounded  in  the  work  of 

sociologists and anthropologists out of attempts to deal with large amounts of empirical 

data, and to establish more formal and precise definitions for many of the fuzzy notions that 

are widely used in sociology (e.g. social groups). Once formal definitions were established to 

these terms, many of them could be quantified, making it easier to logically reason about the 

different properties of a society.

The work of Jacob Moreno in the 1930s is widely recognized as one of the foundations of 

the field. Moreno relied extensively on data collection to study interpersonal relationships. 

The amount of data he collected soon proved to be incomprehensible without some sort of a 

formal model  providing means to quantitively measure the various properties of social 
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systems. Moreno suggested a set of principles for the development of quantitive analysis 

methods for social groups, for which he coined the term sociometry. He defined sociometry 

as "the inquiry into the evolution and organization of groups and the position of individuals 

within them.".

One  of  the  main  contributions  of  sociometry  was  the  introduction  of  sociogram. 

Sociogram is essentially a visualization technique for social networks that is equivalent to 

graph drawing. It is regarded as one of the earliest examples of graphical representation of 

social interactions. The invention of sociograms was one of the defining moments in the 

field of social network analysis. As Moreno puts it “before the advent of sociometry, no one 

knew  what  the  interpersonal  structure  of  a  group  'precisely'  looked  like”  (12).  The 

sociogram model was very simple, yet it was succinct enough to be regarded as a formal 

model, spurring interest in the systematic formal analysis of social interactions.

Anthropological  research  also  contributed  significantly  to  modern  social  network 

analysis. Research by Max Gulckman and James Mitchell on the urbanization and the effect 

of colonialism of Africa provided additional terminology for describing structural properties 

of social systems. Terms such connectedness and clusterability were introduced in the 1950s. 

They remain largely central to social network theory.

In the 1960s, the work of the sociologist Harrison White led to what became known as 

the “Harvard Revolution” which was credited with establishing one of the fundamental 

principles in the field: the patterns of association between actors and their position in the 

network is more important than their individual attributes when predicting the behavior of 
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these individuals. This idea provided a further push towards a network-centric perspective 

of social systems. 

The landmark study by Stanley Milgram in 1967 (26) led to discovery of what came to be 

known as the small-world phenomenon. This was later found to be a central property in a 

wide  range  of  networks.  The  small-world  property  states  that  in  many  types  of  social 

networks, a randomly chosen pair of actors are connected by a path that has an average 

length of 6. Because of the immense practical ramifications of this property, Milgram's work 

motivated  further  work  on  analytical  methods  and metric  for  measuring  the  structural 

properties  of  networks.  The  1970s  saw  another  widely  influential  study  by  Mark 

Granovetter suggesting that weak relationships are generally more influential than strong 

ties when it comes to information propagation (59) 

Since the 1970s, the field has continued to grow. Many theoretical models have been 

proposed, along with algorithmic tools for the analysis of networks (2, 11). With increased 

availability  of  inexpensive  computing  resources,  the  application  of  these  methods  have 

greatly expanded to include areas such as epidemiology (8, 9), molecular biology (10, 29), 

ecology and conservation (5, 7), intelligence and counter-terrorism (23).

This section has provided an introduction to social network analysis along with a brief 

history of the field. The rest of the thesis is organized as follows. Chapter 2 provides an 

thorough review of the techniques used by analysts to produce visual representations of 

social networks to facilitate exploration and analysis. Chapter 3 introduces SocioScape, an 

interactive  visualization  tool  that  embodies  a  novel  methodology  for  the  analysis  of 
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dynamic social networks. Chapter 4 presents an implementation of SocioScape. In chapter 5, 

SocioScape is used to study group dynamics in two endangered species of wild animals. The 

effectiveness  of  the  methodology  is  illustrated  with  a  user  study  involving  ecologists 

making use of SocioScape to explore the social behavior of these two populations. Chapter 6 

concludes  with  a  discussion  of  the  major  contributions  of  this  thesis,  the  new insights 

gained, and future research directions.



2. STATE OF THE ART OF SOCIAL NETWORK VISUALIZATION

The use of visual illustrations to depict social networks has been a central technique in 

the field  both for understanding the structure of the these networks, and for communicating 

findings  to  others  (15).  It  should  come as  no surprise  that  the  earliest  images  of  social 

network datasets where based on graphs, with nodes representing actors and edges linking 

actors  who  are  socially  interconnected  (12).  Despite  the  substantive  body  of  work  on 

visualizing social networks, the vast majority of these visualization techniques still embrace 

the use of graphs to depict the social interactions between its actors. While this has proved 

useful in static networks, experts agree that there are still numerous obstacles to successfully 

adapting  static  graph  drawing  to  dynamic  networks  that  change  with  time  (16). 

Additionally, the wide adoption of social network methods by other disciplines call for new 

ideas that meet the needs of the new communities of users. Thus, it is becoming essential to 

design visual analysis tools that combines both abstract depictions of social systems with 

domain data,  creating attribute-rich visualization environments that  address  the need of 

domain scientists.

This chapters reviews the state of the art of social network visualization and provides a 

critique of it. Techniques for static social networks are reviewed first. Follows this is a review 

of techniques for the visualization of dynamic social networks. This is followed by a review 

of spatio-temporal visualization methods. The chapter concludes with a discussion of the 

limitation  of  graph-based  visualizations  and  makes  the  case  for  new  depiction 
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methodologies  that  depart  from  traditional  graph-inspired  approaches  and  integrate 

domain data into the visualization.

2.1 Static social networks visualization  

Static network models have largely dominated the field of social network analysis for 

decades. Hence, the majority of illustrative visuals are essentially static and provide a purely 

structural perspective of the network. Consequently, the goal of the visual analysis of static 

network is two-fold (15):

1. Reveal  clusters  of  strongly  linked actors,  which  are  usually  referred to  as  social 

groups.

2. Reveal the set of actors who play special roles in the network (e.g.,  one or more 

prominent actors linking two distinct social groups).

2.1.1 Graph layout  

One of the earliest visual illustrations of social networks came from Jacob Moreno (12) 

who studied friendship relationships among elementary school students. Moreno collected 

data about friendship preferences of each student, and hand-drawn graphs illustrating these 

relationships. He also varied the shape of nodes in the graph to encode attributes of the 

actors. Moreno used his graphs to illustrate differences in the social structure emerging from 

the interactions of different types of actor.
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The first graph illustrations were plotted and drawn by hand, and the position of the 

nodes was more or less subjectively chosen by the author. With the increased availability of 

computers, there have been significant effort to develop automatic graph layout algorithms. 

Graph layout is the process of generating a visual graph from a set of nodes and edges. 

Layout algorithms generally work by computing node positions and routing edges between 

them with the aim of producing a comprehensible drawing that allows easier analysis of the 

data. Layout algorithms differ in the set of underlying principles that are used to judge what 

a good graph looks like, and the computational techniques used to achieve the layout. There 

has been a substantial amount of work on graph layout algorithms (13, 24). One of the most 

commonly used algorithms is force-directed placement (14).

Despite this, the visualization of large social networks is often challenging due to the 

density of connections typical in many types of networks. Kershenbaum et al (32) identified 

a number of  general  approaches that  can be used to tackles  this  problem. They suggest 

giving the user  control  over  a number of  options that  affect  the visualization including 

annotation  and positioning  of  the  nodes.  Although  some automatic  technique  of  initial 

layout is essential, the user should have control and ability to move nodes around. Another 

useful  generic technique is exploiting the hierarchy inherit in most social networks. The 

user should have the ability to merge highly connected nodes into a single node in order to 

observe the overall structure of the network. Conversely, a method to unroll these higher 

level constructs should be made available. 
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2.1.2 Graph layout toolkits and applications  

Graph  layout  toolkits  provides  a  convenient  way  of  constructing  a  graph-based 

visualization  pipeline  for  social  networks.  They  offer  more  flexibility  than  standalone 

visualization applications, but require a certain level of programming experience to use.

Graphvis (22) is one such toolkit. It supports a number of layout algorithms and provide 

feature to control shape of nodes, their colors, and annotations placed near them. Graphvis 

reads a graph description file specifying nodes, edges, and annotations in a custom markup 

language, computes the layout of the graph using the desired layout algorithm, and outputs 

the graph as a raster or vector image.  It  is commonly used to generate images of social 

networks and communicate them to audience. However, its pipeline is designed primarily 

for offline rendering, making it difficult to be used in interactive applications.

Network analysts started to combine graph drawing algorithms with network analysis 

tools  producing  interactive  packages  that  integrated  network  algorithms,  statistics,  and 

graph drawing. These packages were often generic enough to be used in wide variety of 

fields,  including social  networks.  Pajek (17)  and Network Workbench (18)  are  two such 

software packages. These packages provide a wealth of network analysis algorithms and 

statistical methods. However, their visualization features are limited. 

Another application designed for the exploration of graphs is GUESS (20). It supports a 

number  of  automatic  graph  layout  and  statistical  tools.  It  also  includes  an  interactive 

scripting  language  that  can  be  used  to  programatically  access  the  elements  (nodes  and 

edges) in the rendered graph to modify their appearance or to add annotations.
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 The availability of social networking websites such as Facebook and Friendster offered 

end-users an easy way of building their own virtual social network. Heer and Boyd (17) 

describe  an  interactive  tool  for  visualizing  friendship  relationship  of  users  of  social 

networking websites. The method uses a force-directed, ego-centric graph. An ego-centric 

layout places the user's  node in the center of the graph allowing viewers to focus their 

attention on their relationships with other actors in the network. To make the visualization 

more appealing to end-users,  special  attention is  given for aesthetics such as  displaying 

pictures of the individuals represented in the graph and the use of appealing GUI.  The 

application  has  a  number  of  interactive  features  including  search,  filtering,  and 

expansion/collapse of the network.

2.1.3 Graphs in visual analysis of social network datasets  

The vast majority of static social network visualizations are done using graphs. A good 

graph layout with appropriate annotation can be efficient at revealing structural properties 

of the social network.

A wide spectrum of social networks exhibit what became known as the small world 

phenomenon. This property was discovered by Milgram (26).  Networks that exhibit  this 

property are composed of a number of densely knit clusters of nodes, but at the same time, 

these clusters are well connected in that the path length between any two randomly chosen 

nodes is 6 on average. Since this property is common in many networks, graph visualization 

techniques started taking advantage of it.
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Auber et al (25) describe a technique for static graph visualization that exploits the small 

world phenomenon. Their method relies on a computationally efficient algorithm that filters 

out edges in a graph, leaving only clusters of highly connected nodes. Each clusters is then 

collapsed into  a  single  node  forming a  higher  level  representation of  the  network.  The 

resulting cluster nodes are connected together with edges that maintain the topology of the 

original graph. The technique can be applied recursively until the network is simplified to 

its  simplest  form.  The user  of  the system can interactively  visualize  the network at  the 

desired level using one of the traditional graph layout algorithm. A similar methodology is 

used in (27). However, the authors employ esthetically pleasing rendering of the graph in 

3D space. Their method allows the user to interactively zoom into one of the clusters. As the 

user zooms in, the nodes spread out revealing the node formation inside the cluster. These 

two techniques have proven useful for static, small-world graphs.

