
Kiviat Defense: An Empirical Evaluation of Visual Encoding
Effectiveness in Multivariate Data Similarity Detection
Mirko Mantovani; University of Illinois Chicago, Chicago, USA
Andrew Wentzel; University of Illinois Chicago, Chicago, USA
Juan Trelles Trabucco; University of Illinois Chicago, Chicago, USA
Joseph Michaelis; University of Illinois Chicago, Chicago, USA
G. Elisabeta Marai; University of Illinois Chicago, Chicago, USA

Abstract

Similarity detection seeks to identify similar, but distinct items over multivariate datasets. Often, similarity cannot be defined

computationally, leading to a need for visual analysis, such as in cases with ensemble, computational, patient cohort, or geospatial

data. In this work, we empirically evaluate the effectiveness of common visual encodings for multivariate data in the context of visual

similarity detection. We conducted a user study with 40 participants to measure similarity detection performance and response time under

moderate scale (16 items) and larger scale (36 items). Our analysis shows that there are significant differences in performance between

encodings, especially as the number of items increases. Surprisingly, we found that juxtaposed star plots outperformed superposed

parallel coordinate plots. Furthermore, color-cues significantly improved response time, and attenuated error at larger scales. In

contrast to existing guidelines, we found that filled star plots (Kiviats) outperformed other encodings in terms of scalability and error.

Introduction

Similarity detection seeks to identify items which resemble other items without being identical to them, sometimes over collections

of multivariate items. Detecting similarity is an intrinsic part of comparison, along with judging dissimilarity or differences between

items. However, comparison is oftentimes a detailed, precise, finely tuned operation using specific channels such as size. Furthermore,

comparison is oftentimes performed in a one-to-one setting, where two items are placed side-by-side and compared pairwise. In contrast,

similarity detection over moderate or large collections of items often involves a simultaneous, fast, course assessment of multiple items

at the same time, where the items are characterized by multiple variables.

Interestingly, similarity cannot always be defined computationally over a dataset; for, example when the weights of the different

features of the items with respect to similarity are yet to be determined. These situations lead to a need for visual analysis. Visualization

allows direct interaction with the user, and user steering of the analysis process, which is hard to achieve through non-visual means.

Such situations arise commonly in the analysis of ensemble simulations [36], multiple computational models [39, 8], patient data repos-

itories [41, 58, 43], geospatial data [25], computer networks [12, 30], and sports games [35]. In these common practical instances, the

collection of items to analyze is typically of moderate size: most of these datasets feature dozens of items [15, 36], but not hundreds, and

the data items are multivariate [41, 58, 36], but not necessarily high-dimensional.

From a visual analysis perspective, the design space explored by practitioners for encoding similarity is surprisingly narrow. One

option is using, whenever possible, relative position to encode similarity, based on Gestalt and visual-cue perception theory [51, 46]: items

grouped together in space are also perceived as more similar to each other than items outside the group [34, 2]. However, the use of spatial

position is not always possible, for example when the data itself is spatial in nature. When the use of spatial position to encode similarity

is not feasible, the multivariate items to be visually analyzed are typically encoded as superposed (overlaid) multivariate encodings, such

as parallel coordinate plots. A common variation of this option is the use of radial axes, such as overlaid star plots, despite a contrary



body of evidence both in the literature and in popular culture that indicates radial layouts are less legible than linear layouts [46, 47, 22].

Because such superposed representations suffer from clutter, they are often augmented with color-cues and interaction. Last but not least,

when screen real estate is available, a third option is encoding the items as juxtaposed (i.e., next to each other) glyphs.

Whereas these alternative approaches for representing multivariate data have been studied in the context of various specific tasks

(relationship, composition, distribution, one-on-one comparison), there is no rigorous evaluation as to which encoding, or even what

layout paradigm is better for similarity detection over multivariate data involving several items. For example, parallel coordinate plots are

known to be effective at detecting correlation between neighboring axes when showing hundreds of items [46], but there is no equivalent

knowledge on their performance in similarity detection. We note that similarity detection seeks to identify similar, but distinct items

over multivariate datasets. In contrast, correlation detection is the process of establishing a relationship or connection between two

or more variables (or measures), although the strength of positive correlation can indicate similarity of multivariate items. Likewise,

several variations of juxtaposed radial layouts have been examined in the context of one-on-one similarity detection, where lines-only star

glyphs, which encode variables using radial axis lengths, have been found to be superior to star glyphs that use an enclosed polygon [13].

However, it is not clear whether those findings generalize to multiple item similarity detection. We furthermore do not know what is the

impact of color-cues on encoding effectiveness. Additionally, recent studies [32, 33] have re-examined, in a part-to-whole context, the

value of radial layouts versus linear layouts, with surprising results. Furthermore, we do not know if or how the effectiveness of a specific

encoding may scale with the number of items. Anecdotally, in our own lab, we have also witnessed passionate disputes between visiting

visualization researchers (against) and application domain experts (pro) regarding the use of Kiviat diagrams (a juxtaposed radial glyph)

to help detect similarity.

To help elucidate these issues, and motivated by these disputes, we conducted an exploratory empirical evaluation with 40 partici-

pants. We measured similarity detection accuracy and response time under two conditions: 16 items (moderate scale) and 36 items (large

scale). We approached this problem by examining variants of several encodings commonly-used in similarity detection: Lines-Only

glyphs, Kiviat diagrams, and parallel coordinate plots (Fig. 1). Our statistical analysis shows that there are significant differences in

encoding performance, especially in the larger-scale setting of the experiment.

Related Work
Visual Encodings for Multivariate Data

Chan et al. [6] have identified a taxonomy of four broad categories for visualizing multivariate data: pixel-oriented techniques,

hierarchical display, geometric projection, and iconography. Before discussing the use of these representations in similarity detection, let

us briefly examine these classes.

Pixel-based techniques represent individual attributes via various color schemes. The most popular of these are stacked bar-chart

variants, as well as lesser-known methods such as trend images [37, 38], or pixel-oriented dense visual encodings [28]. However, these

techniques require the existence of a known similarity measure item dimensions, not items, in order to create the pixel layout. Without

this optimization, the representation quickly becomes noise [29]. Likewise, hierarchical methods such as treemaps and dimensional

stacking [6] are appropriate for hierarchical structures, but are not a good fit with similarity detection when that hierarchical structure

does not exist and it is not introduced as part of the computational analysis process [11].

