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Abstract. Deep learning approaches have made significant success in
single-view 3D reconstruction, but they often rely on expensive 3D an-
notations for training. Recent efforts tackle this challenge by adopting an
analysis-by-synthesis paradigm to learn 3D reconstruction with only 2D
annotations. However, existing methods face limitations in both shape re-
construction and texture generation. This paper introduces an innovative
Analysis-by-Synthesis Transformer that addresses these limitations in a
unified framework by effectively modeling pixel-to-shape and pixel-to-
texture relationships. It consists of a Shape Transformer and a Texture
Transformer. The Shape Transformer employs learnable shape queries
to fetch pixel-level features from the image, thereby achieving high-
quality mesh reconstruction and recovering occluded vertices. The Tex-
ture Transformer employs texture queries for non-local gathering of tex-
ture information and thus eliminates the incorrect inductive bias. Experi-
mental results on CUB-200-2011 and ShapeNet datasets demonstrate su-
perior performance in shape reconstruction and texture generation com-
pared to previous methods. The code is available at https://github.com/
DianJJ/AST.

Keywords: Single-view 3D reconstruction · Shape Transformer · Tex-
ture Transformer

1 Introduction

Reconstructing the 3D shape of objects from images or videos is a long-standing
task in computer vision. It holds significant promise for a variety of applications,
such as virtual and augmented reality, robotics, and autonomous driving. In the
past few years, data-driven approaches, in particular, deep neural networks, have
shown the capability to achieve high-quality 3D reconstruction from a single-view
image [8,19,24,42,46]. However, the practical utility of these approaches in real-
world applications is significantly restricted because they rely on large-scale 3D
annotations (shapes and/or poses) for training [9,12,16,19,46,50,66], which are
expensive and often unobtainable.

https://github.com/DianJJ/AST
https://github.com/DianJJ/AST
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Fig. 1: Current 3D reconstruction methods from 2D annotations have limitations:
shape models often lack pixel-level details, and texture models typically produce blurry
UV map textures. For example, the reconstruction in (a) from [47] exhibits an unnat-
ural neck shape and a blurry texture. This paper introduces the Analysis-by-Synthesis
Transformer, which addresses these issues within a unified framework, enhancing both
shape and texture modeling, as shown in (b).

Some recent works have attempted to learn 3D reconstruction from a col-
lection of images with only 2D annotations [7, 18, 22, 25, 29, 39, 47, 48], such as
keypoints and silhouette masks. They follow the analysis-by-synthesis paradigm.
In this framework, a convolutional neural network (ConvNet) takes as input an
image and predicts the object’s mesh, texture, and pose. These predictions are
then used to synthesize the input image and its 2D annotations through differ-
entiable rendering [31, 43]. The network is trained by minimizing the synthesis
error, along with some regularizations.

Despite the promising results demonstrated by the analysis-by-synthesis
paradigm, the exploration is still in its early stages. Existing methods suffer from
limitations in both shape reconstruction and texture generation, as illustrated
in Fig. 1 and described below.

Limitation in Shape Reconstruction. Current shape reconstruction mod-
els rely on a single global shape code extracted from the entire image to pre-
dict mesh vertices, lacking access to pixel-level features and struggling with
fine details. Prior research in supervised mesh reconstruction, exemplified by
Pixel2Mesh [66], highlights the importance of modeling pixel-level features that
are related to the vertices for achieving high-quality mesh reconstruction. Specif-
ically, this approach involves projecting each coarse vertex into the image space
and then pooling local features from the projected pixel location to refine the
mesh progressively. Regrettably, this operation, known as perceptual feature pool-
ing, is not applicable to the analysis-by-synthesis paradigm as it necessitates an
accurate camera pose to ensure correct 3D-to-2D projection, as well as ground
truth shape to guide coarse mesh generation. Moreover, there is no mechanism
to handle vertices that are invisible in the image, which disrupts the perceptual
feature pooling process.

Limitation in Texture Generation. To render an image from 3D recon-
struction, current models employ a ConvNet to predict the mesh texture in the
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form of a UV map. ConvNets are well-suited for dense prediction tasks such as
semantic segmentation [44, 57], image enhancement [6, 14, 36], and depth esti-
mation [11,17] due to their translation equivariance property, where the output
shifts by the same amount as the input. As a result, there is a one-to-one cor-
respondence between input and output pixels at the same location. However,
unlike segmentation maps, enhanced images, or depth maps, the UV map is not
translation equivariant w.r.t. the input image. Each pixel in the UV map corre-
sponds to a vertex on the mesh rather than to a pixel at the same location in the
input image. Therefore, employing a ConvNet for UV map prediction is inferior
and often results in blurry texture. This issue is especially crucial within the
analysis-by-synthesis paradigm, as texture quality directly impacts the rendered
image and thus the image synthesis loss.