Force-directed  layout  algorithms  (13)  are  generally  effective  at  revealing  clusters  of 

highly connected nodes, which often correlate with distinct social groups in the network. 

Suh  et  al  (21)  use  this  property  to  gain  insights  into  conflicts  arising  from  online 

collaborative environments. Their work identifies patterns of conflict and mediation arising 

from article editing on Wikipedia by a large number of editors. A graph is constructed with 

nodes representing editors and edges between them representing a 'revert'  action (a user 

erasing another user's edits). The authors use their tool to visualize the edit history on some 

of the controversial articles in Wikipedia. Drawing the graph with a force-directed algorithm 

shows how the social space is partitioned into distinct opinion groups, including mediators 

who attempt to reconcile differences among the opinion groups (figure 2.1).
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Fisher  et  al  (28)  also  make  use  of  force-directed  layout  to  reveal  patterns  of  daily 

collaboration  among  workers  in  organizations.  Their  analysis  uses  traces  of  electronic 

communication to construct a network of individuals who interact together. Visualization 

reveals recurring patterns of collaboration such as groups of individuals working on a single 

project forming a highly connected core surrounded by less connected set of consultants. 

Heer (31) applies force-directed layout to the employee e-mail communication graph of 

Enron. His interactive tool allows the user to perform a keyword search and highlights the 

nodes  or  edges  matching  the  search  criteria.  The  tool  also  employs  natural  language 

processing techniques to analyze the contents of e-mail messages and classify them into a set 

of categories (e.g. political influence, company business strategy, etc...).  The result of this 

analysis is  used to label  the edge representing a particular email  with a small  pie  chart 

indicating the nature the e-mail's content.

Figure 2.1: Using force-directed layout to reveal social groups with different opinions. 
Source: (21)
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One of the goals of visual analysis of networks is revealing groups of actors who interact 

closely with each others. However, it is often desirable for the visualization to cluster nodes 

according  to  their  attributes  rather  than  their  connectivity.  This  is  especially  useful  in 

domains  outside  of  sociology  where  experts  look  for  structural  patterns  among  actors 

sharing a similar set of attributes. 

McPherson  et  al  (30)  describe  an  interactive  visualization  that  uses  Kohonen's  self-

organizing  memory  to  spatially  cluster  nodes  with  similar  feature  vectors  in  an  N-

dimensional attribute space, placing similar nodes close to each other in the graph (although 

they are not necessarily connected). The tool also allows attributes of actors to be mapped to 

the color or size of nodes in the graph.

Although the small-world phenomenon is common in social networks, there are some 

types of social networks that do not adhere to this property. Another common structural 

pattern is  found in the so called scale-free networks.  The node degree in these network 

follows a  power law distributions.  That  is,  nodes  with few connections  are  much more 

common in the network than nodes with a large number of connections. Typically, these 

networks do not exhibit a large number of cliques, but rather have a small percentage of 

prominent nodes that enjoy a large number of connections. Hence, a layout algorithm that 

facilitates clustering might not produce a good graph here. To deal with this problem, Jia et 

al (33) employ a method to filter out edges in scale-free graphs while ensuring that nodes 

that are directly of indirectly connected in the original graph remain connected after the 

filtering. 
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The  techniques  surveyed above  provide  a  way of  visually  looking  at  the  structural 

properties of social networks. However, they all assume that the network is static and does 

not evolve with time. This simply makes them inapplicable to dynamic social networks.

2.2 Dynamic social networks visualization  

With the increased availability of dynamic network datasets that incorporate time, there 

has been a growing need to devise new visualization techniques that allow analysts to see 

the evolution of networks over time. While the goal of using visualization in static networks 

was revealing the static social groups within the network, dynamic networks allows us to 

address the more general question of change over time:

1. How do social group evolve over time? 

2. Is there an underlying pattern of social interaction that repeats itself over time?

3. What are the environmental factors that trigger these changes? 

2.2.1 Dynamic graph drawing  

Dynamic  networks  can  the  though  of  as  an  extension  to  the  static  graph  model 

discussed earlier. A common approach is to think of the network as a series of graphs, with 

each graph representing a snapshot of the network at a particular moment in time. Each 

graph have a different set of edges connecting a set of nodes shared by all graphs. Then the 

problem of visualizing the dynamic network is reduced to the problem of visualizing graphs 
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in which some edges disappear and new edges appear over time. These graphs are known 

as dynamic graphs.

2.2.1.1 Animating dynamic graphs  

A straightforward method to  visualize  dynamic  graphs is  animation.  Using a  graph 

layout  algorithm,  each  snapshot  of  the  dynamic  graph  is  rendered independently  on  a 

separate frame. An important aesthetic principle to consider when animating time-varying 

graphs is keeping the layout of subsequent frames as close as possible to the first one. That 

is, the position of the nodes should change as little as possible throughout the animation. If 

it  is essential to move some of the nodes to maintain a comprehensible  layout, then the 

transitioning from the  existing layout  to a new one should be animated smoothly.  This 

aesthetic element has been referred to as preserving the “mental map”, and has been found 

important for clear perception of structural changes (24, 47). A variety of techniques have 

been proposed to achieve a stable graph layout across the animation (34, 48).

Large, time-varying power law graphs pose a challenge to animate because the layout 

often suffers from excessive clutter, which complicates the effort of maintaining a relatively 

stable layout throughout the animation. Kumar et al (35) proposes hierarchical stratification 

of nodes to generate stable clustering of the network. Nodes are organized and rendered in a 

tree according to their prominence (calculated from the node's degree) with more prominent 

nodes being at the top of the tree. To alleviate the problem of edge crossing, no edges are 

drawn between nodes forming a cluster. Instead, nodes belonging to a single cluster are 

drawn inside color coded bubbles. A unique color is used for each cluster. The technique is 

effective at visually illustrating the “rise and fall” of prominent nodes and clusters over 
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time. However, less evident is evolution of  these clusters (i.e., how nodes interact inside a 

cluster, and how it moves from one cluster to another over time).

2.2.1.2 Temporal unrolling of dynamic graphs  

A different approach that avoids animation is unrolling the evolution of the graph over 

time in the spatial dimension (38). For each timestep, a graph is drawn using a conventional 

layout algorithm in a plane. The planes are then stacked on top of each others to illustrate 

evolution of the network, with latest timesteps being at the top. The planes are drawn semi-

transparently so that planes of earlier timesteps are still visible. The method is helpful in 

pointing  out  differences  between two consecutive  timesteps.  However,  this  technique is 

limited to visualizing few timesteps at once. It becomes hard to "see through" changes going 

further in time as the stacking of slices increases opacity. Figure 2.2 illustrates this technique.

Gaertler et al (39) use a similar method, but avoid drawing the 'white space' plane on 

which the graph is grounded. This allows for more slices to be stacked while maintaining 

Figure 2.2: Stacked slices of a dynamic graph. Recent slices are rendered on top of older 
ones. Source: (38)
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visibility  of  earlier  slices.  On  the  other  hand,  this  leads  to  difficulty  in  perceiving  the 

ordering  of  nodes  (i.e.,  which  nodes  and  edges  belong  to  which  timesteps).  It  is  also 

susceptible to cluttering.

2.2.2 Analysis of group evolution  

Static graphs are usually effective at showing groups of actors who interact closely with 

each others.  Although the  same techniques  could  be  used to  highlight  social  groups  in 

individual timesteps in dynamic graphs, it is hard to see how these social groups evolve. As 

time  passes,  new groups  emerge  and older  groups  dissolve.  Additionally,  a  number  of 

groups might merge forming a larger group or a group could split  into smaller groups. 

These changes can be evident in an animation if they happen over a short period of time. 

But what if  those changes happen over long periods? An observer will  likely miss such 

structural changes if they are spread over few minutes in the animation. Moreover, with 

graph animation, it is difficult to spot actors switching their membership from one social 

group  to  another  simply  because  of  the  sheer  number  of  nodes.  On  the  other  hand, 

temporally unrolling the dynamic graph allows one to see momentarily changes happening 

over  few timesteps.  However,  simply  pilling  up more  timesteps  degrades  the  visibility, 

making the technique ineffective for analyzing structural changes that happen over longer 

periods of time. To address these two issues, a number of techniques have been proposed to 

allow analysis of the evolution of social groups, and to track actors' affiliation with these 

groups. 
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2.2.2.1 Interactive analysis of dynamic interaction graphs  

Yang et al (36) discuss an interactive tool for visualization of dynamic graphs coupled 

with an automatic event detection frameworks. The framework identifies structural changes 

involving social group such as two groups merging together or one group splitting into two, 

which can then be highlighted in the visualization. The user can select a node and visualize 

its connections using a series of subgraphs representing the node's neighborhood over time. 

A limitation  of  this  technique  is  that  although  it  can  detect  timesteps  at  which  certain 

interesting events occur, there is no easy way of tracking changes to groups in terms of 

actors membership over time since the framework does not provide a notion of a stable tag 

for the detected groups. That is, two groups at consecutive timesteps sharing a similar set of 

actors are treated as two completely independent groups.

2.2.2.2 Analysis of subgraph evolution  

Falkowski et al (37) proposes a model that tracks evolution of groups by employing 

cohesion and stability statistical measures and plotting there curves over time. For networks 

in which actors' group membership is fluctuating, a visual method is used to tag similar 

groups and track their evolution over time. The technique uses a 2D graph layout in which 

the X axis represents time, and the Y axis is used to arrange the different groups. Groups are 

depicted using nodes with edges linking two or more groups merging or splitting.  This 

depiction is useful in illustrating patterns of group evolution in the network. However, there 

is no way of finding out the role of individuals in this evolution, as actors are not depicted in 

this visualization. Additionally, there is no way of tracking the membership choices actors 

make over time (i.e., which groups a particular actor chooses to associate with and how this 

association changes).
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2.2.2.3 C-Group  

Kang et al (40) describe C-Group, an interactive tool for studying group association for a 

pair of actors over time. The user selects two actors from the network which are referred to 

as the focal pair. The visualization highlights the shared and non-shared individuals with 

which  the  focal  pair  interact.  These  associates  are  grouped  together  according  to  their 

attributes.  The  user  can  also  specify  the  time  window  form  which  the  associates  are 

displayed. The advantage of this technique lies in the clean and effective layout (figure 2.3). 