Projection-based methods attempt to map the higher-dimensional space into a lower dimensional space. These methods are typically

considered a good choice for identifying correlations, and scale well with large datasets. These methods are most often variants of scatter



Figure 1. Similarity detection over multivariate data using five visual encodings (clockwise order from top left): Kiviat diagrams, Lines-Only glyphs, Color-cue

Kiviat diagrams, Parallel Coordinate Plots, and Color-cue Parallel Coordinate Plots. In these experiments, star-glyph variants use a juxtaposed layout, whereas

parallel coordinate plot variants use superposition.

plots or parallel coordinate plots (PCPs). Whereas scatter plots do not scale to support multi-dimensional individual item analysis and

comparison, parallel coordinate plots and their relatives allow individual items to be displayed as a continuous contour across multiple

dimensions, making PCPs a popular encoding used for identifying similar data points.

Finally, in iconography, items are shown as glyphs. A glyph is the visual representation of a data item where the attributes of a

graphical entity are dictated by one or more attributes of a data [2]. Glyph-based methods are well-suited for similarity detection, as

visual feature similarity can map directly to numerical similarity.

Using Position to Encode Similarity

Lee et al. [34] evaluated the effectiveness of four different visual encodings when conveying similarity information in multivariate

data, and found that encodings which used spatial arrangement of the items yielded faster and more accurate answers. Likewise, Borgo

et al. [2] indicate that elements arranged on a line or curve are perceived to be more related than elements not on the line or curve. To

take advantage of these principles, similar multivariate item representations over large datasets can be placed in close proximity in a

2D space, for example via techniques such as lower-dimensional embeddings. However, it is not always possible to encode similarity

using position when the data itself is spatial in nature—for example, when the representations are anchored to zipcodes on city maps or

to anatomical locations in medical visualization [52]. Furthermore, dimensionality reduction or aggregation are not always acceptable,



for example, in algorithm explainability [23]. Finally, similarity may not always be computed a priori, as in our driving examples from

ensemble simulations, or in the analysis of multiple computational models.

Similarity Detection: Juxtaposed Glyph Encodings

When relative location cannot be used as an indicator of similarity, multivariate data-points are oftentimes encoded by glyphs placed

side by side, i.e., juxtaposed [16], or at discrete locations. Juxtaposed glyphs may support similarity detection through icon attributes

such as shape, colors, texture and so on [40]. One of the earliest proposed glyphs are Chernoff faces [7], where the different parts of a

conceptualized human face (mouth, nose, etc.) encode different dimensions of an multidimensional data set.

Given their small graphical footprint, radial layout glyphs, including juxtaposed star plots and their variations, are also frequently

used [60]. Fuchs et al. [14] systematically reviewed 64 user-study papers on glyphs, many of which compare the performance of different

types of glyphs when dealing with similarity or comparison tasks, including Borg and Staufenbiel’s study of snow flake and sun glyph

performance [1]. Star plots and their variations, in particular, were found to be effective, although a multitude of studies have tried to

understand if the ordering of the axes in the glyphs has any impact on their performance [31, 44]. Furthermore, Fuchs et al. [13] studied

how contours in star plots influence similarity perception. Their results showed that the “Data Lines Only” variation of the star plot,

which does not include a glyph contour, performed best. However, their study only considered a 3 x 3 grid placement of the glyphs,

with the target in center, whereas potential matches surrounded the target. This setting is not realistic for similarity detection over larger

collections of multivariate data.

Keim [27] categorized different types of visual encodings for multidimensional data, including icon-based (e.g., Chernoff faces

or stick figures [49]), or pixel-oriented. Keim and Kriegel later carried out an experiment [29] to assess the performance of charts for

visual data mining tasks, including finding groups of similar data, finding correlations between attributes, and similarity retrieval. They

specifically designed a pixel-oriented technique that was able to represent as many items as possible in the same display, and compared it

to classical approaches such as parallel coordinate plot and stick figure techniques. They concluded that the pixel-oriented approach they

developed was superior with respect to standard techniques when trying to visualize thousands of items of data, subject to the window

size and data limitations discussed in the earlier subsection. However, pixel-oriented representations require optimization of the layout

based on an existing similarity measure among the item dimensions.

Similarity Detection: Superposed Encodings

Parallel coordinate plots (PCPs) and their older relative, nomograms [41] are superposed encodings [16] that assign variables to

parallel axes, and overlay multiple items. Due to their scalability and ability to deal with many dimensions, these encodings are often

used to explore variable correlation or similarity [56, 54, 3, 50]. PCPs are reportedly effective for the exploration of hundreds to thousands

of items [46]. However, Keim and Kriegel [29] report that on a set of thousands of data items, a pixel-oriented encoding outperformed

PCPs. Radar charts or star plots can also be superposed for the exploration of a large number of items.

Methods
Experimental Design

This study has a well-defined scope, motivated by practice in visual analysis. We focus on analyzing the efficiency of commonly-

used visual encodings in a multidimensional similarity detection task. Given a target item, we seek to determine whether the chosen

visual encoding affects the ability of a person to identify the most similar items in a set of candidate items. In this context, we first explore



the effectiveness of several commonly-used encodings, and the influence of dataset scale over encoding effectiveness. In a secondary

analysis, we explore the influence of color-cue use.

Encodings selection

We begin by noting that the juxtaposed and superposed terminology originates from Gleicher’s theoretical framework for visual

comparison [16], which distinguishes comparison methods along juxtaposition, superimposition, and explicit difference encoding. The

juxtaposed and superposed terminology is also appropriate in similarity detection, although explicit difference encoding does not carry

over to multiple item similarity detection beyond, arguably, the simple use of color-cues. However, comparison methods and visual

encodings are not independent design variables. For example, all parallel coordinate plots are superposed. Likewise, all traditional

star plots, including transparent radar charts, use a radial layout and can be used as superposed encodings. At the same time, several

encodings related to star plots, including Lines Only glyphs and Kiviat diagrams, are always juxtaposed encodings. Thus, the specific

visual encodings and comparison methods are not independent variables, and should not be analyzed as separate dimensions. In this

study, we focus on visual encoding effectiveness.

