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SUMMARY

This thesis presents a methodology for rendering very large volume data on scalable high-

resolution displays using a distributed-memory commodity cluster. The methodology uses a

multi-resolution octree data structure, an image-order data distribution method, a distributed

shared-memory data management system, a multi-level cache, and hardware accelerated ren-

dering techniques to produce a solution that is scalable in terms of input data size and output

resolution. An analytical cost model validated by experimental results predicts the system’s

behavior. The methodology’s usefulness is demonstrated with a number of domain specific

datasets.

The primary contributions of this thesis include:

1. A review of research in the field of volume rendering and parallel volume rendering.

2. A methodology for rendering very large volume data on scalable high-resolution displays

using a commodity distributed-memory cluster of computers that scales with the size of

input data and the output resolution.

3. An analytical model validated by experimental results that predicts the methodology’s

behavior.

4. The application of this methodology to domain specific problems in the fields of

bioscience, geoscience and medicine.

xi



CHAPTER 1

INTRODUCTION

The development of a direct volume rendering methodology that is scalable in terms of both

input data size and output resolution is key to successfully visualizing spatially large volumetric

datasets. The desire to increase image resolution is growing as users gain greater access to

high-resolution displays, such as large desktop screens and scalable tiled-displays. While there

is significant prior work in visualization techniques for large-scale data that can be viewed on

single-node clients, and there has been work done in providing interactive visualizations of small

data using tiled-display environments, there is still no solution that can handle large-scale input

data and produce high-resolution output. This thesis advances the current state of the art by

providing a distributed volume rendering methodology that scales in terms of both large input

data and high-resolution output.

1.1 Research Merit

Direct volume rendering maps input data values directly to color values in an output image.

It differs from other rendering methods, such as isosurface rendering, in that it does not produce

an intermediate representation of the data. This technique has proved valuable to researchers

in the bioscience, geoscience and medical communities, and is often chosen as a method to

visualize spatially large and complex datasets.

1
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Figure 1.1. The LambdaVision scalable high-resoltuion tiled-display.

High-resolution displays provide two main benefits to users. First, they allow users to

view spatially large data in high-resolution that is at or near the native resolution of the

original dataset. The LambdaVision display, shown in Figure 1.1, developed at the Electronic

Visualization Laboratory (EVL) at the University of Illinois at Chicago (UIC) is one such

display (1). Second, they allow groups of users to collaborate in the same space at the same

time. The LambdaTable interactive display developed at EVL is such a display (2).

Direct volume rendering of large data on high-resolution displays is relevant to researchers

in the bioscience and geoscience communities. Two example groups that currently use high-

resolution displays to visualize volumetric data are bioscientists from the National Center for
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Microscopy Imaging Research (NCMIR) at the University of California, San Diego (UCSD),

and geoscientists from the University of Minnesota (UMN). Researchers at NCMIR employ

scalable high-resolution displays to visualize microscopy imagery in an effort to discover rela-

tionships between biological structures from the anatomical to molecular scales. Researchers at

UMN employ large desktop displays to visualize computed tomography (CT) data of geological

samples in order to discover how certain processes take place. These two groups have a common

need for interaction with spatially large volumetric data in a way that allows users to see the

entire dataset.

1.2 Design Challenges and Strategy

An efficient and scalable solution for rendering large volume data on scalable high-resolution

displays is dependent on system issues. As most researchers only have access to distributed-

memory resources, the interconnect bandwidth between the nodes of a cluster is one of the

biggest bottlenecks. Both of the current approaches for rendering large volume data are affected

by this bottleneck during different stages of rendering.

This thesis presents a methodology for the distributed rendering large volume data on

scalable high-resolution displays. The methodology uses an image-order based data distribution

method, coupled with a shared-memory system and multiple cache levels to efficiently manage

large volume data. A bricked data structure that stores multiple levels-of-detail and hardware

accelerated rendering ensure interactive frames rates. An analytical performance model shows

the scalability of the system and is validated by experimental results.



CHAPTER 2

PREVIOUS WORK

Volume renderers attempt to evaluate a common optical model that describes the interaction

of light emitted, scattered or absorbed by particles that make up a dataset. A number of serial

techniques have been developed to accomplish this task. Attributes of the optical model and

associated image compositing theory allow for parallelization of the evaluation process. Parallel

techniques that take advantage of these properties have been developed to increase performance

and render larger datasets.

Most parallel volume rendering research concentrates on performance and large data. How-

ever, some research focuses on the task of producing high-resolution output. Research that

specifically deals with high-resoltuion volume rendering has so far used approaches that take

advantage of specially designed compositing hardware, or use consumer off-the-shelf (COTS)

equipment, but replicate data across all rendering processors.

2.1 Optical Model

Optical models used in volume rendering consider the volume as a group of particles. Often

the particles are sampled on a rectangular grid. When particles are sampled this way they

are referred to as voxels. Particles can emit light, or alternatively, light from a source can be

scattered or absorbed by particles. Realistic models that take all properties of illumination

into account are very complicated and require considerable computational resources to solve.

4
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Thus, practical models exist to simplify realistic models. An approximation that considers the

emission and absorption of light is given by (3):

Iλ(x, r) =
∫ L

0
Cλ(s)µ(s) e−

R s
0 µ(t) dt ds (2.1)

Iλ is the amount of light of wavelength λ coming from a ray direction r that is received at

location x on the image plane. L is the length of ray r. The density of volume particles that

receive light from the light sources and reflect it towards the image plane is given by µ. Cλ is

the light of wavelength λ reflected at location s in the direction of ray r. In this approximation

the reflected light is weighted by the particle’s density. The exponential function attenuates

the light scattered at s by the densities of the particles between s and the image plane.

Equation (2.1) cannot usually be computed analytically, so most volume rendering algo-

rithms use a numeric solution. A Taylor series approximation of Equation (2.1) that keeps only

the first two terms is given by:

Iλ(x, r) =
L/∆s∑
i=0

Cλ(si)α(si) ·
i−1∏
j=0

(1− α(sj)) (2.2)

Cλ(si) represents the local color values derived from the illumination model. α(si) represents

the opacity samples along a ray. The functions C and α are also referred to as the color and

opacity transfer functions or maps, respectively. These functions are used to assign color and

opacity to each scalar intensity value in the data.
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2.2 Volume Rendering Techniques

Volume renderers attempt to solve the same basic approximation given in Equation (2.1).

Various techniques implementing that approximation have been developed. Techniques are

traditionally categorized based on the traversal order of data. The three basic categories are

image-order, object-order and hybrid. Image-order techniques begin with pixels on the output

image and determine the proper color contributions from voxels for those pixels. Object-order

methods first consider voxels in the data and then compute a voxel’s color contribution to

points on the image plane. Hybrid methods combine various aspects of both image-order and

object-order techniques.

Texture mapping techniques utilize texture mapping capabilities common on most commod-

ity graphics hardware. Advanced GPU methods use features found on programmable graphics

cards to implement various volume rendering techniques. Additionally, special purpose hard-

ware has been designed specifically for volume rendering.

2.2.1 Image-Order Volume Rendering

Image-order techniques start by considering a point in the output image and then determine

which voxels contribute to that point. This process is repeated for each point on the image.

Ray casting is an image-order method that casts viewing rays from each point on the image

plane through the data (4). Samples are taken at discrete intervals along the ray usually using

trilinear interpolation. The samples are used to evaluate the optical model.

When the rays are traversed in front-to-back order an optimization technique, early ray

termination, can be applied. As the opacity reaches the maximum value, the rest of the samples
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y
z

Figure 2.1. Volume rendering using ray casting. A ray starting at a point on the image plane
is cast throught the volume to evaluate the optical model. Samples are taken at evenly spaced

intervals along the ray. Because the data is discrete trilinear interpolation is used to
determine the value of a sample.

along the ray can be ignored because they do not contribute to the final image. Another

optimization strategy, empty space skipping, reduces rendering time by increasing the sample

distance in sparse sections of the data.

2.2.2 Object-Order Volume Rendering

Object-order methods start by considering voxels in the data and then project their contri-

bution to points on the image plane. Splatting is an object-order method that projects voxel

footprints on the image plane (5). Reducing the amount of data traversed by skipping vox-

els that don’t contribute to the output image is an inherent advantage to this approach. A

disadvantage is that the color of hidden background objects may bleed into the final image.
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Image Plane

Volume

Voxel

2D Footprint

Figure 2.2. Volume rendering using splatting. The optical model is evaluated for each voxel
and projected onto the image plane.

A method eliminating bleeding artifacts has been developed that processes voxels within a

series a slabs aligned parallel to the image plane (6). Once a single slab has received all voxel

contributions it is composited with the current image and the next slab is processed. Another

optimization, early splat elimination, allows the algorithm to skip occluded voxels (7). However,

this optimization is not as efficient as early ray termination is in ray casting.

2.2.3 Hybrid Volume Rendering

Hybrid volume rendering techniques attempt to combine aspects of both image-order and

object-order methods. The shear-warp factorization is recognized as the fastest software ren-

derer to date (8). High performance is achieved by using only 2D image operations instead of

3D image operations. It is based on a factorization of the viewing transformation into a shear



9

x
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z
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Figure 2.3. Volume rendering using the shear-warp factorization. Volume slices are sheared so
that all viewing rays are parallel to the major viewing axis. After compositing, the distorted

intermediate image is warped into the final image.

and a warp transformation. Both the volume and image can be traversed simultaneously be-

cause the shear transformation makes all the viewing rays parallel to the principal viewing axis.

Compositing is then performed, followed by a warp transformation to create the final image.

Run length encoding of the intermediate images and of the volume allow for early ray termi-

nation and empty space skipping, respectively. Unfortunately, because bilinear interpolation is

used within parallel slices, image quality is reduced.