A limitation of this approach is although it allows one to see shared collaborators between 

two authors, for instance, and how these collaborator change over time, it does not show the 

relationship  between  those  collaborators.  This  makes  it  ineffective  for  exploring  social 

groups and their  evolution over  time.   Another  downside is  that  the group semantic  is 

defined in terms of two focal actors only, and it can not be easily extended to include a 

notion of a larger communities of actors closely interacting together.
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2.2.2.4 Community interpretation graph  

Tantipathananandh et al (3) use a special kind of graph to depict the composition of 

social groups at different timesteps.  Every actor is  depicted with a unique node at each 

timestep. The nodes are organized into layers with each layer representing one timestep. 

The layers are drawn on top of each others with layers earlier in time drawn near the top of 

the diagram. Each node has exactly one incoming and one outgoing edge that link it to its 

two siblings representing the same actor in the previous and next timesteps, respectively. 

This allows tracing an actor's group affiliation over time in the graph by following these 

edges.  Actors  belonging to  the  same social  group are  surrounded by solid,  color-coded 

boxes. Figure 2.4 illustrates this technique. Unfortunately, this technique does not adhere to 

the principle of preserving the mental map. That is, the position of actors in the visualization 

could change even though the actor remains associated with its original group (e.g., actor 0). 

Figure 2.3: Screenshot of C-Group showing co-authorship relationships of the focal pair of 
authors. Collaborators who coauthor papers with both A and B are displayed in the 

middle, grouped by their institutions. Authors who collaborate with only one of the two 
focal authors are displayed on the side. Source: (40)
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Additionally, the technique is susceptible to cluttering due to edge crossing, which makes it 

difficult to trace the position of actor across all timesteps.

2.2.3 Hybrid approaches  

Although graph drawing remains the predominant way of visualizing the dynamics of 

interaction in social systems, there has been some work on augmenting graphs with other 

visual representations to make is easier for analysts to recognize trends and patterns that 

occur over time.

Viégas et al (41) describe an interactive tool for visualization of e-mail interaction aimed 

at end-users. Their system combines traditional graph layout of the user's contacts network 

with a 2D diagram illustrating the temporal rhythms of e-mail interaction between the user 

Figure 2.4: A graph-variant showing the composition of social groups over time. Groups 
are depicted with colored rectangles encompassing actors belonging to those groups. 
Colored edges depict an actor switching association from one group to another. For 

example, actor number 3 leaves the green group to join the red group at T2. Source: (3)
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and each of her contacts. Animation is employed to show how the patterns of interaction 

evolves over time. As time passes, contacts move up in the 2D space indicating periods of 

intense  conversations,  or  descent  toward  the  bottom  indicating  a  slowing  of  e-mail 

exchange.

In a separate project, Viégas et al (42) introduce a technique for analyzing the dynamics 

of collaboration on Wikis. The system comprises a tool that tracks revisions to Wikipedia 

pages  along  with  a  visual  depiction  method  similar  to  parallel  coordinate  diagrams. 

Revisions to a particular article are depicted using parallel columns arranged on the X axis 

according to their date. The columns are further divided into segments stacked on top of 

each other with each segment depicting a portion of  the article.  Identical  segments that 

survive  revisions  are  highlighted  by  drawing  horizontal  lines  between  columns.  This 

illustration shows patterns of collaboration between authors such as “edit wars” (marked by 

a zig-zag pattern).

Although these techniques have shown promise in revealing some of the patterns that 

occur in social spaces, they are largely application specific, and can not be easily extended to 

other disciplines. Therefore, it is difficult to draw from them a general set of guidelines on 

the type of depiction methodologies that can be effective at revealing patterns of interaction 

among social actors in a more generic social setting.

2.3 Visualization of spatio-temporal data  

A large portion of the data that exists today is geographically or spatially tagged one 

way or another. Some researchers suggest that up to 80% of data that exists in corporate 
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databases is geographically referenced (50). Many classes of social interactions are shaped 

by  the  spatial  displacement  of  its  actors  with  in  the  environment.  Example  of  social 

networks that are affected by the geographic location of actors include disease transmission 

networks and scientific collaborations. Therefore, taking the spatial attributes of actors into 

account while studying their interaction over time might reveal the role of their physical 

location  in  shaping  the  dynamics  of  interaction.  In  fact,  revealing  the  spatio-temporal 

patterns of interaction in the network is one of the primary goals of domain scientists who 

use social network models.

Visualization is probably the most effective and natural way for the communication and 

exploration of geo-spatial data. This is because our visual processing system has evolved 

primarily  to  allow  us  to  quickly  analyze  the  various  objects  that  occupy  the  space 

surrounding us. In the last few decades, the amount of geo-temporal information that we 

are able to collect and record has increased exponentially. Therefore, there is an increasing 

interest in interactive visual analytic tools that can be used to show the data spatially as well 

as  how this  data  changes  over  time.  These  techniques  have been referred to  as  spatio-

temporal or geo-temporal visual analytics.

There is a large body of work on the visualization of spatio-temporal data. However, 

there is no research yet that attempts to combine dynamic social network visualizations with 

spatio-temporal analysis techniques. If done effectively, the combined analysis of the social 

interaction  in  both  the  temporal  and  spatial  dimensions  could  reveal  many  interesting 

aspect on the role of geography in shaping the social structure and its evolution over time. 

This section will review some of the work on geo-temporal visualization techniques.
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 A straightforward way to visualize the changing position of objects  within space is 

using animation (52). However, the disadvantage of using motion to visualize change stems 

from the fact that the visual working memory of humans is very short term. Therefore, these 

techniques  face  the  same  challenges  that  also  hinder  the  use  of  animation  in  dynamic 

graphs.

 In 1970, Hägersrand (51) proposed the notion of space-time cube to visualize events the 

occur in different places at different times. In this technique, the base of the cube is used to 

represent  the  spatial  dimension,  while  the  temporal  dimension is  represented in  the  3rd 

dimension of the cube (usually the vertical one). At the time this work was published, its 

real-world  applications  were  severely  limited simply because  it  was  time consuming to 

produce  such  illustrations  by  hand  or  print.  However,  technical  advances  in  computer 

graphics led to the resurfacing of this method. Soon enough, interactive, computer-driven 

visualizations started using the space-time cube to visualize spatio-temporal data (53, 55). 

Andrienko et al (54) propose using the space-time cube to visualize the movement of entities 

over  time.  Some  of  the  recent  applications  include  intelligence,  surveillance,  and  other 

military applications (56, 57).

One of the main advantages of the space-time cube is its ability to collectively display 

multiple  events or objects  simultaneously in the same visualization space,  and track the 

position of these objects over time. Changes to the objects' attributes over time can also be 

easily illustrated with color-coding, for instance.
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2.4 Critical analysis of graphs  

Graph-based  visualizations  have  proven useful  for  revealing  some of  the  structural 

properties of static social networks, including social groups and prominent actors. The most 

widely used layout algorithms are spring and force-directed techniques. These algorithms 

work naturally  to produce  a  layout  that  shows clusters  of  highly interconnected nodes, 

which are usually correlated with social groups. Another advantage of using graphs is the 

availability  of  well  developed and efficient  algorithms that  are able  to  cluster  nodes on 

multiple  levels,  producing  a  hierarchical  view  of  the  network.  Combining  this  with  an 

interactive  visualization pipeline  that  adheres  to  the  zoom,  filter,  and detail-on-demand 

paradigm allows easy exploration of the various social groups in the network. 

Despite being so common, graphs have a number of limitations that often hinder their 

usefulness when used to visualize large datasets. Moreover, latest trends in social network 

analysis characterized a shift towards dynamic models and datasets further increases the 

complexity of graph-based representations. These limitations are discussed next.

2.4.1 Reduced visibility due to clutter  

All graph drawing methodologies  suffer from cluttering one way or another.  As the 

number of nodes and edges in the graph increases, the number of edge crossing increases at 

a faster rate. Empirical evidence suggested that minimizing edge crossing have a significant 

positive impact on the readability of a graph (45). Thus, increased edge crossing often lead 

to difficulty in answering basic question about the structural properties of the network such 

as  whether  two  nodes  are  connected  (directly  or  indirectly).  Additionally,  displaying 
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annotations for nodes or edges further increases occlusion and degrades the overall quality 

of the image.

One solution that can be used to reduce this problem is to offer options to the user to 

reduce or increase the mount of displayed nodes or annotations. This can be coupled with 

clustering algorithms that can produce multi-level hierarchical views of the network (32). 

However, these techniques have been applied mainly to static graphs, and it is not clear if 

they can be easily extended to dynamic graphs that change with time.

2.4.2   Effect of graph layout on drawn conclusions  

The positioning of nodes in the graph has been found to have a significant effect on 

structural properties inferred by the viewer. Blythe et al (44) have shown that the perceived 

importance of  a  node in the network is  negatively correlated with its  distance from the 

center of the layout. Similar factors have also been found to affect the number of distinct 

social group recognized by the viewer. This suggests that using two different graph layout 

algorithms to visualize the same social network might lead to different conclusions being 

drawn about the network. Moreover, there is no simple criteria for selecting the algorithm 

best suited to visualize a particular network.

On the other hand, most of the graph drawing algorithms are designed to geometrically 

optimize the layout according to a set of aesthetics, such as minimizing edge crossing and 

maximizing  symmetry,  which  are  usually  determined  by  the  algorithm  designer.  These 

principles, however, are most of time based on the subjective reasoning of the algorithm 

designer, and usually are evaluated according to their computational complexity. Very little 
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work has been done on how effective these principles are to produce diagrams that enhance 

understanding network, or to critically analyze them from the point of view of the visual 

cognitive system. Moreover, combining different aesthetic principles does not necessarily 

correlate with increased or decreased readability of the graph (46).

2.4.3  Computational complexity  

 Producing  a  high quality  graph layout  is  computationally  expensive.  For  example, 

force-directed layout algorithms have a complexity of  On3  where n is  the number of 

nodes in the graph (24). This hinders the use of these algorithms to render large graphs. It 

also places limitations on their usability in interactive visualizations.