We next consider the space of appropriate visual encodings, according to visualization theory, as well as the encodings used in

similarity detection practice. Overall, we selected our encodings set based on the following criteria:

• Popularity: We chose encodings that have been commonly used in the visual analytics literature, and that can be implemented

given common data visualization software. Linear and radial plots are common in many popular software packages, while more

esoteric encodings such as many pixel-based methods or Chernov faces are not, making the usability of findings related to those

methods of limited use.

• Losslessness: Because visual similarity detection is typically used when no computable similarity measure is available, it is

important to be able to quantify when important information is reduced away. Therefore, we avoid lossy data encodings, such as

dimensionality reduction techniques and normalized bar charts.

• Footprint Scalability: We included visual encodings whose footprint scales at most linearly with either the number of items or

dimensions, as opposed to methods such as scatterplot matrices that require a quadratically scaling number of plots.

• Coverage: We included encodings that cover both juxtaposition and superposition paradigms, as well as schemes with and without

color-cues.

• Parsimony: We included a representative and reasonable set of encodings and scales, that allow us to better understand scale

issues in similarity detection without undue hardship to the user. This criterion allows us to circumvent the need to factor into

analysis user fatigue.

From the possible space of multivariate encodings, as indicated earlier, pixel-based techniques and hierarchical displays are not a

good fit with encoding several possibly independent variables. We therefore did not pursue this category of encodings.

Next, we considered projection-based encodings. Parallel coordinate plots, including their radial relatives, allow individual items

to be displayed across multiple dimensions, and have been found to be superior in visualizing clusters than other projection based

methods [63], making them a good candidate for similarity detection. Whereas parallel coordinate plots are not anchored to a spatial

location, in practice they can be linked to specific item spatial locations via brushing and linking across coordinated views. We include

two variants of this encoding in our study.



Under the parsimony criterion, because overlaid star plots are also used in visualization practice, we performed a calibration pilot

usability study (five participants, 12 trials per participant) in order to assess the overlaid star plot potential as a similarity detection

encoding, compared to that of linear parallel coordinate plots. The pilot results agreed with the existing literature [46, 47]: we found that

parallel coordinate plots outperformed slightly overlaid star plots, and that the similarity detection tasks took significantly more time to

complete in the overlaid radial layout (22% error increase and 49% more time in the larger setting). In consequence, overlaid star plots

were not included in the final experiment.

Last, we considered the space of glyph-based representations. Under the popularity and parsimony criteria, we excluded from

our study esoteric methods such as Chernov faces or stick figures [49]. Furthermore, with respect to juxtaposed star glyph variants,

the Fuchs et al. [13] study had found that Lines-Only star glyphs outperformed Polygon-Outline-Only glyphs. In consequence, in

our study we excluded Polygon-Outline-Only glyphs. In the similarity detection literature, we furthermore noted the use of Kiviat

diagrams [41, 58, 42], a glyph encoding related to star plots. Often confused with star plots or radar charts, this diagram is a radial glyph

introduced in 1974 [45], where, as in standard star plots, each radial axis represents a variable and the position along the axis encodes the

quantitative value. However, in a Kiviat diagram the resulting contour is filled with solid color. Kiviat diagrams are thus a type of glyph

and are typically juxtaposed. We included Kiviat glyphs, along with Line-Only glyphs.

We note that our resulting encoding selection closely reflects the encodings used in current practice of similarity detection [36, 39,

8, 41, 58, 43, 25, 12, 30, 35]. Overall, we considered 3 base encodings. In a secondary analysis, we included also 2 color-cue variations.

These encodings include methods that rely on the juxtaposition paradigm (Kiviat and Line-Only glyphs), where the encodings are laid

out at specific locations, as well as methods that rely on a superposition paradigm (parallel coordinate plots), where visual marks for the

items are superimposed on top of each other. The encodings we study are:

• Parallel coordinate plots (PCP). Because in a pilot test unicolor polylines were not distinguishable without interacting with each

polyline, each line was colored based on a categorical color scheme, and testers could use interactive brushing to highlight a

particular polyline. The target item was represented using higher thickness to make it more visible. We further allowed the user to

filter items by selecting sub-sections of different axes and to highlight items by increasing their line thickness when moused-over.

• Lines-Only star plots (LSP). These plots are a glyph variant of the star plot with only the radial segments extending from the center,

and no filled contour. These plots have also been referred to as whisker plots or fan plots [13].

• Kiviat diagrams, a glyph variant of star plots. Traditionally, a contour is formed by connecting the quantity marks along each radial

axis. In our default Kiviat diagram, the contour was filled in with a neutral gray.

• Color-cue Kiviat diagrams (CCue Kiviat). This encoding is a variation of the Kiviat diagram, in which the glyph polygon is filled

with color. In the practitioner literature, the Kiviat color is typically mapped to an attribute of that item. To test whether Kiviat

color could be interpreted as a similarity cue, we deliberately mapped color to our simulated ground truth similarity measure

instead. We deliberately did not inform the users that color was mapped to a simulated measure of similarity. We used a divergent

red-green-blue color scheme from ColorBrewer2 [4], where red indicated completely dissimilar items, and blue indicated identical

items.

• Color-cue parallel coordinate plots (CCue PCP). This encoding is a variation of the PCPs, in which polylines are colored, as in

the color-cue Kiviats above, based on their similarity with the target polyline. Testers could use interactive brushing to highlight a

particular polyline. Again, we deliberately did not inform the testers that color was mapped to our simulated measure of similarity.



Dimensions and Scalability with Number of Items

Next, we considered the number of data dimensions and the number of items to show during the study. Because the common

instances of the similarity detection problem feature multi-dimensional, but not highly-dimensional data, we considered the number of

dimensions reported in the existing literature related to similarity detection. Juxtaposed star plots are typically used in similarity detection

for data with five to seven dimension in the case of real datasets [36, 58, 41], and up to ten dimensions in the case of synthetically-

generated user study datasets [13]. Given these considerations, and the value of real visual analytics data and scenarios, we selected

for our experiments a real dataset with seven dimensions rather than a synthetic dataset. To simulate realistic charts for our study, we

used an anonymized cancer dataset of 1100 patients with seven features of interest [41]. The dataset included a mixture of continuous

and categorical variables with 2-4 categories, which were treated as ordinal variables that were uniformly distributed between 0 and 1.