2.2.4 Texture Mapping Techniques

Texture mapping techniques utilize texture mapping capabilities common on most com-

modity graphics hardware. 2D texture mapping is one method that uses the texture mapping
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Figure 2.4. Axis-aligned proxy geometry for volume rendering. For each of the three major
viewing axes, a set of planes is generated. During rendering the set corresponding to the axis

most perpendicular to the viewing direction is chosen and rendered in back-to-front order.

capabilities found on many graphics cards (9). The operations performed are equivalent to the

shear-warp factorization. Stacks of slices for each of the three major viewing axes are stored

in memory, with the stack most parallel to the view plane used. The textures are mapped to

object-aligned proxy geometry that is rendered in back-to-front order using alpha blending. As

with the shear-warp factorization this method suffers from poor image quality because only

bilinear interpolation is used within slices, storage space is increased to save three stacks of the

data, and popping artifacts occur when different sets of stacks are selected.

3D texture mapping methods upload an entire volume dataset into texture memory (10).

The hardware then maps the texture to proxy geometry, which may be axis-aligned slices such

as in 2D texture mapping, view-aligned slices parallel to the image plane or viewpoint-centered

spherical shells, which are concentric spherical shells centered at the viewpoint and culled to
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Figure 2.5. View-aligned proxy geometry for volume rendering. A set of planes parallel to the
image plane is rendered in back-to-front order. The image plane is aligned to the plane of this

page.

the frustum (11). The advantage of using view-aligned slices is the elimination of popping

artifacts when the major viewing axis is changed. The advantage of using viewpoint-centered

spherical shells as proxy geometry is that the distance from the viewpoint to a proxy shell is

identical at all points on the shell. Of the three proxy geometries, viewpoint-centered spherical

shells produce the highest quality images, and is the most desirable for perspective and stereo

rendering. When using 3D texture mapping methods instead of 2D texture mapping techniques,

image quality is improved regardless of the proxy geometry type because trilinear interpolation

is performed by the hardware.
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Figure 2.6. Viewpoint-centered spherical shells as proxy geometry. A series of concentric
spherical shells centered at the viewpoint and culled to the frustum are used as proxy

geometry.

2.2.5 Advanced GPU Methods

Modern GPU pipelines are becoming increasingly programmable. Initially, register combin-

ers added the flexibility of manipulating the graphics pipeline’s fragment processing stage. In

more recent generations, programs called shaders or kernels can replace parts of the rendering

pipeline that were previously fixed. NVIDIA’s Cg (12) and the OpenGL Shading Language

(GLSL) (13) are two languages currently used with programmable GPUs. Depending on hard-

ware features, these languages allow the direct manipulation of vertex and fragment data.

These hardware features are used to enhance the 3D texture mapping technique (14). A color

and opacity transfer function stored in a dependent texture can be applied using a fragment

program. The fragment shader performs a texture lookup into the dependent texture retrieving

the appropriate color and opacity value for that fragment. The retrieved value is applied to the
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fragment. Proxy geometry is generated in hardware using a vertex program. Given the current

model-view and projection matrices, and a bounding volume, the vertex shader computes the

appropriate vertex and texture coordinates for either axis-aligned or view-aligned slices through

the data.

Ray casting with empty space skipping and early ray termination has been implemented

using programmable graphics hardware (15). A ray’s entry point in the data is determined

by rendering the front face of the volume’s bounding box into a 2D texture. Rendering the

bounding box’s back face into another 2D texture and subtracting it from the front face’s 2D

texture gives the ray’s direction. Samples are taken by performing texture lookups according

to the parametric ray equation evaluated in a shader. The results are accumulated in another

2D texture. Sampling along a ray can be stopped when the accumulated opacity reaches a

maximum value. The sample increment can be altered to skip empty space with the use of a

pre-computed min/max octree.

2.2.6 Special Purpose Hardware

Dedicated hardware has been designed specifically for volume rendering. Most special pur-

pose hardware focuses on implementing an image-order ray casting technique. The most com-

mercially successful hardware dedicated to volume rendering is the VolumePro graphics card

from Mitsubishi (16). VolumePro has support for parallel projections, gradient estimation,

classification, per-sample Phong illumination, and clipping planes. It can render a 2563 dataset

at 30 frames per second. Another more versatile hardware volume rendering solution that sup-

ports both parallel and perspective projections is the VIZARD II system (17). VIZARD II
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uses a field-programmable gate array (FPGA) that allows the addition of new features without

costly hardware redesign. Its versatility limits its performance to about one-third that of the

VolumePro.

2.3 Large Data

In their simplest forms, the volume rendering techniques assessed require access to the com-

plete volume dataset. This means the data must be contained entirely in RAM if implemented

on the CPU, or the data must fit in texture memory if implemented using graphics hardware.

Modified approaches are used when data size exceeds the amount of available memory. The

two primary approaches for dealing with large volume data involve data bricking and paging,

and the use of compression.

2.3.1 Bricking and Paging

The OpenGL library provides automatic texture paging if texture memory limits are ex-

ceeded (18). A library for texture-based rendering called Volumizer uses this method (19).

However, such brute-force methods for dealing with volumes whose sizes exceed physical mem-

ory severely degrade performance.

LaMar et al. (20) describe an adaptive bricking strategy based on a multi-resolution octree.

Each level of the octree is half the resolution of the next level. The leaf nodes are associated with

the original resolution, and the root node is associated with the coarsest resolution. Resolution

is selected based on a user defined region-of-interest. The selected region is rendered with

the finest resolution data. Coarser levels are used as the distance from the selected region

increases. Opacity is adjusted as the sample distance changes at different levels. Viewpoint-
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centered spherical shells are used as proxy geometry to limit artifacts that occur at brick

boundaries. This approach assumes that all data selected for rendering can fit into available

texture memory.

Weiler et al. (21) employ a similar approach using view-aligned slices as proxy geometry

instead of spherical shells. They determined that brick boundary artifacts are caused by inter-

polation within bricks more so than by the choice of proxy geometry. Artifacts are eliminated,

as long as adjacent blocks do not differ by more than one level, by sharing boundary values

between adjacent blocks of the same resolution level, and by sharing a coarser levels bound-

ary vales with an adjacent finer resolution brick. Automatic texture paging provided by most

OpenGL implementations is used if the multi-resolution representation does not entirely fit into

texture memory.

Octreemizer (22) is a system that uses an octree data structure coupled with a multi-level

paging system and predictive cache to roam through large volumetric data. The multi-level

cache operates between video memory and main memory, and between main memory and disk.

Using a least-recently used replacement strategy, the predictive cache fetches data based on the

direction of user movement. This system is limited to rendering 2D slices of the data, and only

displays small portions of the data at a time.

2.3.2 Compression

An early attempt at rendering compressed volume data used a vector quantization com-

pression approach combined with ray casting (23). The data is compressed using vector quan-
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tization, producing a codebook. The codebook is used by the rendering system to decompress

the data as the data is traversed. The final images are of reduced quality.

A compression method that takes advantage of modern graphics hardware uses preprocessed

data encoded into a hierarchical structure using a multi-resolution covariance analysis of the

original data (24). Using a programmable fragment shader, the compressed data is decoded

and rendered on a graphics chip. This method has the advantage that datasets larger than

texture memory can be loaded and rendered. Unfortunately, this approach uses nearest neighbor

interpolation and suffers from degraded image quality.

Compressed hierarchical wavelet representations of data combined with data bricking pro-

duce high-quality images (25). The wavelet representation is decompressed on-the-fly and

rendered using hardware texture mapping. Only the levels-of-detail necessary for display are

decompressed and sent to the texturing hardware. This approach reclaims disk storage space

but is limited by the amount of texture memory available as uncompressed bricks are transfered

to the hardware.

2.4 Parallel Volume Rendering

Visualizing large-scale datasets is a very challenging problem. As the size of data increases,

so does the rendering cost. In order to gain better performance, parallelizing the volume

rendering process by increasing the number of processing units becomes an attractive solution.

2.4.1 Theoretical Model

Parallel volume renderers attempt to produce images equivalent to those produced by serial

methods. Thus, parallel methods must evaluate the same approximation used by serial volume
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rendering methods. Equation 2.1 can be decomposed into smaller units for parallel processing

in two ways.

The first parallelization strategy decomposes work based on the screen position x. Comput-

ing the value of each position or groups of positions in the output image is assigned to different

processing units. The final results are combined together to form a complete frame. This pro-

duces equivalent results because, according to Equation 2.1, the contribution to a position in

the output image is independent of other positions in the image.

The second parallelization strategy is based on the image compositing work of Porter and

Duff (26). They introduce the over operator which describes the process of compositing one

image over another image using an alpha channel. The equation that determines the resulting

output of placing image A over image B is given by:

cAover B = cB + cA αA(1− αB)

αAover B = αB + αA(1− αB) (2.3)

cA and αA are the color and opacity contributions, respectively, from image A. The color

and opacity contributions from image B are given by cB and αB, respectively. Note that the

resulting color is dependent on the color contributions from the two images as well as the alpha

values.
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For a group of images composited in a series the over operator can be written to describe

the color and opacity contributions for steps along a ray as:

ci+1 = ci + cs αs(1− αi)

αi+1 = αi + αs(1− αi) (2.4)

ci+1 and αi+1 give the color and opacity contributions, respectively, to the final image at

the next step along the integrated ray r. ci and αi represent the acculmulated color and opacity

contributions, respectively, at step i along the ray r. The color and opacity contributions from

the series of images at sample point s are given by cs and αs, respectively.

The over operator is associative; that is, for images A, B and C

Aover (B over C) = (Aover B) over C

The associativity of the over operator allows a renderer to break a ray into segments, process

the sampling and compositing of each segment independently, and combine the results from each

segment to form a final image.