2.4.4 Tuning of graph layout algorithms  

Graph layout algorithms require a relatively large number of parameters to be set by the 

user.  Although  most  end-user  tools  provide  a  way  of  automatically  setting  those 

parameters, or provides a preselected set of them, those values are intended to work with a 

wide variety  of  network,  and will  not  necessarily  produce  an optimal  layout  for  every 

network (16). Therefore, the user is faced with the option of accepting these parameters and 

having to put up with a less-than-optimal layout, or directly adjusting these parameters. In 

most cases the users of the system are not experts in graph drawing, and the affect of the 

different parameters on the layout is usually not well understood by most users.
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2.4.5 Preserving the “mental map”  

One of the important aesthetic principles in dynamic graphs is preserving the “mental 

map”. This refers to maintaining the position of nodes throughout the animation with as 

little change as possible. Empirical evidence have shown that adhering this principle when 

rendering dynamic graphs have a positive impact on readability (47). However, it has been 

recognized that this principle often conflicts with other common aesthetic principles such as 

minimizing edge crossing. This degrades the quality of the layout in individual time slices 

as  the  mental  map preservation principle  puts  constraints  on moving nodes,  leading to 

increased  cluttering.  A  number  of  solutions  have  been  suggested  in  an  attempt  to 

compromise between these conflicting principle (48, 49). However, the problem manifests 

itself with larger graphs, and in cases where node and edge annotation is desired.

2.4.6 Ability to reveal patterns of interaction over time  

There  have  been  no  work  on  the  effectiveness  of  animation  in  dynamic  graphs  in 

revealing patterns of social group evolution, or actor group association. However, evidence 

from studies on the human visual  perception can be extrapolated to point out  potential 

limitation of the use of motion to depict changing relational information. The human visual 

working memory is typically short. It is difficult for the viewer to remember the structural 

changes that are unfolding as the animation plays. Thus, many of the patterns governing 

structural change that happen over time are likely to be missed as the viewer will not be 

able to relate previously witnessed changes to the unfolding ones. Moreover, The viewer's 

attention will likely be focused on a very few number of interesting structures on the graph. 

Therefore, if the dynamic graph contains a moderate number of interesting structures, the 

user  will  be  forced  to  pick  a  few  of  these  structures  and  focus  her  attention  on  them 
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throughout the animation. If the viewer decides to inspect other structures, the animation 

will have to be replayed, increasing the effort and time required to study the whole graph. 

2.5 Summary  

Although there is a wealth of research on visualization of social networks, the majority 

of approaches still embrace graphs as the primary depiction method. While there are some 

advantages  to  using  graphs  including  the  availability  of  a  wide  variety  of  graph 

visualization algorithms and tools, there are still a number of challenges that need to be 

overcome before graphs can be effectively used to depict  dynamic social  networks.  The 

approach proposed by this thesis relies on novel visual representations that are designed 

from  the  bottom  up  to  address  the  temporal  aspect  of  social  interaction  in  real-world 

environments.  The  methodology  also  takes  into  account  the  requirements  of  the  broad 

community of domain scientists that routinely make use of social network analysis in their 

research. Table 1 compares the techniques surveyed in this chapter against the proposed 

methodology.
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TABLE I 

COMPARISON OF THE SURVEYED VISUALIZATION TECHNIQUES AGAINST THE 

METHODOLOGY PROPOSED IN THIS THESIS

Approach Includes 
time

Reveals 
evolution 
of groups 
over time

Reveals 
actors' 
group 

membership 
choices over 

time

Spatio-
temporal 
analysis

Filtering Includes 
statistics

Static graphs - - - - Yes Yes
Animated dynamic 
graphs

Yes Limited - - Limited -

Unrolled dynamic 
graphs (38, 39)

Yes Limited Limited - Yes Limited

Subgraphs
evolution (37)

Yes Yes - - - Yes

C-Group (40) Yes - Yes - - -
Dynamic interaction 
graphs (36)

Yes - Yes - Yes -

Community 
interpretation
graph (3)

Yes Limited Limited - - -

This thesis Yes Yes Yes Yes Yes -

A rethinking  of  traditional  graph-centric  methodologies  is  not  only  useful,  but  also 

imperative for the effective depiction of  dynamic social  networks (43).  Furthermore,  the 

wide adoption of social network analysis by domain scientists makes it important to design 

visualization environments that strongly couple domain specific data with abstract social 

interaction depictions in order to show how the social behavior of actors  and groups is 

affected by the physical or virtual environment in which the interaction takes place.



3. METHODOLOGY

This  chapter  proposes  SocioScape,  an  interactive  visualization  tool  that  embodies  a 

novel  methodology  for  the  temporal  and  spatial  analysis  of  group  dynamics  in  social 

networks. First, a set of requirements are established to help guide the design of the tool. 

After this, the visualization pipeline is discussed. Finally a detailed description of the visual 

representation techniques used in SocioScape is presented along with a discussion of their 

advantages over graphs.

3.1 Analytical goals of SocioScape  

In dynamic social networks, analysts seek to uncover patterns that govern the evolution 

of social groups and the behavior of actors over time. Although sociologists are usually 

interested in the structural outcome of this evolution, other domain scientists are concerned 

with understanding the environmental  factors  that  influence the behavior of  actors,  and 

contribute  to  shaping  the  structure  of  the  network.  For  example,  ecologists  need  to 

understand  how  the  social  behavior  of  animals  is  affected  by  their  reproductive  state, 

resource  requirements,  or  the  presence  of  human  activity  within  their  habitat. 

Epidemiologists might be interested in the effect of a local contamination on the spread of 

disease in a particular location.  Public watch groups seek to understand how campaign 

contributions influence voting of elected officials. All of these are example of social systems 

in which the behavior of actors is, more or less, affected by their environment, and by other 

external factors.

33
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The vast majority of visualization techniques for social networks assume a static model 

in  which  the  network  does  not  change.  These  techniques  are  therefore  inapplicable  to 

dynamic networks that incorporate time. Although some techniques exist for visualizing 

dynamic  networks,  these  techniques  focus  almost  exclusively  on  revealing  the  social 

structure  present  in  the  network.  Little  attention  is  paid  to  the  context  in  which  the 

interaction occurred in. Thus, these techniques are often ineffective for explaining how and 

why the observed structure emerged in the first place. For example, although there are some 

tools that can visualize the social structure inherent in wild population of animals, these 

tools do not attempt to combine environmental attributes with the visualization (such as the 

position of individual animals or the location of water holes). Therefore, an ecologists can 

not use these tools to explore the role of resource distribution, among other factors, on the 

social behavior these populations. 

There is a need for a new visualization methodology for dynamic social network that go 

beyond graph-based representations and address the needs of domain scientists. In order for 

the methodology to be effective, it should meet a number of key requirements. First,  the 

methodology  should  explicitly  include  some  notion  of  change  over  time.  Its  graphical 

representations should depict the evolution of social groups, as well as association choice 

actors make (i.e., what groups an actor chooses to associates himself with over time). These 

representations should also be easy to understand and interpret, even for users who are not 

experts with graph-based representations. The attributes, along with their implications, are 

discussed in detail in the rest of this section.
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3.1.1 Dynamic  

Social  behavior  is  a  dynamic  phenomenon  that  evolves  with  time.  Therefore,  any 

visualization  methodology  that  attempt  to  be  useful  for  network  analysts  should 

acknowledge this fact, and explicitly provide semantics and visual depictions that allow the 

representation of dynamic interaction between its actors. 

Another requirement stems from the diversity of social systems that can be modeled 

using dynamic networks. Social interactions in these systems can occur over varying time 

scales  ranging  from  minutes  to  years.  Therefore,  the  framework's  definition  of  social 

interaction  and time should  be  flexible  enough to  capture  interactions  at  both fine  and 

coarse-grained temporal scales.

3.1.2 Depiction of social groups evolution  

A fundamental phenomenon that social network analysts look for is social groups. These 

groups are composed of a number of actors who interact closely with each other. Examples 

include research groups in an academic institution or a group of friends sharing a particular 

hobby.  In dynamic social  networks these groups  evolve over  time.  As time passes,  new 

actors join a social group, and existing actors leave the group to join another one.

Understanding the dynamic evolution of these groups is imperative to understanding 

the overall structure of the society being studied, and how this structure evolves over time. 

Hence, the framework should provide effective visual depictions that facilitate analysis of 

group evolution. 
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One of the challenges in visualizing the evolution of groups in dynamic networks is that 

the very notion of these groups has traditionally been static and transient. That is, groups 

appearing  in  different  timesteps  are  considered  more  or  less  independent.  Without  an 

appropriate dynamic group semantics, it is hard to come up with useful visualizations that 

illustrate  the  development  of  these  groups.  Hence,  the   framework  should  not  simply 

visualize the transient  groups that appear at different  timesteps,  but  should introduce a 

persistent notion of a social group that is more flexible in terms of actor membership. We 

make use of the model proposed by Tantipathananandh et al (3). This model established the 

notion of  “community”,  a  grouping of  individuals  that  persist  over  time,  allowing new 

members to join in and exiting members to leave. It also provides a stable tagging scheme 

that  can label  instances of  the same group at  different  timesteps.  The stable  labeling of 

communities allows generating a stable layout that adheres to the principle of preserving 

the mental map.

3.1.3 Depiction of actors' group membership choices  

Another related analytical goal  is  studying association choices that actors make over 

time. In social systems, actors continuously make decisions about whom to interact with, 

what social groups to join, or whether to leave their current group. These association choices 

when taken collectively form the fabric of the social structure, and influence its evolution 

over time. 

An understanding of the patterns that govern individual behavior in the society takes 

the analysts a long way towards explaining why certain actors have more or less influence 

on the network,  and how the micro-interactions in the society give rise  to its  structural 
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elements. Therefore, the visualization framework should provide mechanism to effectively 

depict the association and group membership choices that actors make over time.

3.1.4 Integration of spatial and temporal analysis  

In many examples of social networks,  the geographic placement of actors within the 

environment have a significant impact on the form of social interaction that takes place. This 

fact has often been neglected by most social network visualization tools as most network 

analysts were traditionally interested only in the sociological aspects of the interaction with 

not much regard to the physical environment. However, as domain scientists start to rely on 

these tools, the need to explicitly address the influence of external environmental factors on 

the social behavior is becoming more important. 

An  effective  depiction  of  the  spatial  arrangement  of  actors  and  groups  in  the 

environment is imperative to domain scientists who are not only interested in the emerging 

social  structure,  but  also  demand  an  explanation  that  takes  environmental  factors  into 

account.  The visualization framework should also  be  easily  extendable  to  include  other 

domain attributes relating to actors and groups.

3.1.5 Easily comprehensible depictions  

Although graphs are powerful at abstracting many relational information, they are not 

easily comprehensible by non-experts. As more domain scientists start to use social network 

models, there is a growing need to come up with more user friendly visual representations 

that are easier to understand and analyze.
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  This section discussed a set of key attributes that the proposed methodology should 

meet  and  provided  justifications  for  these  attributes.  The  next  section  describes  a 

visualization pipeline designed to meet these attributes.