Continuous variables were individually scaled to be between 0 and 1. Values or axis labels were not shown.

In our study, we additionally tested the effect that scale had on the encoding effectiveness, where scale refers to the number of items

on the screen during an individual comparison task. Because the common instances of the similarity detection problem typically feature

dozens, but not hundred of items [15, 36], we decided to examine two different scale factors: a moderate scale, with 16 total items, and

a larger scale, with 36 total items, including the target item. These factors ensured easily legible renditions of all our visual encodings,

whether juxtaposed or overlaid, on a 15.4 inch laptop display, similar to the displays routinely used by our collaborators across disciplines

(Fig. 2).

In total, five encodings were tested at two different scales, leading to 10 total trials per participant, excluding introductory practice

tests.

Hypotheses

We identified and tested four main hypotheses, based on previous findings reported in the literature [13] and on practical visual

analytics experience:

• H1. At moderate scale (16 items), all encodings studied will yield equivalent scores.

• H2. At the larger scale (36 items), juxtaposed encodings will outperform superposed encodings with respect to score.

• H3. At the larger scale (36 items), Lines-Only star plots will outperform other encodings with respect to score.

• H4. At both scales, color-cue encodings will outperform other encodings with respect to time, but not score.

Figure 2. Experimental setup for user study protocol. From left to right: (a) 36-item trial with Kiviat encodings, with the target item identified via its ID in the

top-screen message; (b) item selection in a 16-item trial with Kiviat encodings, with the currently selected item highlighted; (c) 16-item trial with PCP encodings,

with the target item identified via a thicker mark; (d) 16-item trial with PCP encodings, with the currently selected item highlighted.



Participants and Protocol

We recruited 40 volunteers (12 females, 28 males, age 18-59 years) from our university campus, following institutional review board

(IRB) approval. One participant disclosed a color-vision issue, and was, however, able to complete the tasks adequately. Participants

had a variety of expertise with data visualization (2 novices, 13 with basic familiarity, 14 familiar and 11 experts). The familiar- and

expert-level participants had experience with both glyphs and PCPs, although they did not use visual encodings to analyze data in daily

activities. They also had diverse educational backgrounds (5 with a high school degree, 23 with a Bachelors, 10 with a Masters and 2

with a PhD). No monetary or material incentives were given.

Protocol

We designed a similarity detection task to evaluate our hypotheses. For each different type of visual encoding and color variant, we

showed the seven variables of either 16 (moderate scale) or 36 (larger scale) items. The items were randomly sampled from the patient

dataset, to ensure adequate case coverage. In each trial, we asked the participant to select, in order, the top three items most similar

to a specified target item in the display. We selected two grid arrangements to test the scalability of the encodings. For the juxtaposed

encodings, participants first worked on a 4 by 4 grid (16 items), then on a 6 by 6 grid (36 items). The target item was placed randomly

among the other 15 or 35 candidate items. For the PCP encodings, we presented 16 or 36 superposed lines on a single chart, respectively.

Due to the random selection, none of the screen arrangements was repeated among participants. Once the participant selected the similar

top three items, they would proceed to the next trial.

A study session consisted of four steps: introduction, tutorial, experiment trials, and debriefing questionnaire. During the introduc-

tion the testers were briefed on the purpose of the study and asked to fill out a demographics survey. Participants were also informed that

the test would be timed, but that they were not expected to optimize for time.

In each trial, the data items were shown on the screen; each item was identified by a numerical ID displayed next to that item (Fig.

2). The tutorial consisted of 3 trials, one for each encoding, excluding color-cue variants. For the glyph encodings section of the tutorial,

participants performed the similarity task on a 3 x 3 grid. Instructions were displayed at the top of the screen, in the following format:

“This is a demo serving as introduction to the tasks. Click on the 3 most similar items to the item number 4.” The tester selections were

acknowledged by a brief highlighting of their selection. For the overlaid encoding section of the tutorial, the target item was shown with a

thicker line, and hovering over another item highlighted that item, to better support visual identification of that item. This implementation

replicated the brushing operation available in practice for this type of encodings. After each tutorial trial, we revealed the right answer by

expanding the text message at the top of the screen (i.e.,“The correct answers are: 8, 2, 7”). During this stage, we answered any questions

the participants had about the study or how similarity was measured.

For each trial items were selected randomly from the database, and one item was randomly selected to be the ‘target’ item. To

discount the possible influence of the distance between the target item and the similar items, the target item was placed randomly on the

display grid and referenced in the selection task only by its ID. For the glyph encodings, items were arranged in a grid of 4 by 4 (16

items), or 6 by 6 (36 items). Regardless of the encoding, the tester was prompted to select the 3 items that were most similar to the target

item by clicking on them with the mouse. When 3 items were selected, the tester was allowed to process to the next trial by selecting the

‘next’ button. In the main experiment, participants performed 10 trials each, for the two test scales. During the test session, the ground

truth was not revealed to the tester. A progress bar allowed participants to see their overall experiment progress.



After finishing all trials, participants were asked to fill out a short-answer questionnaire with the following questions:

• Which was the most complicated visual encoding to process?

• Which was the easiest visual encoding to process?

• Which of the visual encodings was the most scalable?

• Which of the visual encodings scaled the worst?

We explicitly defined scalability as ‘scalability with the number of items’ in the online questionnaire, and encouraged participants

to explain their reasoning in several text boxes.

Each study session was performed on a web browser on the same laptop (15.4-inch display, 2880 x 1800 resolution). The participants

used only mouse interaction during each trial. For each experiment trial, we logged the time spent per task, the similarity ranking of the

items selected by the participant for each task, and the total experiment time. The time spent per task ended when the tester clicked the

Next button. Additionally, we recorded the demographics survey and debriefing questionnaire results.

Scoring

In this study, the existence of a computable similarity measure is only required for the purpose of measuring the tester performance.

In order to simulate the ground truth similarity between items and to measure performance, we used cosine similarity over the seven

variables of the data points. The cosine measure is reasonably appropriate in information retrieval tasks over high-dimensional categorical

data, such as our dataset based on patient records [5], and in the case of text data [24]. The cosine measure has the additional benefit of

not being misleadingly based on an immediate set of visual cues, in contrast to other distances like the Euclidean distance. Arguably, if

similarity could be easily calculated and reported, based on Euclidean distance, visual analysis would not be as beneficial to the analyst.