2.4.2 Parallel Volume Rendering Techniques

Parallel volume renderers aim to solve the same basic approximation given in Equation

2.1 using the two parallelization strategies mentioned in the previous section. Parallelization

strategies are commonly categorized as image-order, object-order and hybrid. Image-order

parallel techniques take advantage of the fact that a contribution to a position in the output
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image is independent of other positions in the image. These techniques break the output image

into disjoint regions and assign a processing unit to render everything in that region. Object-

order parallel methods are based on the over operator. These methods assign a processing

unit to a section of data regardless of where the data appears in the final output image. After

each section of data is rendered, a compositing step must construct the final image. Hybrid

techniques combine aspects of both image-order and object-order methods.

Any of the methods for rendering volumetric data described earlier can be used to evaluate a

task subdivided using these parallelization strategies. Subdivision may occur repeatedly using

the same or a combination of parallelization methods. The optimal choice of parallelization

technique and rendering method is heavily dependent on the implementation architecture.

The categorization of parallel volume rendering techniques shares many similarities to a

common taxonomy of parallel geometry rendering methods (27). This taxonomy classifies

algorithms based on where the sort from object coordinates to screen coordinates occurs in a

standard graphics pipeline that consists of geometry processing followed by rasterization. In

general, sorting can take place during geometry processing, between geometry processing and

rasterization, or during rasterization.

All parallelization techniques can be described by a generic rendering pipeline. First, they

decompose the data in some fashion. Next, the data is distributed to processors for rendering.
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Figure 2.7. Generic parallel volume rendering pipeline.

Then the output of each rendering processor is composited to form the final output image. The

total rendering cost can be expressed as:

ttotal = tprocess + tdistribute + trender + tcomposite + tdisplay (2.5)

The cost of preprocessing data is given by tprocess. tdistribute gives the cost of distributing

data to the appropriate rendering processors. trender is the total rendering time. The cost of

compositing, including network communication, is represented by tcomposite. tdisplay represents

the time to redistribute the output image among appropriate display computers.

Sort-first methods distribute raw primitives early in the rendering pipeline to processors

that can do the rendering. This is done by dividing the screen into disjoint regions and making

processors responsible for all rendering calculations that affect their respective screen regions.
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Sort-middle algorithms redistribute primitives between geometry processing and rasterization

when primitives are in screen coordinates and ready for rasterization. Geometry processors

are assigned arbitrary subsets of the primitives and rasterizers are assigned a portion of the

display. Sort-last methods redistribute data at the end of the pipeline, after primitives have

been rasterized into pixels or fragments. Each processor gets an arbitrary subset of primitives

and computes pixel values no matter where they fall in the screen. The rendering processor

transmits the pixels to compositing processors that resolve visibility. Sort-last requires an extra

compositing step. Hybrid sorting methods combine various aspects of sort-first, sort-middle and

sort-last methods.

Parallel image-order volume rendering methods are analogous to parallel sort-first geometry

rendering methods. They both distribute raw data at the beginning of the process. Parallel

object-order volume rendering techniques are analogous to parallel sort-last geometry rendering

techniques. They both render arbitrary data and distribute portions of the final image that

require compositing at the end of the process. There is no direct analogy between parallel sort-

middle geometry algorithms and parallel volume rendering algorithms. Often, volume rendering

literature uses these terms interchangeably.

2.4.2.1 Image-Order Parallel Volume Rendering Techniques

Parallel image-order techniques assign processing units to data or data to processing units

based on a disjoint decomposition of the image plane. Each processing unit is responsible

for rendering all data that falls within its screen section. Tiling together the results of each

processor generates the final output image.
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Figure 2.8. Image-order parallel volume rendering. Data is assigned to rendering processors
based on a disjoint decomposition of the image plane. Each processor renders all data that

falls within its disjoint screen region. The output image is created by tiling together the
output of each processor.

The performance of the rendering phase can scale with the number of processors because

every processor performs a rendering task equal to the inverse of the number of processors.

However, before rendering can begin, data must be redistributed to each processor based on

the current view. Therefore, an efficient data distribution mechanism must exist in order to

have an efficient image-order parallel rendering technique.

Many parallel ray-casting methods have been designed for shared-memory supercomputing

systems (28). These methods use shared-memory to simplify their data access task. Each pro-

cessor is assigned the task of rendering a disjoint section of the display. The entire dataset is

loaded in memory and each processor fetches data as needed. Multi-threaded systems that op-
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erate on single processors, such as the Visualization Toolkit (VTK) (29), use a similar approach

in which different threads are assigned different sections of the output image.

Amin (30) et al describe a parallel version of the shear-warp algorithm that operates on a

distributed-memory CM-5 system. The data is first sheared and then partitioned across nodes

based on the view. Sheared data is redistributed when the view changes. The disjoint output

images are independently warped to produce the final output image. Run-length-encoding is

used to reduce communication cost. Results show that there is very low communication because

a small adjacent movement in the view only requires a small amount of data redistribution.

Bajaj (31) uses a compression-based scheme to render large volume data in a distributed-

memory environment. Wavelet compression using zerobit encoding that performs well for ran-

dom access operations is used. Compressed data is replicated locally on each node and decom-

pressed as necessary. A ray-caster optimized with a min/max octree for early ray termination

renders very small non-overlapping image portions on each node. The final image is collected

on a separate computer.

Coelho implemented a distributed-memory version of the ZSweep algorithm (32). The

ZSweep algorithm is a fast method that projects cells on an image plane by sweeping a plane

parallel to the viewing plane in order of increasing depth. The distributed version randomly

assigns regions of the output image to each processor. Data is distributed to the processors

where it is required. Idle processors may receive unprocessed data from nodes that are busy.

As with the previous method, the final image is tiled together on another machine.
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Figure 2.9. Object-order parallel volume rendering. Data is statically assigned to rendering
processors without regard to where the data appears in the final output image. Each
processor renders the data that it is assigned. Image buffers from each processor are

composited together to form the final output image.

2.4.2.2 Object-Order Parallel Volume Rendering Techniques

Parallel object-order techniques assign a section of data to a processor based on an efficient

or convenient data distribution method without regard for where the data appears in the output

image. Each processing unit renders data it is assigned. Data is usually distributed once before

rendering occurs and is never reassigned. Data must be composited together not only along

the axes that lie on the image plane, but also in depth as explained by Porter and Duffs over

operator.

The performance of the rendering phase can scale with the number of processors because

every processor performs a rendering task equal to the inverse of the number of processors.

However, the compositing task grows with the number of processors. Therefore, an efficient
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compositing method must exist in order to have an efficient object-order parallel rendering

technique. This final compositing phase is the focus of much research that has led to the

development of four compositing methods: direct send, projection, binary-tree and binary-swap

compositing.

The direct send compositing method sends partially composited results to a single computer

(33). The computer accumulates all the color and opacity values for each pixel and computes

the final pixel color once all processors have reported values. This method transmits about

n1/3 p (1− 1/n) pixels, where n is the number of processors and p is the number of pixels in the

output image. Direct send takes O(n− 1) stages, where n is the number of processors.

The projection compositing method propagates completed image segments in back-to-front

order along the viewing direction (34). Because composition is performed sequentially, the

entire rendering process can be pipelined. This method transmits O(n1/3 p) pixels, where n is

the number of processors and p is the number of pixels in the output image. The projection

method takes O(n1/3) stages, where n is the number of processors.

The binary-tree compositing method pairs all processors (35). One processor in every pair

sends its subimage to the other processor in the pair. The processors that receive a subimage

composite the subimage and proceed to the next stage. The number of idle processors increases

at each stage. The total number of stages is log n, where n is the number of processors.

The binary-swap compositing method is an improvement over the binary-tree method (36).

In the binary-swap method, each pair of processors splits its image into two pieces, and ex-

changes one of the two pieces with the other in the pair. No processors become idle. This
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method transmits O(2.43n1/3 p) pixels, where n is the number of processors and p is the num-

ber of pixels in the output image. The total number of stages is log n, where n is the number

of processors.

A number of researchers have developed parallel volume rendering systems that use an

object-order approach. Software systems that run on platforms ranging from a SGI Onyx4 to

a 128 processor super-computer have been written. Two research groups have implemented

hardware compositors based on the binary-swap algorithm.

Elvins developed a volume renderer for an nCUBE2 environment with 128 processors (37).

Slices through the data along the major viewing axis are evenly distributed among all the

processors. The processors then use splatting to produce images for their respective data. The

master node is responsible for compositing the final image.

Muller et al. describes an object-order system that utilizes the direct send compositing

algorithm (38). A ray-caster is implemented in the graphic cards fragment shader. Data is split

among the processors based on a k-d tree. A load-balancing mechanism moves data between

nodes based on the render time of the previous frame. Using an eight node cluster, the system

can render a 5123 dataset to a 1024x768 output window at sixteen frames per second.

Gribble et al. (39) present an object-order renderer, Rhesus, which uses binary-swap com-

positing. Implemented on an eight pipe SGI Onyx4, the system reports rendering a 5123 section

of the Visible Human dataset to a 256x256 output window at about ten frames per second. The

authors results show that as the number of pipes increase, the compositing time begins to ap-

proach the time each pipe takes to render its section of data.
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The Sephia (40) and Sephia-2 (41) architectures are hardware implementations of the binary-

swap object-order compositing algorithm. Data is first distributed to a cluster of computers

where each data chunk is rendered using a VolumePro graphics card. The output is read

from the graphics card via the system bus and uploaded to FPGA-based blending hardware.

Compositing hardware on each node is interconnected over Ethernet.