3.2 Visualization pipeline  

A visualization pipeline for social networks describes a set of transformations on the 

raw social interaction data to produce a graphical representation of that interaction. The 

proposed pipeline adheres to the Haber-McNabb visualization model (58). Figure 3.1 shows 

the  a  schematic  description  of  SocioScape's  visualization  pipeline.  First,  the  data  is 

preprocessed using a community identification algorithm to detect the social groups in the 

network. The result of this step is referred to as the community interpretation. The number 

of communities present in the community interpretation can be overwhelming. To reduce 

the amount of data that ends up in the final visualization, filters can be interactively applied 

to  select  a  subset  of  the  detected communities,  or  to limit  the  analysis  to a short  time-

window. Finally, the data coming out of the filters is rendered using two visualizations – the 

space-time cube which depicts the physical movements of communities, and the Affiliation 

Timeline  which  depicts  the  evolution  of  communities  over  time.  The  elements  of  the 

pipeline are described next in detail.
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3.2.1 Dynamic interaction data  

The dynamic interaction data is a digital representation of a real-world social network. 

The social network is observed for a continuous period of time. The network is sampled an 

arbitrary number of times during this period generating a static snapshot at each of these 

timesteps.  The sampling process does not have to be periodic.  This means that the time 

period between two consecutive samples could vary.

Each  static  snapshot  is  represented  by  a  static  graph  specifying  cliques  (complete 

subgraphs) of actors that were observed interacting with each other at that snapshot. This 

means that the unit of interaction in our model is a group of actors transitively interacting 

with each  other,  as  opposed to  interactions  between a  pair  of  actors.  This  constraint  is 

Figure 3.1: SocioScape's visualization pipeline
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imposed by the community identification framework (described in the next section) that 

SocioScape uses.  Although this  interaction model  is  more  restrictive  that  the  traditional 

dyadic  relationship  model,  it  nevertheless  captures  a  wide  range  of  real-world  social 

interactions. On the other hand, the benefit of this restriction from a visual representation 

perspective  that  it  enables  us  to  represent  the  overall  group  dynamics,  as  opposed  to 

addressing the micro-interactions that occur inside a group.

3.2.2 Community identification  

This  step  implements  the  community  identification  framework  proposed  by 

Tantipathananandh et al (3). The algorithm detects the unique communities present in the 

network after taking into  account  the collective interactions  between all  actors  over  the 

observation period. A community is  grouping of actors that persists and evolves over time, 

allowing  new  actors  to  join  and  existing  ones  to  leave  the  community  throughout  the 

observation period. Each community is given a unique tag (or color). At each timestep, a 

community  is  represented by one of  the  transient  groups  of  actors  who were  observed 

interacting  with  each  other  at  that  timestep.  However,  the  notion  of  community  is 

temporally stable. That is, a community usually spans more than one timestep though its 

members are likely to change over time. Figure 3.2 presents an example outcome of the 

community identification process. 
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3.2.3 Community interpretation  

The  community  identification  process  is  carried  out  as  a  preprocessing  step  as  the 

algorithm described in (3) is computationally expensive. The result of the algorithm tags 

each of the groups at each timestep with the a community ID (unique across one timestep). 

This data is referred to as “community interpretation”.

Figure 3.2: An example output generated by the community identification algorithm 
described in (3). At each timestep (T1 through T4), actors who were observed interacting 
with each others are grouped together. Three unique communities are detected (blue, red, 
and green). At each timestep, every one of the three communities is represented by exactly 
one group. The definition of community allows its members to switch their affiliation from 

one community to another over time. However, an actor can be affiliated with one 
community only at a given timestep. Affiliation switch is indicated by an arrow from the 

previous community to the new one.
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3.2.4 Filters  

There are  three  types  of  filters  that  can be used by the user  to limit  the  amount  of 

information that ends up in the visualizations.

● Temporal filter: This filter allows the user to specify a continuous time-window that 

falls anywhere within the observation period. The length of the time-window can 

also be specified by the user, and can be expanded to cover the entire observation 

period. Only communities and actors that were active during this time-window will 

end up in the visualization. This allows the analyst to focus her attention on a small 

time period for detailed analysis. Conversely, one can visualize the interactions in 

the entire dataset at once and look for an over all pattern.

● Actors filter: This filter allows the user to select a subset of actors to be visualized. 

Actors that were not selected do not show up in the visualization.

● Communities filter: Similar to the actors filter, the communities filter allow the user 

to select a subset of the detected communities to be visualized.

3.2.5 Affiliation Timeline  

The Affiliation Timeline is one of two visualizations modes in SocioScape. It comprises a 

2D visualization that is similar to a parallel coordinate diagram. The visualization depicts 

the evolution of communities, as well as the association choices that actors make over time. 

The temporal dimension is depicted on the X axis instead of using animation, while the 
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communities and individuals are arranged in the Y axis. The depiction methodology used in 

the Affiliation Timeline is discussed in detail in section 3.3.1.

3.2.6 Actors/group movement data  

Often  the  sampling  process  in  dynamic  social  networks  records  not  only  the  social 

interactions between actors, but also their geographic location within the environment. If 

this information is available, it can be used in the space-time cube visualization showing 

how actors and groups move during observation period. The movement data is composed 

of a database that stores the physical position of each of the communities at each timestep 

using some coordinate system.

3.2.7 Surface and relief maps  

High resolution geographic maps are becoming increasingly available as the number of 

satellites providing commercial mapping services increases. It is easier than ever to obtain 

surface and relief maps (also known as Digital Elevation Models) for the environment in 

which the social interaction takes place. This data can be used to enrich the space-time cube 

visualization, allowing domain scientists to analyze the effect of geographic positioning of 

actors and groups along with other environmental influences on the social behavior.

3.2.8 3D terrain mesh  

Using a relief map, a 3D terrain model can be generated. The model can then be used in 

the  space-time  cube  visualization  allowing  domain  scientists  to  examine  the  effect  of 

topography on the movement and interactions between groups and actors.
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3.2.9 Space-time cube  

The space-time cube is a 3D visualization based on the work of (51, 53). It shows the 

movement of communities over time. The space-time cube is discussed in detail in section 

3.3.2.

3.3 Visual depiction of spatio-temporal group dynamics  

SocioScape uses two representations to visualize the spatio-temporal group dynamics in 

the  subject  social  network.  The  first  representation,  referred to  the  Affiliation  Timeline, 

depicts the evolution of communities, and illustrates how actors switch their affiliation with 

communities over time. The second depiction is based on the space-time cube (51, 53). It 

depicts the movement of communities in the environment. Together, these two techniques 

are combined in an interactive visualization environment enabling a network analyst  to 

analyze the patterns and trends of  social  interaction over  time.  Additionally,  the spatio-

temporal depiction of movement in the space-time cube allows domain scientists to answer 

questions related the effect of the geographical positioning of actors within the environment 

on their behavior.

3.3.1 Affiliation Timeline  

The  Affiliation  Timeline  is  a  2D  representation  that  resembles  a  parallel  coordinate 

diagram  though  with  different  semantics.  The  visualization  depicts  two  phenomena  of 

interest:

1. The evolution of communities in the network.
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2. The association choices that actors make over time. That is, the communities that a 

particular individual chooses to associate himself with at different timesteps.

Figure  3.3  shows  an  instance  of  the  Affiliation  Timeline  depicting  the  communities 

illustrated  in  figure  3.2.  The  X  axis  represents  time,  while  communities  and  actors  are 

arranged on the Y axis. Communities are depicted with non-overlapping rectangular areas 

(each  rectangles  represents  exactly  one  community),  and  the  different  rectangles  are 

arranged on top of each other. These rectangles are divided into “slots” which are occupied 

by actors affiliated with the community. Actors are depicted with lines that fall within the 

community with which they are affiliated. At a particular moment in time, all actors falling 

within the same rectangle (i.e.,  the  same community)  are said to  be affiliated with that 

community  at  that  timestep.  This  representation  groups  actors  based  on  their  shared 

community  affiliation,  as  opposed  to  drawing  edges  between  them  to  indicate  mutual 

association. This helps avoid the cluttering caused by overlapping edges in graphs. 
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Each actor has exactly one contiguous line. A straight horizontal line indicates that an 

actor remains affiliated with its community. When an actor leaves its community and joins 

another one, its line is skewed towards the new community at the timestep at which the 

switch occurred. If an actor leaves its community at one point in time and later returns to it, 

the actor returns to the same slot it had originally occupied. At the moment, the vertical 

arrangement of actors and communities inside the diagram is based on a first-in-first-out 

principle. However, the layout could be later optimized to minimize line crossings.

Figure 3.3: Affiliation Timeline depicting communities in the example presented in figure 
3.2. The X axis represents time, while communities and actors are arranged on the Y axis. 
Actors are depicted with contiguous lines that fall within the community with which they 

are affiliated. Labels on the left associate lines with actors' ID, while labels on the right 
indicate the different communities. A skewed line indicate an actor switching its affiliation 

from one community to another. For example, actor number 3 leaves community A and 
joins community B at timestep T2.
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There are a number of factors that make the Affiliation Timeline efficient at depicting 

group dynamics. These factors are discussed next. To visually illustrate these factors and 

prove the Affiliation Timeline's superiority over dynamic graphs, we shall compare figure 

3.3 to figure 3.4, which depicts the same dynamic social network data illustrated in figure 3.2 

using a graph layout instead.

3.3.1.1 Perceivability of social groups  

In  the  Affiliation  Timeline,  communities  are  clearly  marked  in  the  visualization  by 

enclosing them with non-overlapping rectangles, and the different communities are color-

coded with unique colors to help differentiate them. The human visual processing system is 

very efficient at segmenting  enclosed, non-overlapping geometrical structures. This should 

make it easy for the analyst to examine the contents of these rectangles at any point in time. 

Hence,  the task of determining the actors affiliated with a particular community should 

become perceptually intuitive at all timesteps.

Figure 3.4: A graph layout of the dataset depicted in figure 3.2
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In contrast, recognizing the different communities in the network is not an intuitive task 

when the analyst is presented with an animated graph layout that preserves the mental map 

across timesteps. As the community structure in the graph changes with time, the relative 

positioning of nodes no longer reflects those communities (i.e., nodes closer to each others 

might  not  necessarily  belong  to  the  same  community).  For  example,  in  figure  3.4, 

determining the different communities in timestep T4 is not intuitive. Rather, it requires the 

analyst to sequentially trace the edges connecting nodes to each others in order to see if they 

belong to the same community.

3.3.1.2 Perceivability of actors association choices  

Another common task for network analysts is determining the different communities 

that a particular actor choose to associate himself with over time. The Affiliation Timeline 

could again provide an intuitive mechanism for tracing an actor's association history. 

By unrolling the temporal dimension and depicting each actor as one, solid, contiguous 

line,  the user can easily follow actors as they move between different communities over 

time.  This  is  because  the  visual  processing  system  of  the  viewer  quickly  segments  the 

different lines that belong to different actors in the early stages of the cognition pipeline, 

allowing the viewer to quickly trace an actor's community affiliation history. When an actor 

switches affiliation form one community to  another,  the  straight  line  suddenly becomes 

crooked, attracting the attention of the analyst.