Nevertheless, to account for variations in the similarity ground truth for other possible datasets, our score formula, described below,

was carefully crafted to be robust with variations in how the ground truth was measured. To quantify the influence of the ground truth

measure, we used both the cosine measure and an Euclidean measure to calculate pairwise similarity among a sample dataset. To this

end, we generated 500 datasets of 16 items from the patient repository, and selected for each dataset a random ’target’ item. For each

sample, we ranked the most similar items in that sample set based on each metric, and calculated the overlap between the two rankings.

In terms of the top three ranked items, the average number of shared items was 2.52, whereas in terms of all 16 ranked items, the average

number of shared items was 6.86. These result suggest that the difference in the ground truths will be exacerbated more for the harder

trials, i.e., our cosine metric results would be more different, relative to an alternative (Euclidean) ground truth, when there is a high error

already.

Based on this calibration, the error for each trial was computed based on the average difference in rank between the selected items

and the 3 most similar items. For each trial, items were ranked in order of similarity with the target item. Given the ranks of a tester’s

answer denoted by r1, r2, r3, sorted in ascending order of their rank, we then compute the Manhattan distance between their answer and

the optimal solution (i.e. when r1=1, r2=2, r3=3). The error is given by the formula below, where 6 denotes the sum of the rankings of the

3 optimal choices, and thus allows the error to be 0 when the same top 3 items are selected by the tester, regardless of rank, as the top 3

items indicated by the ground truth:

Error =
r1 + r2 + r3 −6

3
(1)



In sum, this formula accounts for randomness in the generated trials by aggregating the top 3 selections. The formula also makes

the calculated error order-agnostic. The resulting error can be interpreted as the average number of items in each trial that had a greater

similarity than the selected items.

Statistical Analysis

We report the mean error and trial time, along with 95% confidence intervals for each encoding type at each scale, as well as the

change in mean values. The data was tested for extreme outliers using boxplot analysis, and we confirmed that all score data-points

were more than 1.5% the interquartile range from the upper or lower quartile [20]. The time data included three outliers, not correlated

with the scores. We removed these outliers from the time analysis. The raw data was furthermore skewed, as typical with count data.

Therefore, we tested the normality of the data using a Shapiro-Wilk normality test and found that both trial error (M = 4.82, skew = 1.46,

kurtosis = 2.02, W (39) = .86, p < .001) and trial time (M = 48.6s, skew = 1.51, kurtosis = 3.77, W (36) = .90, p < .001) were not

normally distributed, overall. As the data was not normally distributed, 95% confidence intervals were calculated using non-parametric

bootstrapping with 10000 samples for each distribution [48]. We chose this route, as opposed to a power transformation, for increased

interpretability of our results, and also because applying a Yeo-Johnson power transform [62], which could handle zero error cases, did

not result in normally-distributed trial error data.

Linear mixed-effect models were created to test for multivariate significant effects for trial error and trial time. This approach was

chosen over a repeated measures Anova because it does not require that the dependent variable be normally distributed. For each model,

the encoding type, the number of items, and whether the encoding was a color-cue variant were modeled as fixed effects, while each

participant was modeled as a random effect by fitting an intercept to each participant. Chart type was dummy encoded as binary variables

for when an encoding was a variant of a Lines-Only star plot or parallel coordinate plot. Number of items and use of color-cues were

coded as binary variables to indicate whether 36 items were shown and whether color-cues were used. Models that considered user’s

self-reported familiarity with data visualization and the interaction between trial time and error were also tested, but were excluded as

they did not have significant effects.

Each effect was tested for statistical significance using a likelihood ratio test [9]. To provide an approximation of effect size we report

Cohen’s f 2 factor, which is a calculation of the amount of variance explained in the model by adding in a variable, given by formula:

f 2
variable =

R2
Full model −R2

Model without variable
1−R2

Full Model
(2)

where R2 is the residual of the mixed effect model [57].

We further performed the non-parametric Wilcoxon signed-rank test to compare error and trial time between each encoding type at

different scales to identify statistically significant differences between encodings. Family-wise error correction was performed across all

significance tests using the Holm-Bonferroni method [21].

The study interface was built upon Experimentr.js [19], a front-end framework that aids in the data collection process and application

hosting. Our backend, a Node.js server and a Redis database (BSD licensed), ran locally on our machine (offline). We developed the

visual encodings using D3.js. Data analysis was performed in python using the statsmodels package [55] and R. Reproducibility is

discussed in our Supplemental Materials.



Figure 3. Notched box plots of mean trial error and time for each encoding type at different scales. Upper and low bounds of the boxes show the upper

and lower quartiles of the data within each setting, whereas notches show the estimated median of the data, along with 95% confidence intervals estimated via

bootstrapping with 10000 samples. Mean error (left) increased with the number of items, and was highest for parallel coordinate plot variants at both scales while

color-cue Kiviat diagrams performed the best. Trial time (right) was lowest in all settings for color-cue Kiviat diagrams followed by color-cue parallel coordinate

plots.

Results
Encoding and Scale Effects on Score

Table 1. Mean rank error and 95% confidence intervals for each encoding. Error was affected least for Kiviat plot variants (bold)

when scaling up the number of items.

Encodings
16 Items 36 Items

∆Error
Mean 95%CI Mean 95%CI

PCP 4.0 3.4-4.5 10.8 9.5-12.1 6.8

CCue PCP 4.1 3.6-4.7 8.5 7.1-9.9 4.4

LSP 2.6 2.1-3.0 6.2 4.8-7.5 3.6

Kiviat 2.5 1.9-3.0 5.0 3.6-6.4 2.6

CCue Kiviat 2.3 1.8-2.9 4.0 2.9-5.0 1.6

For trial error, we found within the transformed data the largest effect from encoding type ( f 2 = .29, p < .001), followed by the

number of items shown ( f 2 = .21, p < .001). We found a small but measurable interaction effect between encoding and number of items

( f 2 = .02, p < .01), and a non-significant effect from color-cue ( f 2 = .01, p > .05).