Frank and Kaufman used an eight-node cluster equipped with Sephia compositing hardware

to visualize medical data (42). They implemented empty-space skipping by using a blocking

scheme to divide data chunks based on a seed-growing algorithm. The system is capable of

rendering the Visible Human dataset at three frames per second to a 1280x1024 output window.

Muraki et al present an object-order rendering system that operates on a cluster of comput-

ers (43). Data is distributed to each node where it is rendered using 3D textures. A hardware

compositing system developed by Mitsubishi implements the binary-swap algorithm. A load-

balancing scheme attempts to place equal numbers of visible voxels on each node based on the

opacity transfer function. Their results show that this works well for a few nodes, but that the

benefit decreases as the number of nodes increase. Using sixteen nodes, the system can render

the Visible Human dataset to an output image of 768x768 at twenty frames per second.

2.4.2.3 Hybrid Parallel Volume Rendering Techniques

Hybrid parallel volume rendering techniques attempt to increase performance by combining

aspects of both parallel image-order and parallel object-order rendering methods. Garcia and

Shen describe a hybrid parallel rendering method that interleaves imge-order and object-order

decompositions (44). Processors are first divided into groups. Each group is responsible for
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rendering a portion of the volume data. Inside a group, the screen is divided into a set of pixels

where each set is assigned to a processor. The pixels are assigned by alternating rows and

columns. The subvolume assigned to a processor group is interleaved among processors in the

group. Image compositing is done between pixels from different groups, and is not required for

pixels within groups because processors within a group are assigned disjoint screen regions.

The amount of interleaving that occurs is determined by an interleaving factor. Compositing

equivalent to the binary-swap algorithm occurs when there is no interleaving. As interleaving

increases, the number of compositing stages decreases, and image artifacts increase due to

interleaving pixel rows and columns. The extreme case in which interleaving is maximum is

equivalent to a pure image-order partitioning scheme. A low interleaving factor can reduce the

cost of compositing with only a moderate loss of image quality.

2.5 Volume Rendering on High-Resolution Displays

Most research in the field of parallel volume rendering has focused on performance and large

data. Much less effort has been devoted to producing high-resolution output. The systems

that do focus on parallel high-resolution volume rendering either use specialized compositing

hardware, or replicate data on all rendering processors. The Sephia-2 architecture uses an

object-order approach that is theoretically scalable to high-resolution displays. The FlowVR,

Volume Visualizer and Vol-a-Tile systems all use image-order approaches to visualize data

entirely resident in texture memory.

Lombeyda et al. state that the Sephia-2 object-order hardware compositing architecture

theoretically scales in image space to support high-resolution displays. A new routability proof
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that accounts for image sources contributing to more than one logical pipeline, and a dynamic

frame reassembly property is required. However, no known implementations exist.

The TeraVoxel project (45), aimed at rendering a 10243 dataset at interactive frame rates,

produced a solution for high-resolution displays called Volume Visualizer. Using a cluster

equipped with four VolumePro cards, the system is able to render a 256x256x1024 volume to

the 3840x2400 output window of a ten megapixel IBM T221 LCD. This is accomplished by

replicating the entire dataset in all four nodes.

Vol-a-Tile (46) is a distributed direct volume rendering application designed for scalable,

high-resolution displays. Users roam through large volume datasets that may be stored re-

motely, viewing small regions-of-interest in full resolution. The data within a region-of-interest

is uploaded to the graphics card in every node where it is culled based on view and rendered

using 3D textures. When the region changes, each node uploads identical copies of new data

for the region. Vol-a-Tile is limited to viewing regions of data that fit entirely in the texture

memory of a single node.

The FlowVR framework is a sort-first parallel rendering framework used to visualize volu-

metric data on high-resolution display walls (47). It uses a shader based protocol to implement

hardware rendering algorithms. The system uses VTK and a shader based volume rendering

class for generating graphics. This system is not scalable because data is replicated on all nodes

of the cluster.

A specialized hardware system based on the binary-swap object-order compositing method

scales in regards to large data. It may scale in terms of resolution, but a solid proof and
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an implementation do not exist. Current approaches that scale in terms of resolution use

image-order data decomposition. However, they do not scale with respect to data because they

replicate data at each rendering processor. This thesis uses an image-order approach that scales

with respect to both data and resolution using COTS hardware. Table I shows a comparison

of current parallel high-resolution volume rendering systems to the system presented in this

thesis.

TABLE I

COMPARISON OF PARALLEL HIGH-RESOLTUION VOLUME RENDERING SYSTEMS

System
Attribute

Large Data High-Resolution COTS Approach
Sephia-2 Yes No No Object-Order

Volume Visualizer No Yes Yes Image-Order
Vol-a-Tile No Yes Yes Image-Order
FlowVR No Yes Yes Image-Order

This Thesis Yes Yes Yes Image-Order



CHAPTER 3

METHODOLOGY

This chapter describes the fundamental methodology used by the volume rendering system.

First, a set of requirements and their implications are defined and examined. Then a suitable

design overview is presented. Next, the data structure used by the system is described. After

that, the calculation used to determine the view-frustums for each tile of a scalable high-

resolution tiled-display is derived. The volume rendering pipeline is then described in detail

followed by the data management system. Finally, the methods used to maintain interactivity

are presented.

3.1 System Design

The design of this system is based around a set of requirements that set its function and

operating environment. These requirements lead to a number of implications about the most

suitable approaches. Based on the requirements and their implications, a design overview is

presented for rendering large volume data on scalable high-resolution displays.

3.1.1 Requirements

The development of a volume rendering solution warrants the consideration of specific appli-

cation requirements. These requirements influence the methodology used to produce a solution.

This system should render large data collected a priori, produce high-resolution output, allow

31
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interactive manipulation of the view position and transfer functions, and operate on COTS

systems.

Volume data is collected and processed before rendering begins. It may be collected from a

scanning device such as a CT scanner, or a numerical simulation may generate it. Whatever the

case, the data may be manipulated and transformed into a format more suitable for rendering.

The system must scale with respect to the size of data. The data is so large that it can

neither fit entirely in the RAM of a single processor, nor can it fit entirely in the texture

memory of a single graphics card. This requirement rules out the possibility of replicating data

on multiple processors.

The system must generate output on scalable high-resolution displays. A high-resolution

display is one capable of displaying at least one million pixels. Scalable high-resolution displays

are tiled LCD or projector walls that are capable of displaying much more than one million

pixels.

Users must be able to interact with the volume data they are rendering. The system

must allow users to interactively manipulate the viewing transformation to see the data from

different viewpoints. A mechanism must be provided to allow interaction with the color and

opacity transfer functions.

In order to be useful to domain scientists, the system should run on a COTS platform.

Distributed-memory clusters interconnected with a high-bandwidth network are the most com-

mon of such platforms. These systems often include graphics cards on each node.
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3.1.2 Implications

The requirements explained above have a number of implications on the choice of techniques

that are suitable. Preprocessing a priori data allows freedom in choosing a data format that

compliments the interactivity requirement. Rendering large data that cannot be replicated

across nodes, and producing high-resolution output on display tiles distributed among a cluster

of computers influences the data distribution scheme used.

A priori data collection allows the system to use data in a format other than that of the

output produced by the original collection or generation process. The data may be preprocessed

into another format during an offline step. This format may be used to help reach other system

goals, such as interactivity. A specific data format should also lend itself to easier rendering or

data distribution given the implementation platform.

A distributed-memory cluster of computers fits the requirement of using a COTS system.

In such a system, processors have their own local memory, not a globally accessible shared-

memory pool. Individual processing nodes are interconnected via a high-speed network, such

as Ethernet, not over a dedicated system bus. Any data distribution and composting algorithms

must take this into account as it affects their performance and scalability.

Graphics cards connected to each processing node enable the system to take advantage of

hardware accelerated rendering techniques. The amount of texture memory on most commod-

ity graphics cards is significantly less than the amount of RAM available to each processor.

Depending on the size of the data, rendering algorithms may have to swap data between RAM
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and texture memory. Frame buffers on graphics cards may be restricted in size to due hardware

limitations.

Supporting large data that is not replicated due to its size is a major challenge for many

systems. For volume rendering systems in particular, the task of redistributing large becomes a

bottleneck in the rendering pipeline. For this reason, many parallel volume rendering systems

that operate on distributed-memory clusters utilize object-order data distribution techniques

and generate the output image during a final compositing stage. This is in contrast to image-

order techniques that redistribute the raw input data based on the view transformation. How-

ever, it can be shown that as the number of nodes increases, the cost of the final compositing

stage always increases, while the cost of redistributing data using an image-order approach

decreases. Because the data may exceed the combined RAM of all the processing nodes, a

paging system between disk and memory is desirable. Image-order approaches also require a

mechanism to redistribute data when view transformations change.

A cluster of computers usually drives a scalable high-resolution display. Each computer has

a graphics card that is connected to one or two LCDs or projectors. Increasing the resolution

of such displays involves adding more computers and LCDs or projectors. Very high-resolution

scalable displays often consist of many computers. In order to display an image, an image must

either be redistributed across the cluster, or it must be rendered directly to a tile.

Ten frames per second is considered an interactive frame rate. Since the data is large, it is

conceivable that rendering a frame may take many seconds or even minutes. Thus, a level-of-

detail technique should be used to allow fast interaction with a representation of the data. In
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order to provide interactive manipulation of transfer functions the system should classify data

during rendering, not during a pre-classification stage.

3.1.3 Overview

An appropriate solution to the problem of rendering large data on scalable high-resolution

displays fulfills the requirements and considers the implications mentioned above. This design

uses a parallel image-order approach and a distributed shared-memory system with paging and

caching to distribute data. A pre-generated octree representation of the data complements the

parallel approach used and aids with system interactivity. The system’s renderer uses hardware

accelerated 3D texture mapping techniques.