In contrast, spotting an actor switching affiliation from one community to another is not 

an easy task when the network is depicted using a graph. For example, in figure 3.4, it is not 
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easy to notice that actor number 6 switched affiliation and started interacting with actors 1 

and 4. In figure 3.3, this phenomenon is far more evident as the line representing actor 6 

suddenly jumps from community B to community A. 

Another feature that  the Affiliation Timeline provides is  the ability to see the entire 

affiliation  history  of  an  actor  throughout  the  observation  period  (or  a  portion  of  it). 

However, this is very difficult to see in a graph animation as the visual working memory of 

humans is very short. On the other hand, temporally unrolling the entire graph is feasible 

only for a few timesteps. Otherwise, the graph suffers from excessive cluttering.

3.3.1.3 Filtering and layout stability  

SocioScape provides robust temporal filtering semantics allowing the analyst to select a 

contiguous time-window of an arbitrary length that falls anywhere within the observation 

period. This updates the Affiliation Timeline to render only the affiliation history of actors 

within the specified time-window. The space occupied by each timestep on the X axis is 

expanded to cover the available space in the diagram. Figure 3.5 shows the same Affiliation 

Timeline but with a time-window spanning T3 – T4.
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An  important  property  of  the  Affiliation  Timeline  is  that  the  vertical  position  of 

communities and actors within the diagram is invariant with respect to the selected time-

window filter. That is, a when the user chooses to shrink the temporal filter to focus on a 

shorter period of time, the position of actors and communities  does not change.  This  is 

because the vertical position of actors and communities is first pre-computed to cover the 

entire observation period, creating all the necessary slots inside each community to hold 

actors.  

The  stability  of  the  layout  throughout  all  timesteps  allows  the  user  to  interactively 

explore the social interaction at different scales simply by adjusting the length of the filtering 

time-window or its position within the observation period. With a fully stable layout, the 

Figure 3.5: Affiliation Timeline depicting the same data shown in figure 3.3 but with the 
time-window spanning T3 – T4
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user's  mental  map  will  be  preserved,  minimizing  distractions  and  increasing  the 

effectiveness of the visualization.

3.3.2  Space-time cube  

The space-time cube visualization is  a  3D representation that is  based on the model 

proposed by Hägersrand (51) and Karrak (53). It depicts the movement of communities in 

the physical environment over time. Figure 3.6 illustrates the space-time cube visualization. 

The base of the cube (XY plane) depicts the spatial dimension, while the Z axis is used to 

depict time. The cube's base is a 3D topological map of the region. An abstract map, or a 

satellite image can be rendered on the 3D map if the data is available.

Communities are depicted using spheres. The horizontal placement of communities (in 

the XY plane) reflects the physical position of the community in the environment at the time 

of sighting, whereas its vertical position reflects the time of sighting. Recent sightings and 

positioned higher than older one. A line connects two consecutive sightings to depict the 

movement  of  the  community.  A  vertical  line  is  projected  from  the  spheres  onto  the 

topological map to disambiguate the actual position of the community sighting within the 

environment.
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The space-time view can be interactively manipulated by the user. The vantage point 

from which the scene is rendered can be translated in the 3D space, or by zooming in or out. 

Additionally,  the  whole  scene  can  be  rotated  in  3D space.  This  allows  users  to  change 

perspective in order to disambiguate some of the inferences. It also allows the user to focus 

on some of the sightings by zooming into the scene, or see an overview of the movement by 

zooming out. The main contribution of the 3D space-time cube to the visualization is that it 

shows how the different social groups share the environment and physically interact with 

each others over time.

Often, the social interaction is significantly affected by environmental factors such as the 

geographical position of groups and their relative distances to each others. Combining the 

Figure 3.6: Space-time cube visualization
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space-time cube with the  Affiliation Timeline provides a  method for  exploring both the 

social behavior,  and some of the environmental  factors under which this behavior takes 

place.  This  is  helpful  for  domain  scientists  who seek  to  uncover  how the  environment 

shapes  the  structure  of  the  society  being  studied,  and  how  that  structure  responds  to 

environmental changes over time. For example, it allows an ecologist to see how herds of 

animals compete to access resources in a shared habitat, what strategy these groups employ 

to  avoid  predation,  or  how the  behavior  of  these  groups  adapts  to  changing ecological 

factors such as temperature.

3.3.3 Combining spatial and temporal analysis of communities  

SocioScape combines the Affiliation Timeline with the space-time cube in an interactive 

visualization environment. The two visualizations can be used to display the same social 

network side-by-side, allowing an analyst to see both the community structure, as well as 

the geographical position and movement of these communities over time.

To amplify the user's  ability to analyze both the spatial  and temporal  aspects of the 

social interaction, SocioScape provides a semantic cross-highlighting feature. Data selected 

from one of the diagrams causes related data to be automatically highlighted in the other. 

For example, the user can select one of the community sighting locations in the space-time 

cube  visualization  by  simply  clicking  the  sphere.  This  in  turn  causes  a  portion  of  that 

community's  rectangle  to  be  automatically  highlighted  in  the  Affiliation  Timeline.  This 

highlighted portion shows the actors affiliated with that community at the time of sighting. 

Conversely, the user can highlight a period in the Affiliation Timeline by drawing a box. 
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This causes the community locations sighted during that period to be highlighted in the 

space-time cube visualization. Figure 3.7 illustrates this feature.

3.4 Summary  

This chapter proposed a methodology for the visual analysis of dynamic social networks 

that is  useful for both sociologists interested in studying the structures of various social 

systems, as well as other domain scientists who also seek to understand the environmental 

factors that affect the social interaction. SocioScape combines a novel visual representation 

method, the Affiliation Timeline, with the well established space-time cube technique for 

visualization of spatio-temporal data. The Affiliation Timeline depicts the evolution of social 

groups, as well as the association choices actors make over time. By eliminating edges and 

nodes present in graphs, the Affiliation Timeline could provide an intuitive mechanism for 

an  analyst  to  explore  the  social  structure  at  all  timesteps.  Furthermore,  preserving  the 

position  of  actors  and  communities  within  the  diagram  across  all  timesteps  makes  the 

Figure 3.7: Combining Affiliation Timeline and space-time cube within one visualization 
environment. Semantic cross-highlighting causes data to be selected in one depiction to be 

automatically highlighted in the other.
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diagram more readable than traditional graph representations. The next chapter presents an 

interactive visualization environment that implements the proposed methodology.



4. IMPLEMENTATION

This  chapter  describes  the  design  and  implementation  of  SocioScape,  an  interactive 

visualization environment that allows an analyst to explore one or more dynamic social 

network datasets. The visualization environment implements the pipeline presented earlier 

and supports the Affiliation Timeline as well as the space-time cube visualization.

4.1 Programming environment  

The visualization environment was implemented in Electro (62). Electro is a run-time 

application  development  environment  designed  for  real-time  3D  and  2D  graphics  with 

hardware acceleration. There are a number of advantages that make Electro an attractive 

option:

• Rapid implementation: programming in Electro is done using the Lua, a simple and 

highly  flexible  scripting  language.  This  allows  rapid  development  of  interactive 

visualization applications that can be easily extended in a short amount of time.

• Platform  independence:  Electro  runs  on  all  major  operating  systems,  including 

Windows,  MacOS X,  and Linux.  It  also  supports  a  wide variety  of  architectures 

including 32-bit and 64-bit Intel and PowerPC.

57
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• Support  for  tiled  display:  Electro  supports  a  wide  variety  of  display  platforms 

ranging from single screen laptops to scalable tiled displays that have resolutions on 

the order of hundreds of millions of pixels. This means that SocioScape can be used 

on desktop computers with single displays, as well as wall sized tiled displays (60). 

4.2 User interface  

The user interface has been designed primarily to allow users to take advantage of the 

available screen space by arranging different depictions of the data side-by-side for cross-

analysis and correlation. Additionally, the program allows multiple different datasets to be 

visualized simultaneously for comparison. Figure 4.1 illustrates the user interface.

Figure 4.1: User interface. The bottom area contains two sliders for specifying the filtering 
time-window. Interactions that falls outside the specified temporal filter do not show up in 
the visualization. The sidebar on the left allows selecting a subset of actors or communities 

to be visualized. The while area is where the actual visualization gets rendered.
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The visualization space displays one of the two depiction modes; the space-time cube or 

the Affiliation Timeline. The depiction mode can be switched from a pop-up menu that can 

be brought up by right-clicking anywhere in the visualization space. The menu also allows 

switching between the different available datasets. 

The  interface  allows  an  analyst  to  interactively  modify  the  filters,  causing  the 

visualization to be re-rendered. The temporal filter allows the user to specify a continuous 

time-window that falls anywhere within the observation period. The length and position of 

the time-window can be adjusted using two sliders: the green slider specifies the beginning 

timestep ( T begin ), whereas the red slider specifies the ending timestep ( T end ). Interactions 

and community sightings the occur outside the filtering time-window are not shown in the 

visualization. On the left side of the screen, the communities/actors filter panel allows the 

user to select a subset of communities or actors to be depicted in the visualization. This 

panel can be retracted to enlarge the area available for the visualization. 

To  allow the  analyst  to  visually  compare  and correlate  the  different  depictions  and 

datasets, the visualization space can be divided into a number of smaller spaces. Figure 4.2 

illustrates this concept. Each visualization space can independently show one of the two 

depiction  modes  with  its  own  set  of  filters.  The  user  has  complete  control  over  the 

arrangement  and  sizes  of  these  spaces.  This  added  control  affords  more  flexibility  to 

spatially  arrange  the  relevant  views  to  ease  the  task  of  comparing  and  correlating  the 

different depictions. Figure 4.3 is screenshot of the application showing both the space-time 

cube  and  the  Affiliation  Timeline.  Figure  4.4  shows  another  arrangement  in  which  the 

recorded group movement of two populations of wild animals is shown side-by-side.
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Figure 4.2: The visualization space can be divided into smaller spaces with each space 
showing one of the two depiction modes with its own set of filters.

Figure 4.3: Screenshot of the visualization environment showing the space-time cube on 
the left and the Affiliation Timeline on the right.
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4.3 Interaction  

To interact with the visualization space, there are a number of controls that apply to both 

the Affiliation Timeline and space-time cube:

● Zooming: the view can be zoomed in/out using the mouse wheel. An analyst can 

zoom out to see an overview of the interactions and attempt to look for an overall 

pattern.  Conversely,  zooming in  allows one to  focus on a  smaller  portion of  the 

dataset.