Mean raw error within each encoding type and item count is shown, for easier interpretability, in Table 1, and raw error distributions,

including confidence intervals, are plotted in Fig. 3. Kiviat diagrams had the lowest error, followed by Lines-Only star plots (LSP) and

parallel coordinate plots. Parallel coordinate plots had the highest error at both the moderate scale (M = 4, 95% CI = [3.4,4.5]) and

large scale (M = 10.8, 95% CI = [9.5,12.1]). Color-cue Kiviat diagrams had the lowest error at both the moderate (M = 2.3, 95%

CI = [1.8,2.9]) and larger scale (M = 4.0, 95% CI = [2.9,5.0]).



Table 2. Pairwise comparisons for rank error between encodings. Mean differences and Holm-adjusted p-values are reported for

statistically significant results. At each scale, juxtaposed encodings outperform superposed encodings.

Encoding 1 Encoding 2 Items ∆Error P

Kiviat PCP 36 5.8 < .001

LSP PCP 36 4.6 < .001

CCue Kiviat CCue PCP 36 4.5 < .01

Kiviat PCP 16 1.5 < .01

LSP PCP 16 1.4 < .05

CCue Kiviat CCue PCP 16 1.8 < .05

Significant results from pairwise comparisons between encoding types within each setting are shown in Table 2. At each scale,

juxtaposed encodings consistently outperformed superposed encodings. Kiviats and LSPs outperformed PCPs, and color-cue Kiviats

outperformed color-cue PCPs at both scales. The difference was most pronounced for non-color-cue variants and at larger scales, where

PCPs had over twice the error of Kiviats (∆Error = 5.8, p < .001) and LSPs (∆Error = 4.6, p < .001). Kiviat diagrams had a non-

significantly lower error than LSPs at both the moderate scale (∆Error = 0.1, p > 0.05) and large scale (∆Error = 1.2, p > 0.05).

In terms of error, color-cue variants weakly outperformed their non-color-cue variants as the number of items increased. At the larger

scale, color-cue Kiviat diagrams weakly outperformed normal Kiviat diagrams (∆Error = 1.0, p > 0.05), and color-cue PCPs performed

better than non-color-cue PCPs (∆Error = 2.3, p > 0.05). However, this difference was not observed in the moderate 16 item setting.

Relative differences between encodings were amplified when scaling from 16 to 36 items. Of encodings without color-cues, PCPs

scaled the worst with an increase average error of 6.8, followed by LSPs with and error increase of 3.6, and Kiviat diagrams with an

increase of 2.6. Color-cue variants scaled better, with color-cue Kiviat digrams having an increased mean error of 1.6, which is the only

encoding with a relative increase of less than 100%.

Table 3. Mean trial time in seconds, and 95% confidence intervals for each encoding, at two scale settings. Response time was

affected least for color-cue variants (bold) when scaling up the number of items. Time decreased with scale for normal PCP and

Kiviat variants, and increased for color-cue PCP and LSPs. Values reported use 37 testers, with 3 extreme outliers removed

Encodings
16 Items 36 Items

∆Time
Mean 95%CI Mean 95%CI

PCP 71 60-80 58 49-65 -12.9

CCue PCP 46 41-51 46 41-52 0.4

LSP 47 38-54 50 43-56 2.9

Kiviat 54 48-59 48 44-53 -5.6

CCue Kiviat 40 35-45 37 32-42 -2.6



Table 4. Pairwise encoding-comparisons for response time, color-cue variant vs regular variant. Mean differences and Holm-

adjusted p-values are reported only for statistically significant results. At both scales, color-cue Kiviats are faster (see Figure 3

Right for further data).

Encoding 1 Encoding 2 Items ∆Time (s) P

LSP PCP 16 -24 < .01

CCue PCP PCP 16 -25 < .001

CCue Kiviat Kiviat 16 -14 < .01

CCue Kiviat Kiviat 36 -11 < .01

Encoding and Scale Effects on Response-time

With respect to response time, we found a small but significant effect from use of color-cue ( f 2 = .039, p < .001) and choice of

encoding ( f 2 = .030, p < .001). There was an insignificant effect from the number of items ( f 2 = .006, p = .08), and no significant

interaction effects.

Response time for each encoding type and item scale is shown in Table 3; time distributions are plotted in Figure 3. Response

time was longest for PCP with 16 items (M = 71s, 95% CI = [60s,80s]) and lowest for color-cue Kiviats with 16 items (M = 40s, 95%

CI = [35s,45s]). Color-cue encodings always outperformed with respect to time non-color-cue encodings, regardless of encoding type or

scale.

Significant results for the pairwise comparisons are reported in Table 4. At the moderate scale, PCPs had a significantly longer

response time than LSPs (∆Seconds =−24, p < .01) and color-cue PCPs (∆Seconds =−25, p < .001). Color-cue Kiviat diagrams also

outperformed their regular variants at the moderate scale (∆Seconds =−14, p < .01), and the large scale (∆Seconds =−11, p < .01).

The relative number of items did not have a consistent effect on the average response time, and the effect of items count overall

had a very small effect on time. Response time for parallel coordinate plots decreased for PCPs (-12.9 seconds), Kiviats (-5.6 seconds),

and color-cue Kiviats (-2.6 seconds), while LSPs and color-cue PCPs had an increase in their average time (2.9 seconds and 0.4 seconds,

respectively). Overall, color-cue variants had the smallest absolute change as well as baseline average time.

Subjective Feedback

Figure 4 shows the number of times either Kiviat diagrams, LSPs, or PCPs were referenced in the exit questionnaire with respect to

difficulty or scalability. Cases where testers did not specify any of the encoding types are excluded from these counts. Kiviat diagrams had

the most (11) positive ratings in terms of difficulty and scalability, as well as the fewest negative ratings. Only three participants reported

Kiviat diagrams as the most difficult, and one participant believed that Kiviat diagrams do not scale well. Lines-Only star plots received

fewer positive ratings in terms of difficulty (3) and scalability (5), and more negative votes (12 and 8, respectively). Parallel coordinate

plots had the most negative reviews. 23 out of 40 participants considered the parallel coordinate plot to be the most challenging encoding,

and 25 reported that it was the least scalable, while only 3 participants rated it as the easiest or most scalable. Most testers reported

difficulties telling items apart in regular PCPs, for reasons related to the presence of a large amount of partially or totally overlapping

segments. Regular PCPs further used a 10-hue color scheme for 36 items, which made brushing, and thus additional interaction, necessary

in order to distinguish similarly colored items when they crossed through the same point. Color-cue helped alleviate some of these issues:



Figure 4. Subjective ratings of encoding difficulty (left) and scalability (right). Among the testers who expressed an opinion, Kiviat diagrams were rated most

positively in terms of both difficulty and scalability, whereas PCPs were rated the worst.

testers felt the polylines in other hues but the target hue could be ignored.