A parallel image-order volume rendering approach that scales in terms of both large data

and high-resolution displays is appropriate. In this approach, each node renders and displays

the data that falls within its view-frustum. This approach is scalable in terms of rendering

large data on clusters that drive high-resolution displays.

In an image-order approach, the amount of data that each node requires when the view

is updated decreases as the number of nodes increases, which is the case when more tiles are

added to a display. Thus, the amount of time spent transmitting data based on the view

transformation over an interconnection network decreases. In an object-order approach, in

contrast, the amount of time spent during the compositing stage increases as the number of

nodes increases.

Data redistribution time also decreases because image-order approaches inherently take

advantage of image coherence. Often, interaction with a particular dataset is adjacent, that is,
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it consists of small translations, scales, and rotations that do not greatly alter the view. Since

the view does not change very much, only a small amount of data on each node needs updating,

decreasing the amount of data redistributed.

This approach scales for high-resolution displays driven by large clusters for another reason.

Since the output image is displayed in place on the node that renders it the final image does

not have to be redistributed among the computers to which individual tiles are attached. In

contrast, because object-order techniques use a compositing stage that collects the final image

at one location they must spend time redistributing that image to the proper nodes for display.

A distributed shared-memory system serves as a mechanism to allow nodes access to the

data that falls within their respective view-frustums. A paging system and multi-level cache

ensure that large data that exceeds the amount of combined RAM on a cluster, as well as the

amount of combined texture memory on all of a cluster’s graphics cards can be rendered. The

paging and cache system exist locally between texture memory and RAM and between RAM

and disk.

Preprocessing data and storing it as an octree across the nodes of a cluster enables level-of-

detail rendering for better interactivity, and provides a convenient and efficient data structure

for view-frustum culling. Each successive level of the octree represents a higher-resolution ver-

sion of the data. The system can reach interactive frame rates by rendering coarser levels while

a user interacts and switching to more detailed levels when user interaction stops. Traversing

an octree in a top-down manner discarding nodes that do not fall within the view-frustum has

a logarithmic asymptotic time complexity.
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Hardware rendering and classification using texture mapping techniques are widely sup-

ported by current graphics cards, produce high-quality images and aid interactivity. Hardware

rendering using 3D textures mapped to view-aligned proxy geometry provides good image qual-

ity, and takes advantage of the capabilities of most current graphics hardware. The application

of color and opacity transfer functions with a fragment shader allows for the interactive classi-

fication of data without reloading data textures every time a user reclassifies a data value.

Figure 3.1 shows an overview of the system’s design. A commodity distributed-memory

cluster equipped with graphics cards and a high-speed interconnect is the base platform. Sub-

sequent sections describe the system in more detail.

Before the system starts, data is preprocessed into an octree. Data for each level is dis-

tributed evenly among the nodes of the cluster and stored on local disks. The first few lowest

levels may be replicated across all nodes of the cluster, as they may not consume much storage

space. The metadata associated with the octree is replicated on each processing node.

Next, the view-frustum for each node is computed. The frustum for each node is based on

the view-frustum of the entire display. This is usually calculated only once when the system

starts or may be calculated once for a display and stored.

During rendering, the user interactively determines the view-transformation. Culling the

octree against each tile’s view-frustum creates a list of all bricks to be rendered. The list is

sorted level-by-level, and the in back-to-front order within each level. The renderer then renders

each brick on the list, swapping buffers after each level is completed. Rendering is aborted and

restarted at the lowest level if user interaction occurs before a level is completed. In order to
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Each node connects to a tile on the high-resolution display.

Figure 3.1. System overview diagram. The base platform consists of a commodity
distributed-memory cluster equipped with graphics cards and connected via a high-speed

network. The area shaded in grey depicts the distributed shared-memory system connected
over the cluster’s high-speed interconnect.
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Root Level

Level 0
Level 1 Level 2

Figure 3.2. Illustration of an octtee. An octree is a tree data structure based on a node with
eight children. Each node of an octree represents a region in space. Each child represents an

octant of its parent.

access a brick for rendering, the renderer first searches in local texture memory cache. If not

present, the distributed shared-memeory system is queried. The brick may be loaded from a

node’s local disk if not present in either of the two caches.

3.2 Octree Data Structure

An octree is a tree data structure based on a node with eight children. Each node of an

octree represents a region in space. Each child represents an octant of its parent. The total

number of nodes in an octree is
∑L

i=0 8i where L is the number of levels in the octree starting

at 0. See Figure 3.2.
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Each level of the octree is associated with a different level-of-detail representation of the

original data. The leaf nodes are associated with the original, highest resolution data. The

root node is associated with the coarsest resolution data. Data associated with each level of the

octree can be computed in any appropriate way. This system uses linear interpolation based on

the highest resolution data to create coarser levels. The voxel dimensions of data represented

by a node must be a power of two, and all nodes must have identical voxel dimensions. It

follows that the voxel dimensions of each successive level are a power of two greater than those

of the previous level.

Nodes in the octree represent distinct regions in space. Each of the eight vertices of a

node have a world-space coordinate associated with it. A child node’s vertices have coordinates

appropriate to their position within their respective parent node in world-space coordinates.

See Figure 3.3

In order to avoid interpolation artifacts at brick boundaries when rendering, the boundary

voxels of nodes within a level are repeated between adjacent nodes. A node’s world-space

coordinates are adjusted to consider this overlap. See Figure 3.4 for an illustration.

3.3 Frustum Calculation

The view-frustum for each tile on a scalable high-resolution display is calculated as a fraction

of the entire display’s frustum. If the display has mullions that are to be considered they must

be accounted for in the calculation. The view-frustum for a tiled-display is determined by:
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(1.0, -1.0, 1.0)(-1.0, -1.0, 1.0)

(1.0, -1.0, -1.0)
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(1.0, 1.0, -1.0)(-1.0, 1.0, -1.0)

(1.0, 0.0, 1.0)(0.0, 0.0, 1.0)

(1.0, 0.0, 0.0)

(0.0, 1.0, 1.0)

(1.0, 1.0, 0.0)(0.0, 1.0, 0.0)

(1.0, 1.0, 1.0) (1.0, 1.0, 1.0)

Figure 3.3. Assignment of world-space coordinates. Each of the eight vertices of the parent
node on the left have a world-space coordinate associated with it. The vertices of the child
node on the right have coordinates appropriate to their position within the parent node in

world-space coordinates.

Voxel

Brick Division

Boundary Voxels

x

z

Figure 3.4. Sharing boundary voxels. Boundary voxels are shared among adjacent nodes
within a level in order to avoid interpolation artifacts.
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A =
WidthDisplay
HeightDisplay

T = ClipNear · tan
(
FieldOfV iewV ertcal

2

)
left = −A · T

right = A · T

top = T

bottom = −T (3.1)

The total width and height of the tiled-display is given by WidthDisplay and HeightDisplay,

respectively. The vertical field-of-view from the viewpoint is given by FieldOfV iewV ertical.

ClipNear is the distance from the display to the near clipping plane. A is the computed as-

pect ratio of the display. The view-frustum is determined by left, right, top and bottom.

See Figure 3.5.

3.4 Rendering

Rendering is the process of generating an image from a model. In order to render data, each

node must first determine which data from the octree falls within its frustum. The bricks that

are entirely within or intersect the frustum are placed in a list and sorted in an appropriate

order. Each brick is then rendered in that order. The framebuffer is swapped after every

level-of-detail is fully rendered.
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Figure 3.5. Calculating the frustum of a scalable high-resolution tiled-display.

Each processor implements a complete rendering pipeline because each node is responsible

for fully generating a portion of the final output image. The three main stages in a volume

rendering pipeline are reconstruction, classification and compositing. Reconstruction is the

process of constructing a continuous function from the dataset. Classification is the process of

assigning a color and an opacity value to a data value. Compositing determines the contribution

of a classified sample to the final image. Figure 3.6 shows the local volume rendering pipeline.

3.4.1 Visibility Culling

Visibility culling identifies what is totally or partially inside the view frustum and culls

everything that is not inside. This can improve the performance of the application since only

those objects that are visible are processed. In the case of rendering on a scalable high-resolution

display, each node separately culls the scene against its frustum to determine the objects it must

render.
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Reconstruction

Classification

Compositing

Constructs a continuous function from the dataset.

Assigns a color and an opacity value to a data value.

Determines the contribution of a classified sample to the final image.

Figure 3.6. Local volume rendering pipeline.

In this case, the objects in the scene are the nodes of an octree. Each time the view

is updated the system traverses all levels of the octree and creates a list of nodes that are

potentially visible for rendering. Figure Figure 3.7 illustrates this concept.

The octree traversal algorithm uses a breath-first search (BFS). Figure Figure 3.8 contains

pseudo code for this algorithm. First, the root node is checked against the frustum. If it’s

visible it is added to a queue. Next, the node at the front of the queue is removed and placed

in the list of visible nodes. Each of the node’s children is checked against the frustum. If a

child node is visible it is added to the queue. The process repeats by removing the next node

from the queue and examining it, and continues until the queue is empty.

Testing whether a brick falls within a frustum is done geometrically. Each of the six planes

that bound the frustum are calculated. Then, each of the node’s eight vertices is tested against
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Figure 3.7. Illustration of visibility culling. Three levels of an octree are shown. Grey bricks
are selected for rendering because they fall within the frustum. White bricks are culled.
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OctreeTraversal
1. Initialize a queue, Q, and a list, L.
2. If the root node is inside the frustum, add it to Q.
3. Remove a node, N , from the beginning of Q and add it to L.
4. For each child, Ci, of N :

If Ci is inside the frustum, add it to Q.
5. If Q is empty, all visible nodes are in L. Stop.
6. Repeat from step 2.

Figure 3.8. Octree traversal algorithm for visibility culling.

each of the frustum’s six planes. Based on these tests a node is determined to be either inside

or outside a frustum.