● Translation: When the view is zoomed in, not all the data might fit in the available 

visualization space. To show the hidden data, the user can simply translate the view 

by dragging the mouse while holding the right  button.  Since both the Affiliation 

Timeline and space-time cube unrolls the temporal dimension linearly in space on 

the  Z  and  X  axes,  respectively,  translating  the  visualization  in  one  of  the  two 

Figure 4.4: Comparing group movement of Onagers (left) against Grevy's zebra (right)
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directions simulate the passage of time. On the other hand, translating the view in 

the other dimension allows one to explore the different actors and communities.

● Highlighting:  The affiliation history of an actor in the Affiliation Timeline can be 

highlighted by clicking the line that  depicts the actor of  interest.  This  causes the 

other actors in the visualization to be de-emphasized by decreasing the opacity of 

their  lines.  Similarly,  a  community sighting can be highlighted by clicking on its 

sphere in the space-time cube, causing it to glow.

4.4 Semantic Cross highlighting  

Although the different visualization spaces shown simultaneously can be independently 

manipulated  to  show  different  portions  of  the  dataset  at  different  time  periods,  the 

environment supports a shared highlighting context. When the user highlights data in one 

visualization space, the relevant data in all other spaces is automatically highlighted. For 

example, when a community sighting is highlighted in the space-time cube, a portion of that 

community's  rectangle  is  automatically  highlighted  in  the  Affiliation  Timeline.  This 

highlighted portion shows actors affiliated with that community at the time of sighting. 

Figure 4.5 shows an example of this.
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4.5 Display scalability  

One of the novel features in the Affiliation Timeline is that it projects the complex social 

interactions that happen over time onto a planar diagram. This allows the visualization to 

scale well as the number of timesteps increases; the width of the diagram can be simply 

increased  to  allow  interactions  over  longer  time  periods  to  be  depicted.  However,  the 

visualization will always be limited by the available screen resolution.

The  use  of  scalable  tiled-displays  is  becoming  increasingly  common  in  research 

environments (60). These displays overcome the limited resolution of a single displays by 

simply tiling up multiple  displays,  creating wall-sized displays that  can be interactively 

used to display more informations. Our implementation of SocioScape takes advantage of 

such platforms to increase the available screen resolution available to the application. This 

allows one to  visualize  longer  periods  of  interactions.  Alternatively,  a  larger  number  of 

datasets can be displayed side-by-side. 

Figure 4.5: Few sighting locations of the green (community 2) and yellow (community 5) 
selected in the space-time cube (left) with the corresponding social structure highlighted in 

the Affiliation Timeline in pink (right)



5. CASE STUDY

This  chapter  presents  an evaluation of  SocioScape for  the  exploration  of  real-world, 

spatially referenced, dynamic social network datasets. We present a case study in which the 

implementation described earlier is used by a team of ecologists to explore two datasets 

depicting the grouping behavior and movement of two populations of endangered species. 

The first population belongs to the Grevy's zebra specie, found in northern central Kenya. 

The second population is a member of Onagers, a specie of wild asses that is similar in 

appearance  to  donkeys.  This  population  reside  in  the  eastern deserts  of  India.  The two 

species  are  in danger of  extinction due to a  variety  of  environmental  factors  as  well  as 

human-related activities in their habitat.

There is a growing interest among behavioral ecologists in the social behavior of these 

species.  Ecologists  seek  to  understand  how  these  populations  are  responding  to 

environmental challenges such as predation risk and dwindling food resources, and how 

their social interaction is being affected by these factors. This information allows ecologists 

to  devise  appropriate  conservation  plans  to  provide  protection  to  the  remaining 

populations.

SocioScape  can  be  effectively  used  to  explore  potential  answers  to  some  of  these 

questions. Using the space-time cube and the Affiliation Timeline side-by-side, an ecologist 

can see how herds or groups of animals move in the environment, and simultaneously look 
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at  the composition of  these social  groups at  the time they were sighted.  Conversely,  an 

ecologist can look at the Affiliation Timeline for interesting phenomena (for example, an 

individual switching affiliation from one community to another), highlight the appropriate 

portion  in  the  diagram,  and look  at  the  geographical  location  where  this  phenomenon 

occurred. This could give clues on the influence of various environmental factors on the 

behavior of these animals. 

To illustrate the advantages of using SocioScape in this domain, we first describe the 

visualization methods that the ecologists currently use. The limitations of these techniques 

are pointed out, along with a discussion of how SocioScape addresses them. Follows this is a 

presentation of a user study that was conducted to evaluate SocioScape as an exploratory 

tool with the participation of experts in the field of behavioral biology. Throughout the user 

study,  the  visualization  environment  described  earlier  is  used  to  explore  two  datasets 

comprising observations of social interaction and movement of Grevy's zebras and Onagers. 

5.1 Datasets  

The datasets used in this case study were obtained by observing animal groups in the 

wild and recording their  location,  as  well  as  the  individuals  that  were  present  in  these 

groups. The identification of individuals in Grevy's zebra groups was done by analyzing the 

striping patterns on the animal's skin (each zebra individual has a unique pattern). For each 

group sighting, three pieces of information was recorded: 

● The GPS coordinates of the sighting location.
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● The date and time of the sighting, which we refer to as the timestep.

● Ids of the individual that were present in the group. All the individuals present in 

the group are considered to be interacting with each others.

The Grevy's zebra dataset contains social interaction and movement of a Grevy's zebra 

population in the Mpala conservation ranch in northern central  Kenya.  The numbers of 

individuals in the dataset is 35. The animals were observed in a 45 square kilometers area 

over a period of two months. During this period,  149 sightings of zebra groups were made. 

The  Onager's  dataset  comprises  41  individuals.  The  number  of  group  sightings  is 

approximately 350 spread over a 75 square kilometers area over a period of approximately 6 

months.

5.2 Earlier techniques  

Earlier  visualization  techniques  used  by  behavioral  ecologists  depicted  either  the 

movement of individuals, or the social structure of the population. These depictions were 

generated and rendered separately, and could not be easily integrated into one interactive 

environment.

5.2.1 Visualization of community structure  

To visualize the dynamic community structure of the population, the ecologist used a 

graph-variant proposed in (3). Figure 5.1 shows the community affiliation in Grevy's zebra 

visualized using this technique. Figure 5.2 shows a visualization of the same dataset using 

the Affiliation Timeline.
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Figure 5.1: A graph-variant showing the community affiliation of Grevy's zebra in the first 
19 timesteps. Individuals are depicted with nodes and communities are depicted with 

colored rectangles encompassing individuals affiliated with those communities. Every node 
has exactly one incoming and one outgoing edge that link it to its two siblings representing 
the same individual in the previous and next timesteps, respectively. Circles indicate that an 
individual was present when the sighting of the community was made. A dot indicates that 

an individual was missing. Red edges depict an individual switching affiliation from one 
community to another. Source: (3)
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One  of  the  problems  in  diagram  5.1  is  that  although  edges  help  trace  an  animal's 

community affiliation history, this still requires significant effort from the analyst, making 

the diagram difficult to interpret. The Affiliation Timeline solves this problem by getting rid 

of nodes and edges, and depicting an animal's affiliation history with one solid line. For 

example, in figure 5.1, it is difficult to notice that individual number 3 switches its affiliation 

from the pink to the green community. In contrast, this switch is very easy to notice in figure 

5.2. Another problem with the layout in figure 5.1 is that it is not stable. That is, the position 

of individuals and communities in the layout changes for no obvious reason. In contrast, the 

Figure 5.2: Affiliation Timeline depicting the community affiliation of Grevy's zebra in the 
first 19 timesteps. Lines depict individuals as they change affiliation from one community 
to another. The color of the line indicates the reproductive state of the animal;  Orange for 
stallion, Red for lactating female, Blue for non-lactating female, and Green for bachelor.
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position of individuals in the Affiliation Timeline is stable as long as their affiliation does 

not change. The positions of the different communities is also stable across all timesteps.

The diagram shown in figure 5.1 also contains the reproductive state for each animal at 

all  timesteps.  This is depicted with a single character inside the individual's node (S for 

stallion,  L  for  lactating  female,  N  for  non-lactating  female,  and  B  for  bachelor). 

Unfortunately, this does not help an analyst monitor the reproductive status of an individual 

over  time  because  this  requires  sequentially  scanning  the  individual's  nodes  at  each 

timestep. By depicting this information with color (Orange for stallion, Red for lactating 

female,  Blue  for  non-lactating  female,  and  Green  for  bachelor),  the  Affiliation  Timeline 

makes it  easier to notice a change in the reproductive state  of  an animal as  it  becomes 

evident when the solid line changes  color.

A limitation of the Affiliation Timeline is that it does not make an indication when an 

individual is missing from its community. Often, when observations of animal groupings 

are recorded, some individuals might not be present with their community. This is features 

could be incorporated in future implementations. One possible way to depict an individual's 

absence from its community is to dim the color of its line at the time the individual was 

missing.  

5.2.2  Visualization of individual movement  

Understanding movement patterns of animals is essential to understanding their social 

behavior. In fact, a great deal of the social behavior exhibited by animals (including Grevy's 
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zebras and Onagers) is directly influenced by the need of individuals or groups to move in 

search for food and water, among many other factors.

With the advent of sensor networks,  it  is  becoming easier to track the movement of 

individuals and groups.  This data has been traditionally visualized on a 2D map of the 

habitat with linear tracks connecting two consecutive sighting locations. The ecologists have 

been  using  an  interactive  variant  of  this  technique  that  animates  the  movement  of 

individuals over the landscape (61). Figure 5.3 shows a screenshot of this visualization. 

A problem with this approach is that it is susceptible to cluttering. This makes it harder 

for  an  observer  to  trace  the  movement  of  animals.  Furthermore,  this  technique  uses 

animation to show the time period it took an individual or a group to move from one point 

which  only  allows  an  analyst  to  perceive  that  period  for  the  last  few  frames  of  the 

animation.

Figure 5.3: Screenshot of ActionTracker (61) showing the movement trajectory of three 
zebras. Tracks are coded with unique colors to differentiate the individuals.
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A major  disadvantage  of  using  two  separate  environments  to  visualize  the  social 

structure  and  the  physical  movement  of  animals  is  that  there  is  no  way  of  relating 

observation  in  one  visualization  to  the  other.  For  instance,  if  an  observer  finds  that  a 

particular individual suddenly made an unexpected movement at a particular moment in 

time,  there  observer  will  not  be  easily  able  to  investigate  the  social  structure  of  the 

population at that moment.

The tight integration of the spatio-temporal visualization, which shows the movement of 

groups  with  the  Affiliation  Timeline,  which  shows  the  community  structure  of  the 

population  allows  an  ecologists  to  investigate  how  the  movement  of  communities  and 

individuals  give  rise  to  the  underlying  social  structure.  Consequently,  the  different 

ecological circumstances  that influence the social behavior of these animals could be better 

understood. This information in turn could be used to determine appropriate habitat that 

could be later set aside for the conservation.