Overall, the number of negative ratings were proportional to the mean error for each encoding, where more difficult ratings corre-

spond to higher trial error, suggesting that the testers’ perceived difficulty accurately followed their actual performance.

Time-Score Analysis

Correlation between trial time and error was measured for each setting using the Pearson correlation coefficient. Interestingly,

time and error were not significantly correlated overall (r36 = -0.01, p = .80), or in any setting except for the color-cue PCP with 36

items, which showed a significant negative correlation between time and error (r36 = −0.51, p < .01). PCPs showed a non-significant

negative correlation between error and time except for PCPs in the moderate setting, which showed a non-sigificant positive correlation

(r36 = 0.06, p = .7), while correlation for juxtaposed encodings was inconsistent in direction. Plots of time vs error across both scales for

Kiviat diagrams vs PCPs, with and without color-cue are shown in Figure 5 and in the Supplemental materials. The plots indicate testers

invested significant time and effort into the task, even when the resulting error was high.

PCP variants showed more extreme cases with very low time and high error, suggesting that the stronger general correlation between

error and time may be due to a larger number of cases where the tester ’gave up’ and guessed the answer, but the general payoff for

additional time beyond a baseline was not beneficial.

Discussion

Evaluation of the results shows that for accuracy in similarity detection, juxtaposed star plot variants (Color-cue Kiviats, Kiviats,

LSPs) outperform superposed encodings (non-color-cue PCPs, color-cue PCPs) at both the moderate and the large scale. We therefore

reject hypothesis H1 (At moderate scale (16 items), all encodings studied will yield equivalent scores), as encodings do not have equal

performance at moderate scale: superposed encodings are worse.

At the same time, we accept hypothesis H2 (At the larger scale, juxtaposed encodings will outperform superposed encodings), and



Figure 5. Log response-time vs error per trial for Kiviat diagrams and parallel coordinate plots with a robust linear regression fit shown with 95% confidence

intervals for each encoding. Plots show results for plots without color-cue (left) vs. with color-cue (right). Regression lines highlight the overall lack of correlation

between error and time. The plots indicate several testers invested significant time into the task, even when the resulting error was high.

we furthermore find that it holds at moderate scale as well. This is an interesting finding, because our moderate and large scales are

significantly below the suggested PCP effectiveness threshold of hundreds of items [46]. One interpretation is that, whereas PCPs are

excellent tools for correlation detection and analysis, similarity detection does not necessarily involve inter-variable correlation. We also

note that color-cue in PCPs helps with respect to similarity detection scores, but does so only at the larger scale, and the effect is moderate.

Within the star glyph variants, color-cue Kiviats and Kiviats scored similarly at both scales. At the large scale, color-cue Kiviats

scored significantly better than LSPs. At moderate scale, all star glyph variants perform similarly with respect to error. These findings are

in direct contradiction with the results of Fuchs et al. [13], who found that LSPs outperformed all other star glyph variations, including

Kiviats. We believe the experimental setting may explain this discrepancy. First, in a 3 x 3 grid layout (9 items) with the target located

centrally, as in Fuchs et al, similarity detection turns into a series of one-on-one comparison tasks with all items near the target. When

scale increases, as in our experiments, items can no longer be placed immediately side by side for comparison. Second, when the number

of variables encoded in the Kiviats is artificially large, as in the synthetic data used in the Fuchs et al. study, the shape of a Kiviat becomes

harder to discern. With lower-dimensional items, Kiviats may benefit more from the pre-attentive nature of shape. In general, Kiviat-style

glyphs may yield superior results in similarity tasks, as they do in pattern recognition tasks [59, 26].

As a result, we reject hypothesis H3 (At the larger scale, LSP encodings will outperform other encodings), and we furthermore find

that H3 does not hold at the moderate scale, either. Overall, our results support the use of Kiviats and color-cue Kiviats for similarity

detection at scales and dimensions used in this study. As expected, most encodings yield significantly worse scores as scale grows. The

one notable exception are color-cue Kiviats, which further supports their use in practice. The qualitative feedback also indicates that

juxtaposed Kiviats are easier to read and interpret than both LSP encodings and superposed encodings.

With respect to time, we found significant differences across encodings in both settings, and a significant correlation between use

of color-cues and trial time was found in our mixed-effects model. Color-cue variants were, overall, less affected by scale, and were

non-significantly faster than their non-color equivalents at the larger scale. Color-cue Kiviats were faster than Kiviats at both scales (p

< .01), and were the fastest encoding at the large scale. At the moderate scale, LSPs, and color-cue PCPs were significantly faster than

non-color-cue PCPs, but this difference was not significant at the large setting due to a drastic drop (-12.9 seconds) in average trial time

for regular PCPs when going from 16 to 36 items, that was not seen in other encodings. However, differences in trial time between



settings did not correlate with trial error, and use of color cues did not have a significant effect on error. H4 is therefore valid (At both

scales, color-cue encodings outperform other encodings with respect to time, but not with respect to score). The one moderate exception

are PCPs in the large scale, where color-cue PCPs only weakly outperformed regular PCPs (p > .05).

Because color-cue does not lead to better similarity detection scores for Kiviats at either scale, it may be safe to map the Kiviat color

to one of the item variables, as currently done in practice. The notable improvement that color-cues had on response time as the number of

items increased may be due to the effect of perceptual grouping. Color-cues may help testers scan the candidate items for ‘similar’ items

while filtering out the ‘dissimilar’ items. This interpretation is consistent with previous findings that show that search tasks are easier

when distractors are more dissimilar to a target item [10, 61, 18, 17]. We also note that we deliberately chose a red-green-blue divergent

colormap, as it would be harder for testers to associate with order. We speculate that a more easily interpretable color scale (e.g., one

with monotonic variation in lightness) would have an even larger effect, as variations in lightness has been shown to have a larger effect

on perceived bias than hue [53].