3.4.2 Brick Sorting and Placement

The list of bricks produced by the frustum-culling step cannot be rendered in an arbitrary

order. In order to composite correctly, they must be rendered in series constrained by the

associative property shown in Equation (2.5). Furthermore, bricks from all levels of the octree

are present on the list. Thus, bricks are sorted level-by-level starting at the lowest level, and in

back-to-front order within each level.

Each brick represents the contents of a different spatial region within the volume. The

location of the region is given by the brick’s boundary vertices. These vertices along with the

current model-view matrix and level within the octree are used to appropriately place the brick

in the scene in relation to the other bricks.
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GenerateView-AlignedProxyGeometry
1. Using the model-view matrix, transform the volume bounding box vertices into view

coordinates.
2. Compute the number of sampling planes used between the minimum and maximum

z coordinates of the transformed vertices. This is based on the number of voxels and
the desired sample rate.

3. For each plane in back-to-front order:
Add each intersection of the plane with the edges of the bounding box to a list.
Sort the plane vertices clockwise.

Figure 3.9. Generating view-aligned proxy geometry.

3.4.3 Reconstruction Using View-Aligned 3D Texture Mapping

Volume rendering using texture-mapping techniques performs the sampling and composting

steps necessary to generate an image by rendering a set of 2D geometric primitives inside the

volume. Each 2D geometric primitive is assigned texture coordinates for sampling the 3D

volume texture. This proxy geometry is rasterized and blended into the frame buffer, usually

in back-to-front order.

In order to render a data brick, it is first uploaded to the graphics card and stored as a

3D texture. Next, view-aligned proxy geometry is generated. This is computed on the CPU

from the computed vertex positions and the transformed volume bounding box. Appropriate

texture coordinates are also computed on the CPU and interleaved with the vertex coordinates.

Figure 3.9 gives an algorithm for generating view-aligned proxy geometry for volume rendering.
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3.4.4 Opacity Correction

The assigned opacity depends on the number of samples taken, and the level of the octree

being rendered. When taking fewer samples, the opacity has to be scaled up so that the

overall image intensity remains unchanged, instead of being reduced. Conversely, when more

samples are taken, the opacity has to be scaled down so that the image buffer does not become

oversaturated.

This occurs when the user changes the sampling rate via a control in the user interface, or

whenever the renderer switches to a different level-of-detail. Because each brick in the octree

has the same voxel dimensions, the same number of sample planes are generated for each brick

rendered. Thus, the number of samples orthogonal to the view-plane, the sample rate, doubles

at each successive level. Image intensity will vary as each progressive level is rendered, unless

the opacity is corrected at each level.

The corrected opacity value based on the sampling rate is given by:

α = 1− (1− αo)
so
s (3.2)

α gives the new opacity value, and αo represents the original reference opacity value. s is

the new sample rate, and so is the original reference sample rate.

3.4.5 Classification

Classification is the process of assigning a color and opacity to a reconstructed function

value. Transfer functions, usually implemented as lookup tables, are used for this purpose. A
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void Fragment(in float3 inTex : TEXCOORD0,
out float4 outColor : COLOR0,
const uniform sampler3D DataTexture,
const uniform sampler2D MapTexture) {

float2 val = tex3D(DataTexture, inTex).ar;
outColor = tex2D(MapTexture, val);

}

Figure 3.10. Fragment program for one-dimensional lookup tables. This fragment program
written in Cg supports a one-dimensional color and opacity lookup table for 8-bit and 16-bit

data using a 2D dependent texture.

reconstructed value determined during rendering is used as an index for the lookup tables that

contain corresponding color and opacity values.

This system supports a one-dimensional lookup table for 8-bit and 16-bit integer voxels.. It

is implemented using a 2D dependent texture to hold a one-dimensional lookup table and the

fragment shader shown in Figure 3.10. The texture coordinate of the sample point to be recon-

structed, along with the 3D texture representing the data and the 2D texture representing the

lookup table are provided to the fragment shader. The shader computes the reconstructed data

value, and then calculates the appropriate color and opacity value based on the 2D dependent

texture.

3.4.6 Compositing

Compositing between nodes is not necessary because the system uses an image-order data

decomposition approach where each node is responsible for rendering all the data falls within it
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view frustum. However, compositing does occur locally on each node to accumulate the color

and opacity results of the view-aligned proxy geometry sorted in back-to-front order.

Compositing takes place entirely in the graphics hardware. In OpenGL, the way the colors

of the incoming source fragment is combined with those already stored in the framebuffer

is specified by a blending function. For consistency with the compositing function given in

Equation 2.3 and with rendering in back-to-front order, this system uses GL_SRC_ALPHA, and

GL_ONE_MINUS_SRC_ALPHA as the source and destination functions, respectively.

3.5 Data Management

The data management system is critical to the system’s ability to render large data on a

distributed-memory cluster. The system uses a memory system similar to distributed shared-

memory architectures. It keeps track of data bricks loaded in RAM across all nodes of the

cluster. The system may request data to be transferred between nodes.

Image coherence argues that changes to the view-transformations are often slight, resulting

in only small amounts of new data being loaded by each node per frame. A multilevel cache

system is used to increase performance by keeping the most recently used data bricks as close

to the graphics hardware as possible. The first level of the cache exists locally between the

texture memory on each node and the memory system. The second level exists locally between

the memory system and the local storage system on each node. Both cache levels employ the

least-recently-used (LRU) replacement strategy.
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3.5.1 Texture Memory Cache

The texture memory cache keeps as many of the most recently used bricks resident in

texture memory as possible. When the rendering component requests a brick from the data

management system, this is the component that first gets the request. The number of bricks

in the cache is determined by the size of texture memory allotted to the system divided by the

brick size. The user sets the amount of texture memory allotted to the system.

When the texture cache system receives a request for a brick it first checks the bricks

currently in the cache. If the brick is present, it is moved to the top of the cache and the

renderer is allowed to proceed. If the brick is not present in the cache a request for the brick

is sent to the memory system. When the memory system fetches the brick it is loaded into

texture memory, placed a the top of the cache and the renderer is allowed to continue. This

process may push the least-recently-used brick out of the cache. Figure 3.11 illustrates this

process with an example.

3.5.2 Memory System

The memory system keeps track of all bricks loaded in the local RAM on every node. Any

node can query the memory system for any brick using the bricks ID value stored along with

the octrees metadata. If a brick is present on another node, the memory system transfers it to

the requesting node without changing the cache on the source node. In the event that a brick

is not present in the memory system, it is temporarily loaded onto the node where it resides

on disk and transferred to the requesting node. The caches are not altered on the node that

provided the brick.
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Figure 3.11. Illustration of texture memory cache operations. The initial state of the cache at
time t is shown on the left. The cache contains bricks Brickx, Bricky and Brickz. The

rendering system requests Bricky at time t + 1. It is present in the cache, so it is moved to the
top. At time t + 2 the system requests Bricka. It is not present in the cache, so the system
requests it from the memory system. Once it is received it is placed at the top of the cache.

3.5.3 Memory System Cache

The memory system keeps as many of the most recently used bricks requested by an individ-

ual node in the local RAM of the requesting node as possible. When the rendering component

fails to locate a brick in its texture cache, the request for the brick goes to the memory cache

system. The number of bricks in the cache is determined by the size of RAM allotted to the

system divided by the brick size. The user sets the amount of RAM allotted to the system.

When the memory cache system receives a request for a brick, it first checks the bricks

currently in the cache on the local node. If the brick is present, it is moved to the top of the

cache and a pointer is given to the requestor, that is, to the texture cache system. If it is not

present locally, a query is made to the memory system, which looks for the brick on other nodes
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and the disk system. The brick is then transferred to the local node where it is placed at the

top of the cache. This cache like the texture cache system may push the least-recently-used

brick out of the cache.

3.6 Maintaining Interactivity

Interaction is very important in a volume visualization system. The user must be able

to freely navigate the data by panning, scaling and rotating. In addition, the user must be

able to interactively change the color and opacity transfer functions. The system enables this

with the use of three mechanisms: adaptive level-of-detail rendering, user determined sampling

frequency, and interactive classification during rendering.

The adaptive level-of-detail mechanism automatically switches to using the coarsest resolu-

tion data from the octree whenever the user interacts. This allows the user instant feedback

based on navigation without waiting for a dataset to be fully rendered. When the user stops

navigation, the system progressively renders higher resolution data from successive levels of the

octree giving the user an image of continuously increasing detail.

The user can change the number of samples taken by modifying the sampling frequency.

Reducing the sampling frequency decreases the number of proxy geometry slices though the

data. Decreasing the number of slices reduces the number of texture lookups that are performed,

thus decreasing the total rendering time. This increases performance at the cost of reducing

image quality. Conversely, the sampling frequency can be increased to produce higher resolution

images.
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Classification is performed interactively during the rendering stage. One-dimensional color

and opacity transfer functions are applies during the rasterization stage using a fragment shader.

Applying the lookup table at this stage allows reclassification of the data without modifying

the original data values and reloading the data textures every time the transfer functions are

modified, which can take considerably more time than uploading a new lookup table.



CHAPTER 4

PERFORMANCE ANALYSIS AND RESULTS

Testing the system determines the scalability of the methodology in terms of data size and

output resolution. An analytical cost model shows the system is scalable for a wide range of

input data sizes, output resolutions and cluster sizes. Performance tests run on a subset of the

scenarios used in the analytical model’s evaluations validate the model’s predications.

4.1 Theoretical Performance Analysis

A theoretical analysis of the methodology provides a mechanism to evaluate the performance

of the system under ideal conditions and to predict the system’s behavior. An analysis of this

methodology with some assumptions about the implementation platform produces results that

show the system’s scalability. The analytical cost model scales to produce larger output images

from larger data sizes as the number of processing nodes increases.