5.3 User study  

In  order  to  validate  the  effectiveness  of  SocioScape  for  the  exploration  of  spatially 

referenced  dynamic  social  networks,  a  user  study  in  has  been  conducted  in  which 

behavioral  ecologists  used  the  implementation  described  earlier  to  explore  the  social 

behavior and movement of Grevy's zebras and Onagers. The participants in the user study 

were expert researchers who originally collected both datasets. Hence, they were familiar 

with the overall social behavior of the two species, as well as their habitats. Furthermore, the 

participants were motivated to test the new system to further develop their understanding 

of the two datasets for their own research agenda.
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The user study followed traditional software evaluation trials. The trial had a number of 

participants simultaneously use the visualization environment to explore the Grevy's zebra 

and Onager dataset. The visualization was rendered on a tiled-display consisting of two 30-

inch LCD displays placed side-by-side. This allowed multiple users to simultaneously look 

at the same data and discuss their conclusions and inferences among themselves. Figure 5.4 

shows the setup.

The number participants in the user study was 10, 4 of them were ecologists, and the 

rest were computer scientists. Before beginning the trial, the participants received a brief 

training covering the use of  the visualization program and its features.  The participants 

were not asked to perform any specific task. Rather, they were encouraged to freely interact 

with the visualization to explore the datasets and discuss the inferences among themselves. 

The trial lasted for approximately 2 hours. During the trial, the participants were video and 

audio recorded. These recordings were later analyzed to determine if the visualization was 

effective and whether it helped expand the participants knowledge of the datasets.

Figure 5.4: Users utilizing a dual 30-inch tiled-display setup of SocioScape to analyze the 
movement and grouping behavior of Grevy's zebras
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5.4 Findings  

The participants started by dividing the visualization space into two smaller spaces; the 

first showed the space-time cube visualization on one display, while the other showed the 

Affiliation Timeline on the second display.

At first, the participants started looking at the Affiliation Timeline to get a sense of the 

overall  community structure of  the  population,  and to  look for  interesting communities 

(such as unusually large ones). At this point, the participants would apply a filter to the 

space-time visualization to show a subset of the detected communities which they deemed 

interesting. Then the participants started to look at how these communities moved in the 

landscape. While tracing the movement of communities, the users would highlight one or 

more of the sighting points. This would cause the social composition of these communities 

to be automatically highlighted in the Affiliation Timeline, allowing the ecologists to inspect 

the individuals affiliated with those communities at the time of sighting. Conversely, the 

participants would also look for interesting observations in the Affiliation Timeline (such as 

a group of individuals changing their community affiliation at once) and investigate the 

physical position at which these events occurred. 

The ecologists appreciated the fact that they can simultaneously see the movement of 

communities as well the social structure of the population at different points in time. In 

particular,  Dr.  Daniel  Rubenstein,  chair  of  the  department  of  Ecology and Evolutionary 

Biology at Princeton University, responded with the following comments.
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“We are  learning about  what motivates  individuals  and how that  affects  the 
dynamics of the group”. “This is very useful at showing us how individuals and 
communities are behaving”

Occasionally,  the  participants  would notice  an unusual  movement  in  the  space-time 

visualization, such as a community moving a significant distance in a short amount of time. 

This would trigger them to highlight the sighting location at which this movement was 

recorded,  and  look  at  the  Affiliation  Timeline  to  see  if  there  were  any  changes  to  the 

community structure at that point.

The  combination  of  space-time  cube  and  Affiliation  Timeline  has  revealed  some 

discoveries that would have been otherwise very difficult to see. For instance, two of the 

communities attracted a participant's attention after looking at their movement in the space-

time cube. These two communities seemed to be oscillating periodically between two sites 

in the landscape. The ecologists identified these two sites as a grazing and a drinking site. 

Although  these  communities  were  sharing  the  two  sites  and  moving  between  them 

periodically,  there movement was one day apart.  Furthermore,  looking at  the Affiliation 

Timeline confirms that these communities remain separate for some time before they each 

joined a third community. Figure 5.5 illustrates this phenomenon. This led to the hypothesis 

that these two communities were avoiding each others before the emergence of the third 

community:

“Even though these communities lineup in space very close to each others, they are off 
by a day. This is very robust at telling us they are avoiding each others.”
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The participants also liked the fact that the Affiliation Timeline shows the community 

affiliation of individuals along with their reproductive state:

“We are looking at a different projection that shows the individual by state moving in 
and out of the community, which is very useful.”

The participants also found it easy to trace the community affiliation of individuals over 

time  by  looking  at  the  Affiliation  Timeline.  This  provided  some  evidence  that  the 

representation method used in the Affiliation Timeline is more intuitive than graphs:

“It is easier to see the individuals move. That was really very easy.”. 

“This is a very clean depiction of community membership.”

Figure 5.5: The space-time cube (left) showing the green community (number 2) and yellow 
community (number 5) oscillating periodically between two sites with. However, their 
periodic movement is one day apart in time. The highlighted portion of the Affiliation 

Timeline (right) shows later that members of these two communities eventually merge into 
the purple community (number 7).
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The usage pattern as well as the findings that the participants were able to infer after 

using SocioScape validate the hypothesis that the combination of the space-time cube with 

the Affiliation Timeline is useful for investigating the spatial patterns, and how the physical 

decision making of individuals give rise to the underlying social structure. It also supports 

the claim that the Affiliation Timeline allows easy perception of the community structure, 

and how this structure changes over time. 

Overall, The reaction to SocioScape was very positive. The participants acknowledge the 

usefulness of integrating a spatio-temporal visualization with a depiction that illustrates the 

social  interaction  in  a  single  visualization  environment.  This  combination  allowed  the 

ecologists to study how the micro-dynamics of the population embodied by the movement 

of communities and individuals give rise to the underlying social structure. Dr. Rubenstein 

provided the following comments:

“[This visualization] finally put time and space together. This allows us to understand 
the physical decision making that lead to the shaping of communities. The dynamic 
community analysis gave us a better picture for understanding zebra dynamics. The 
space will give us even a better picture of that temporality.”

“This is giving us the spatial structure, and that's the power of this visualization.”

“What this [visualization] allows us is infer some of the dynamics when we were not 
there.”



6. CONCLUSION AND FUTURE WORK

This  thesis  presented  SocioScape,  an  interactive  visualization  tool  that  embodies  a 

methodology  for  the  visual  analysis  of  spatial  and  temporal  group  dynamics  in  social 

networks. The methodology introduces a novel visual representation technique suitable for 

dynamic social networks. This representation provide an advantage over dynamic graphs 

by explicitly illustrating the evolution of social  groups and association choices  made by 

actors  over  time.  The  representation  is  combined  with  a  well-established  technique  for 

depicting spatio-temporal data, allowing analysts to investigate the effect of the physical 

positioning of actors and their movement in the environment on their social behavior. This 

integration  also  facilitates  the  investigation  of  potential  hypotheses  that  explain  the 

emergence of the observed social structure structure. 

6.1 Contributions  

Earlier work on the visualization of dynamic social networks was inspired by automatic 

graph layout algorithms. While these techniques work well for static social networks, they 

suffer from a number of limitations when applied to dynamic networks that change with 

time. Furthermore, while these techniques provided overview of the social structure, they 

are  largely  useless  at  explaining  why this  structure  developed in  the  first  place.  While 

sociologists are usually interested in the abstract social interactions between actors, other 

domain scientists seek to understand the role of the environment in shaping that interaction.

77
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SocioScape addresses these limitations by proposing a novel visual representation for 

the depiction of social interaction. These representations radically depart from traditional 

graph inspired representations, focusing on revealing group membership choices that actors 

make over time. The depiction exploits properties of the human visual processing system to 

create an easily perceptible representation of the social structure. Furthermore, SocioScape 

provides a spatio-temporal visualization to represent the movement of groups and actors. 

This provides opportunities for investigating the role of external environmental factors and 

the positioning of actors within the environment on shaping the dynamics of interactions.

The  applicability  of  SocioScape  is  demonstrated  with  a  case  study  in  which  expert 

behavioral ecologists utilized an interactive implementation of the methodology to explore 

the social behavior and movement of two populations of endangered species. The results of 

the  case  study  provided  tangible  example  and  positive  support  that  confirm  the 

effectiveness of the methodology.

In summary, the contributions of this thesis are:

1. A novel visual representation method for dynamic social networks. The technique 

departs from traditional graph-based visualizations, employing depictions that are 

easier to interpret, revealing the evolution of social groups and association choices 

that actors make over time.

2. A methodology that integrates abstract representations of social interactions with a 

spatio-temporal visualization. This integration supports the investigation of the role 
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of environment in shaping the underlying social structure, and allows opportunities 

for exploring potential answers as to why that structure developed in the first place.

3. A case study in which the methodology was used to explore the social behavior and 

the physical  movement of  two populations of  endangered species,  validating the 

usefulness of the methodology.

6.2 Future work  

The tight integration of spatial and temporal analysis in SocioScape proved to be very 

useful in exploring potential explanations for the emergence of certain social structures as a 

function of group/actor movement and external environmental influences. While the spatial 

analysis  model  proposed  by  SocioScape  is  currently  limited  to  geographically-bounded 

social interactions, this model could be expanded to analyze other kinds of interactions, and 

explore other types of external influencing factors that are not necessarily grounded in the 

physical positioning of actors within the environment. For this to be happen, a mapping 

model that projects different types of environmental attributes onto a (spatial) visualization 

needs to be developed.

The  user  study  suggests  that  the  Affiliation  Timeline  is  easier  to  interpret  and 

understand than traditional  graph layouts.  However,  more  experimentation needs to be 

done so that this claim can be statistically proven. Additionally, more testing needs to be 

done  in  order  to  verify  the  scalability  of  the  diagram  in  terms  of  the  number  of 

actors/groups, and the length of the observation period. 
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The  Affiliation  Timeline  could  also  use  a  number  of  improvements.  First,  a  layout 

algorithm  that  minimizes  line  crossings  could  greatly  enhances  the  readability  of  the 

diagram. Second, the user interface can be improved to include functionality to reduce the 

amount  of  information  without  having  to  resort  to  filters.  For  example,  the  rectangles 

representing  communities  could  be  collapsed  or  expanded  on  demand  to  show  the 

composition  of  communities,  without  significantly  disrupting  the  layout.   Lastly,  the 

diagram should be expanded to  depict  additional  notions that  the  dynamic  community 

identification framework supports, such as the notion of a visiting actor (an actor observed 

interacting with a different  community,  nonetheless  retaining affiliation with its  original 

community).
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