The complex relationships between the number of items, error, and response time suggest that the perceived task difficulty may

influence the tester approach to the similarity detection process. For PCPs, the mean and median time decreased drastically, while the

error increased, suggesting that testers may have ‘given up’ for particularly difficult tasks, or encountered more mental fatigue when

performing an initial search. Mean trial time for color-cue encodings, however, stayed within 5% of the trial time at 16 items, which

could be interpreted as a regulating effect from color-cue by keeping the perceived difficulty of the task manageable as the number of

items increased.

In terms of the effect of tester background, we note that most of our participants were knowledgeable about visual encodings, with

two outliers. While statistical analysis is not feasible on such a small sample, we note that the two testers with no visualization expertise

were outliers with respect to both error (higher error) and time (less time).

In terms of limitations, our study examines two relatively modest settings, and a relatively moderate set of variables, based on a

real dataset. However, the significant variation in encoding performance indicates that even this scale can capture and document visual

encoding scalability issues. Our study furthermore reports error with respect to a ground truth calculated via cosine similarity, which

is appropriate for our dataset. However, our score function was designed to be resilient with variation in how the ground truth was

calculated. Moreover, when compared against Euclidean ground truth in a post-hoc analysis, the rankings of the encodings in terms of

average score/error were the same as in our results using cosine similarity (color-cue Kiviats > Kiviats > LSP > color-cue PCP > PCP).

This analysis indicates that our findings are significant enough to stand with variations in the similarity ground truth calculation.

Additionally, our experiments were focused on evaluating error due to the encoding choice, and so rely on randomized samples of

data from each trial. In order to generate adequate coverage of the dataset samples, and to avoid learning effects from repeating trials

with the same encoding for the tester, our score formula used the average error for 3 item choices instead of 1, which smoothed the

variance in the error without introducing as many learning effects from repeated trials in the same setting. This effect was modeled in

the mixed-effects model for estimating trial size, and so our statistical tests and results hold. However, this comprehensive study did not

generate enough samples to model trial-specific variation, and thus we only report inter-subject variation; in contrast, we can not draw

strong conclusions about time vs. score. It is possible testers spent most of the trial time scanning the candidate items before doing a

granular comparison, and thus the difficulty of a given sample may have played a larger effect on the time the tester spent on each trial.

Whereas our results show consistent, comprehensive findings with respect to the effect encoding has on error, our response time results



showed inconsistent effects from encoding and scale, which may be due to large changes in difficulty that are not captured in the mixed

effects model. Despite this aspect of time analysis, our error findings are statically rigorous and account for random variance in the data.

In the interest of limiting tester fatigue, ensuring glyph legibility on a relatively small screen, and based on critiques and earlier

reports on the efficiency of specific encodings, we also did not include a wider range of encodings and scales. However, given the

qualitative tester feedback and our numerical results, we expect our findings will also hold at larger scales. Last but not least, in terms

of generalizability, our findings likely do not generalize to similarity detection tasks that involve hundreds of items, simply because

juxtaposition requires more screen space than superposition.

Despite these limitations, our study involved 40 participants, 2 scale settings, and 10 trials per session. This setup enabled us

to successfully investigate how accurately and quickly people can identify similar data points using different encodings. We found,

surprisingly, that Kiviat diagrams were the most suitable encoding in terms of accuracy, especially in a large-scale context. In contrast,

superposition-based approaches under-perform due to difficulties in distinguishing between items, and are often slower to read, possibly

due to these difficulties.

Visual Analytics Similarity Guidelines

Similarity among multi-dimensional items may sometimes be computed, for example using an Euclidean metric, in which case the

exact ranking can and should be reported to the analyst in numerical form. In situations where the similarity is not directly computable,

for example when the weights of various features still need to be determined, visual similarity detection is particularly appropriate and

beneficial.

With respect to visual similarity detection, overall, for multivariate, but not highly-dimensional collections similar to our dataset

and up to several dozens of items, our findings support the use of juxtaposed Kiviats. For datasets with fewer than five dimensions,

Kiviats would degenerate into simpler shapes, and other glyphs may be equally successful. In general, our findings support the use of

juxtaposed encodings as opposed to superposed encodings. Where appropriate, the use of color-cues may furthermore assist the analyst

in pre-filtering dissimilar items, and mitigate the effects of scale.

In the case of collections of a hundred to thousands of items, screen space becomes an issue and juxtaposition may not be feasible.

Still, our analysis indicates that the legibility of superposed encodings is problematic with increasing scale. Wherever possible, it is worth

introducing filtering or sorting operations to reduce the number of items considered simultaneously at any given time. For example, in a

large repository of electronic health record data, it is worth stratifying the patient data first into smaller cohorts, and using a juxtaposed

layout for visual analysis on the smaller cohort. Where PCPs are the only design option available, we strongly recommend the use of

more advanced variants of PCPs than the plain PCP versions currently used by practitioners. Doing so may require the explicit integration

of these more advanced variants into popular visualization platforms.

Conclusion

In conclusion, we examined the effectiveness of five visual encodings for multivariate data in the context of similarity detection. We

conducted a user study with 40 participants to measure similarity detection accuracy and response time under two conditions: moderate

scale (16 items) and larger scale (36 items). Our study produced new evidence that similarity judgments are easier using juxtaposed glyph

than superposed visualizations, and that color-cues can mitigate detriments in performance that otherwise occur by increasing the size

of the dataset. Our statistical analysis shows that there are significant differences in encoding performance, especially in the larger-scale



setting of the experiment. In all settings, we found that plain parallel coordinate plots are slower to read and lead to lower accuracy

than juxtaposed (side-by-side) star glyph approaches. Among juxtaposed approaches, glyph variants like the Kiviat and color-cue Kiviat

encodings scale well, are reasonably fast to read, and achieve good accuracy. When the number of items grows, juxtaposed color-cue

Kiviats outperform other encodings, including Lines-Only star plots, and are therefore suitable for similarity detection when dealing

with larger multivariate datasets. Findings from this user study provide empirical evidence and guidance for the visualization design in

similarity detection.
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