4.1.1 Analytical Cost Model

The performance of the methodology presented in this thesis can be described at a high

level by (Equation 2.5). As a reminder, (Equation 2.5) states:

ttotal = tprocess + tdistribute + trender + tcomposite + tdisplay

The cost of preprocessing data is given by tprocess. tdistribute gives the cost of distributing

data to the appropriate rendering processors. trender is the total rendering time. The cost of

55
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compositing, including network communication, is represented by tcomposite. tdisplay represents

the time to redistribute the output image among appropriate display computers.

In this case, the cost of preprocessing data, tprocess, is not considered because it is done only

once for a given dataset. Because this is an image-order based method without a compositing

step, tcomposite is zero. tdisplay is also zero as each node in the cluster is assumed to display the

data it renders. This leaves the equation:

ttotal = tdistribute + trender

The time to distribute data and the time to render are considered together. The worst-case

occurs when all of the data must be redistributed among all the rendering nodes. In this case,

any benefit that may be gained by using a multi-level cache, or that may inherently exist due

to image-coherence does not improve performance. The total time to render a frame in the

worst-case is given by:

ttotal =
D/N

SV RAM
·
(

(SV RAM · BRAM toV RAM ) + (SV RAM · BRAM toRAM ) +

(SV RAM · Bdisk toRAM ) + trender

(
SV RAM ,

p

N

)) (4.1)

The total number of nodes in the cluster is given by N . The total size of the data is given

by D. p is the total number of pixels in the output image. SV RAM is the amount of texture

memory on each graphics card. BRAM toV RAM is the bandwidth between RAM and texture

memory. The bandwidth between disk and RAM is given by Bdisk toRAM . The bandwidth
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between the memory of two nodes of the cluster is given by BRAM toRAM . trender
(
SV RAM ,

p
N

)
is a function that gives the cost of rendering data of size SV RAM to p/N pixels.

(Equation 4.1) assumes that each node must fetch its data from the local disk of a remote

node. It also assumes that this is performed in blocks equal to the size of texture memory. The

total time to render each block is given by the time to load it from disk to memory, transfer

it to the local node from a remote node, upload it to the graphics card, and render it in the

graphics card. The product of this time by the number of blocks that each node must render

gives the total rendering time. The number of blocks that each node must render is given by

(D/N)/SV RAM .

The term (SV RAM ·Bdisk toRAM ) can be omitted when the data is large enough to fit entirely

in the combined memory of each computer. This occurs when D ≤ SRAM ·N . If the data can

be replicated in the memory of each computer, the term (SV RAM · BRAM toRAM ) becomes zero.

This happens when D ≤ SRAM . The term (SV RAM · BRAM toV RAM ) becomes zero when the

entire dataset is small enough to be replicated in the texture memory of each node, that is,

when D ≤ SV RAM .

4.1.2 Analytical Results

Many of the variables in the cost model reflect system properties, such as the amount of

RAM on each node. These variables must have values associated with them in order to use the
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cost model. Values are chosen that closely resemble the testbed system described later. The

values used in this analysis are:

Bdisk toRAM = 1.5Gbps

BRAM toRAM = 1.0Gbps

BRAM toV RAM = 2.1GBps

SRAM = 2GB

SV RAM = 128MB

Figure 4.1 shows the result of evaluating the cost model for a number of output resolutions,

data sizes and processor numbers. Six different output resolutions are shown, ranging from one

megapixel to 128 megapixels. Seven datasets are evaluated, ranging from two gigabytes to 128

gigabytes. Eight different cluster sizes with between eight and 1024 processors are examined.

The graphs in Figure 4.1 show that for any output image size, as the number of nodes

increases, the time to render a given dataset decreases. This means that the methodology is

scalable in terms of output resolution and the number of processors. Further, even for the

largest dataset and output resolution, the total time to render in the worst-case is around five

seconds.

The plots for each dataset appears to follow the same pattern of behavior. As the data size

increases, the shape of the plot remains the same. The only difference is a shift that indicates
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an increase in rendering time. This shows that the method is scalable in terms of data size and

the number of processing nodes.

Figure 4.2 and Figure 4.3 show the same results of evaluating the cost model on different

number of nodes for a given dataset as the output resolution increases. For a given dataset size,

and for a fixed number of nodes, the time to render increases, as expected. As the number of

nodes increases, the time to render decreases.

4.2 Experimental Results

In order to validate the theoretical cost model described in the previous section, a perfor-

mance evaluation is performed on an implementation of the methodology. A commodity cluster

attached to a scalable high-resoltuion tiled-display serves as a testbed. Data of various sized

is generated for testing. Results show that a smaller octree brick size produces a performance

speed-up over a larger octree brick size. Experimental tests also show that the system scales to

produce larger output images form larger data sizes as the number of processing nodes increases.

4.2.1 Test Platform

A twenty-nine node cluster serves as the test platform for running experimental tests. Each

node has two AMD Opteron 246 processors running at 2GHz, 2 GB of RAM, and 250 GB

of local storage. The cluster is interconnected by a 1 Gbps Ethernet backplane. Each node

mounts a large network file system (NFS) using the cluster’s backplane. In addition, each node

is equipped with an nVidia FX3000 graphics processor with 128MB of VRAM over an AGP 8x

bus.



60

Number of Nodes

T
im

e 
(S

ec
o
n
d
s)

Number of Nodes

T
im

e 
(S

ec
o
n
d
s)

b) 2 Mega-Pixel Output Image e) 64 Mega-Pixel Output Image

Number of Nodes

T
im

e 
(S

ec
o
n
d
s)

Number of Nodes

T
im

e 
(S

ec
o
n
d
s)

a) 1 Mega-Pixel Output Image d) 16 Mega-Pixel Output Image

Number of Nodes

T
im

e 
(S

ec
o
n
d
s)

Number of Nodes

T
im

e 
(S

ec
o
n
d
s)

c) 4 Mega-Pixel Output Image f) 128 Mega-Pixel Output Image

Figure 4.1. Cost model evaluation for different data sizes and output resolutions showing
performance as the number of processors increase.
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Figure 4.2. Cost model evaluation for increasing output resolution on datasets from 2
giga-bytes to 16 giga-bytes.
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Figure 4.3. Cost model evaluation for increasing output resolution on datasets from 32
giga-bytes to 128 giga-bytes.
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The cluster is configured such that one node serves as a master node, and the remaining

nodes serve as slave nodes. In this configuration, it powers EVL’s 105 megapixel LambdaVision

display. Each of the slave nodes connects to two of the fifty-five commodity monitors that makes

the display, and generates up to a 3.75 megapixel output image.

4.2.2 Test Data

Test data is generated in order to run experimental performance tests on the implementation

system. Each test dataset contains 16-bit unsigned integer voxels. The data values are a

gradient in the z-direction over the extent of the 16-bit space, that is, they range from zero to

65,535.

The color transfer function used graduates through a rainbow like spectrum. An opacity

transfer function is chosen that ranges evenly from completely transparent to completely opaque.

Figure 4.4 shows the test dataset rendered at various orientations.

The actual contents of the test data as well as the transfer functions chosen will not alter the

performance of this system. The hardware accelerated 3D texture mapping technique performs

texture lookups for all voxels within view regardless of the visibility determined by occlusion

or transparency due to classification. This is in contrast with other software and GPU based

rendering methods that take advantage of classification dependent optimization techniques,

such as early ray termination and empty space skipping.

Three datasets of sizes 2 GB, 16 GB and 128 GB are generated. Each dataset is preprocessed

into three octrees of varying levels. For a given dataset, increasing the number of levels in the

octree increases the number of bricks in the octree while reducing each brick’s size. The process
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Figure 4.4. Test data rendered at various orientations.

of generating an octree increases the size of the dataset because each octree contains data for

coarser resolution versions of the original data in addition to the original data. Table II lists

each test dataset and its original size, along with the number of levels in each octree, the number

of bricks in each octree, each brick’s dimensions and size, and the total size of the dataset after

processing.

4.2.3 Test Results

Performance tests measure the best brick size to use, the time to render the highest level-of-

detail, and the rate at which users can interact with the system with the lowest level-of-detail.

Preliminary tests are performed to determine the brick size that produces the best performance.

Thorough tests are performed on the highest level-of-detail for each of the three datasets with

the optimum brick configuration, and vary the number of nodes and output resolution. Tests
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are run with groups of eight, sixteen, twenty-four and twenty-eight nodes, and produce output

images of one, four, sixteen, sixty-four, ninety-six and 105 megapixels. Each dataset is tested

on each of the four groups of nodes, However, because a single node is limited to producing a

maximum output resolution, tests with higher resolution output images are restricted to using

larger numbers of nodes.

Preliminary test are performed on each dataset to determine which brick size produces

the best result. Exhaustive tests are then performed based on the findings. The results were

reasonably similar regardless of the number of nodes, the size of the dataset, or the output

resolution. The largest brick size is the baseline for comparing the other brick sizes against.

Figure 4.5 shows the results of testing the three various brick sizes. The smallest brick size, 0.5

MB, increases performance the most. The moderate brick size, 4 MB, increased performance

by less than 10 percent. Because of these results, the smallest brick size is used in all further

tests.

Figure 4.6 shows test results for rendering the highest level-of-detail of each dataset at

different output resolutions using an increasing number of nodes. The datasets are rotated

a few degrees about their y-axis every frame, making one complete rotation. The charts for

tests up to and including the test producing a sixty-four megapixel output image show that as

the number of nodes increases for a given dataset and output resolution, the rendering time

decreases. This holds true as the output resolution increases, indicating that the system scales

in terms of the number of nodes and output resolution. The graphs for the tests producing
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TABLE II

PROPERTIES OF TEST DATASETS

Dimensions Original Size
Number of Number of Brick Brick

Total Size
Levels Bricks Dimensions Size

10243 2GB
3 73 2563 32 MB 2.3 GB
4 585 1283 4 MB 2.3 GB
5 4681 643 0.5MB 2.3 GB

20483 16GB
4 585 2563 32 MB 18.4 GB
5 4681 1283 4 MB 18.4 GB
6 37449 643 0.5 MB 18.4 GB

40963 128GB
5 4681 2563 32 MB 146 GB
6 37449 1283 4 MB 146 GB
7 299593 643 0.5 MB 146 GB
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Figure 4.5. Impact of brick size on rendering performance.
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ninety-six and 105 megapixel output images do not have enough data to draw a conclusion, but

act as a reference to the system’s performance.

The charts in Figure 4.7 show the same results of evaluating the cost model on different

number of nodes for a given dataset as the output resolution increases. For a given dataset

size, and for a fixed number of nodes, the time to render increases, as expected. As the number

of nodes increases, the time to render decreases. Not all combinations of nodes and output

resolutions are represented for the reason mentioned above.

When a user interacts with the system the lowest level-of-detail is loaded allowing for much

faster interaction. The data for this level is stored entirely in one brick, which becomes replicated

on each node’s graphics card when in use. Thus, maintaining interactivity in the system is

dependent on having a small enough brick size such that the system can render a single brick

at an interactive rate.

Each of the three bricks sizes tested allows the user to interact with the system at at least

one or two frames per second. The performance of the interactive rate increases for smaller

brick sizes. The maximum achieved during these tests was twelve frames per second using a

643 brick size.

4.3 Comparison

A comparison of the experimental test results and the analytic results from the cost model

validate the models correctness. Plots of the analytic results and experimental results together

show that the implementation system performs better than the worst-case model during the

test cases. Although the experimental results out perform the cost model, the experimental
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results and the analytic results follow the same pattern of behavior and scalability. This shows

that the cost model provides a valid upper-bound analysis of the methodology.

Results of the cost model evaluation and of the experimental tests are shown together in

Figure 4.8 for four different output resolutions. The experimental results take about half the

time as the analytic model predicted. This discrepancy can be attributed to the brick size and

to image-coherency. Results from the brick size tests shown in Figure 4.5 indicate that the

rendering time using the smallest brick size is 58 percent of the time when rendering using the

largest brick size. This accounts for much of the discrepancy indicated in the graphs. The rest

of the discrepancy may be attributed to image-coherancy, that is, that because the dataset is

rotated by small amounts, only a small amount of data needs to be redistributed among the

nodes, lowering the overall data distribution time. Regardless, the discrepancy is a constant

shift in rendering time, indicating that the experimental system scales by the relationship as

does the analytic model.
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CHAPTER 5

APPLICATIONS

In order to demonstrate the applicability of the methodology presented, the system is ap-

plied to a number of domain specific datasets. The datasets range in size from a few hundred

megabytes to fifty gigabytes, and are visualized on two high-resoltuion displays; the Lamb-

daVision, a 105 megapixel displays, and the LambdaTable, a twenty-four megapixel interactive

tabletop display. The Purkinje neuron and the rat kidney datasets are examples from the bio-

science domain. The rock dataset comes from the geoscience community and is used to help

understand the reactions that occur during rock formation. The Visible Female data comes

from the medical domain and is often used by the volume rendering community.

5.1 Purkinje Neuron

Purkinje cells are some of the largest neurons in the human brain. They have an intricately

elaborate network of dendritic spines. Purkinje cells are arranged in a domino like fashion in

the portion of the brain responsible for fine motor control, the cerebellar cortex. Each cell is

a tiny supercomputing structure with up to 200,000 inputs from various sensory units all over

the body. They are triggered at rates of ten to 150 times a second and have only one output,

which is the result of their internal computation.

Depending on the species, a cerebeller cortex can contain billions of these cells. In humans,

Purkinje cells are affected in a variety of diseases ranging from toxic exposure from alcohol and
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lithium, to genetic mutations, such as spinocerebellar ataxias and autism, and neurodegenera-

tive diseases that are not thought to have a known genetic basis, such as sporadic ataxias.

The Purkinje neuron shown in Figure 5.1, Figure 5.2 and Figure 5.3 is sampled from a rat

brain and imaged by multi-photon microscope. Each layer in the volume is a mosaic of smaller,

high-resolution images that are stitched together. The layers are stacked to create a volume.

The original slice data creates a 1664 x 2080 x 109 volume of 8-bit samples. The original size of

the data is 359 MB. The data is provided by Hiroyuki Hakozaki, Diana Price, Masako Terada

and Mark Ellisman of the National Center for Microscopy and Imaging Research (NCMIR) at

the University of California, San Diego (UCSD).

5.2 Rat Kidney

The rat kidney shown in Figure 5.4 and Figure 5.5 is imaged by a high-power microscope.

Each layer in the volume is a mosaic of smaller, high-resolution images that are stitched together.

The layers are stacked to create a volume. The original slice data creates a 34664 x 22043 x 23

volume of 24-bit color samples. The original size of the data is 50 GB. The data is provided

by Hiroyuki Hakozaki, Diana Price, Masako Terada and Mark Ellisman of the National Center

for Microscopy and Imaging Research (NCMIR) at the University of California, San Diego

(UCSD).

5.3 Rock Sample

Geoscientists are interested in the reactions that occur between different areas within rocks,

and in the pathways that connect those different areas. Previously, the internal structure of

rocks was determined by manually polishing rocks at set intervals, a very labor intensive task.



74

Figure 5.1. Volume visualization of the Purkinje neuron.
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Figure 5.2. Researcher analyzing the Purkinje neuron on the LambdaTable.

Figure 5.3. Scientist interacting with the Purkinje neuron on the LambdaTable.
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Figure 5.4. Volume visualization of the rat kidney. The image at the top shows the entire
kidney. The bottom image shows the section highlighted in the top image.
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Figure 5.5. Volume visualization of the rat kidney on the LambdaVision.

Now, using computed tomography (CT) scanners, geoscientists can get faster and more precise

samples. In this sample, geoscientists are interested in minerals in a pathway between garnet

and sillimanite. The minerals in this location can provide clues as to how the rock was formed.

The rock sample shown in Figure 5.6 is imaged by a Computed Tomography (CT) scanner.

The data consists of CT scans of a rock sample that measures about 25 mm x 25 mm x 27 mm.

Each cross-section is taken at a resolution of 1024 pixels by 1024 pixels where each pixel is made

up of 16-bits of grey tone. There are a total of 2,450 cross-sections making the entire dataset

4.8 GB. The data was provided by Eric Goergen of the University of Minnesota (UMN).
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Figure 5.6. Volume visualization of the rock sample on the LambdaTable highlighting
high-intensity garnet regions.

5.4 Visible Female

The Visible Female data was collected as part of the the National Library of Medicine’s

(NLM) Visible Human Project. It serves as a reference for the study of human anatomy

by providing a complete, anatomically detailed, three-dimensional representation of the normal

female human body. The Visible Female data consists of axial CT scans of an entire female body

taken at 0.33 mm intervals at a resolution of 512 pixels by 512 pixels where each pixel is made

up of 12-bits of grey tone. There are a total of 1,871 cross-sections making the entire dataset

702 MB. Figure 5.7 shows a volume visualization of the Visible Female on the LambdaTable.

Figure 5.8 shows a volume visualization of the Visible Female skull.
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Figure 5.7. Volume visualization of the Visible Female on the LambdaTable.
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Figure 5.8. Volume visualization of the Visible Female skull.



CHAPTER 6

CONCLUSION

This thesis presents a methodology for rendering very large volume data on scalable high-

resolution displays using a distributed-memory commodity cluster. The methodology uses a

number of techniques which when combined produce a system that is scalable in terms of input

data size and output resolution. An analytical cost model validated by experimental results

predicts the system’s behavior. Finally, the system is demonstrated using a number of domain

specific datasets.

A thorough review of research in the volume rendering field and especially in the sub-field

of parallel volume rendering was performed. The review found that although much research

has been performed in the area of visualizing large volume data on small displays, and some

research has been performed concerning rendering small data on large displays, not enough

exists that addresses rendering large data on scalable high-resolution displays.

A methodology that addresses rendering large volume data on scalable high-resolution dis-

plays is presented that employs a number of techniques. Data is preprocessed into a multi-

resolution octree that provided interactivity and an efficient structure for data management. An

image-order data distribution approach is used that assigns each rendering node driving a high-

resolution display a disjoint portion of the output image to render. A data management system

that includes a distributed shared-memory system and a multi-level cache is presented. One

level of cache exists between the local texture memory of each node and the distributed shared-
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memory system, and the other level of cache resides between each node’s local disk and the

memory system. Local rendering is performed using hardware accelerated 3D texture-mapping

techniques and view-aligned proxy geometry. Interactive post-classification is performed with

the use of a fragment program.

A worst-cast analytical cost model describing the methodology’s run-time behavior is pre-

sented. Experimental results validate the model for a number of test scenarios. The model

and results show that the system is scalable in terms of increasing input data size, increasing

output resolution, and an increasing number of processors. An optimal brick size for nodes in

the octree is also determined.

The applicability of the methodology presented is demonstrated with a number of domain

specific datasets. The datasets range in size from a few hundred megabytes to fifty gigabytes,

and are visualized on two high-resoltuion displays. The Purkinje neuron and the rat kidney

datasets are examples from the bioscience domain. The rock dataset comes from the geoscience

community and is used to help understand the reactions that occur during rock formation. The

Visible Female data comes from the medical domain and is often used by the volume rendering

community.
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