This paper introduces the Analysis-by-Synthesis Transformer (AST), a novel
unified Transformer architecture specially designed to tackle the two aforemen-
tioned limitations of the analysis-by-synthesis paradigm through effective pixel-
to-shape and pixel-to-texture modeling. It consists of two core components: the
Shape Transformer and the Texture Transformer. The Shape Transformer mod-
els a set of learnable shape queries, each corresponding to a vertex of the object
mesh. On one hand, each shape query automatically fetches pixel-level features
related to its corresponding vertex for high-quality shape reconstruction. On
the other hand, these shape queries interact with each other to recover vertices
occluded in the image. The Texture Transformer models a set of learnable tex-
ture queries, each corresponding to a pixel in the UV map. Each texture query
gathers texture information relevant to the corresponding UV map pixel from
the image in a non-local manner, thereby eliminating the incorrect inductive
bias of translation equivariance from texture generation. By unifying the Shape
and Texture Transformers, our proposed approach offers clear advantages over
previous methods in terms of both shape reconstruction and texture generation,
making it highly suitable for learning single-view 3D reconstruction within the
analysis-by-synthesis paradigm.

It is worth noting that our approach is obviously different from the Mesh
Transformer (METRO) [41] for human pose and shape reconstruction. First,
each query of METRO is a concatenation of a constant vertex coordinate from
a fixed human mesh template and a global shape code extracted from the entire
image. METRO only models self-attention between these queries, which fails to
capture pixel-level features relevant to the vertices. Therefore, it cannot address
the limitation in shape reconstruction. Second, METRO does not predict mesh
texture, and is trained in a fully supervised manner. Therefore, it cannot address
the limitation in texture generation.

The contributions of this paper are as follows. (1) Shape reconstruction and
texture generation are two core aspects of the analysis-by-synthesis paradigm for
learning textured mesh reconstruction. To our knowledge, this work is the first
of its kind that identifies critical limitations in both aspects of existing methods.
It introduces a novel Analysis-by-Synthesis Transformer to address these limita-
tions in a unified framework through effective pixel-to-shape and pixel-to-texture
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modeling. (2) We propose the Shape Transformer. Different from existing Trans-
formers, it utilizes a set of learnable shape queries to fetch pixel-level features
related to each vertex from the image and models the interactions among these
queries, which is essential to achieving high-quality mesh reconstruction and ef-
fectively recovering vertices occluded in the image. (3) We propose the Texture
Transformer. Unlike existing methods, which employ a ConvNet for texture pre-
diction, it utilizes a set of learnable texture queries to gather texture information
relevant to the corresponding UV map pixels from the image in a non-local man-
ner, which eliminates the incorrect inductive bias of translation equivariance. (4)
Experimental results on the CUB-200-2011 and ShapeNet datasets demonstrate
that our proposed approach significantly outperforms previous methods in terms
of both shape reconstruction and texture generation.

2 Related Work

2.1 Supervised Single-view 3D Reconstruction

In the past few years, deep learning approaches have drastically advanced the
area of single-view 3D reconstruction. Early efforts [8, 15, 20, 62, 70, 74, 78, 80]
employ voxel-based shape representations, but suffer from the cubic growth in
complexity [15]. To overcome this limitation, point cloud [27, 40, 45, 54, 55] and
mesh-based representations [16,19,43,49,66,69] emerge as alternatives, offering
a better balance between efficiency and accuracy. Recent implicit methods, such
as the occupancy network [46] and DeepSDF [50], represent the shape as a neural
network, mapping a continuous 3D coordinate to an occupancy value or a signed
distance to the surface. Therefore, they can model shapes with arbitrary topology
at any resolution. Despite these significant advancements, current methods rely
on large-scale 3D shape annotations for training, which are expensive and often
unobtainable.

2.2 Single-view 3D Reconstruction without 3D Supervision

Thanks to the development of differentiable rendering [31, 43], recent research
has attempted to learn single-view 3D reconstruction without 3D supervision
[18,21,26,29,33,34,38,39,71,72]. State-of-the-art methods follow the analysis-by-
synthesis paradigm. CMR [29] trains a ConvNet to predict the object mesh, pose,
and texture from a single input image by exploiting the silhouette and keypoint
annotations available in 2D image datasets. UCMR [18] infers the 3D shape of
objects from a collection of images without using keypoint annotations. UMR [39]
enforces semantic consistency across different views in a self-supervised learning
framework. SMR [25] models interpolated consistency and landmark consistency
to better learn the 3D mesh. UNICORN [47] gets rid of the silhouette mask anno-
tations and common shape assumptions through a neighbor reconstruction loss
and background modeling. MagicPony [71] and ShapeClipper [26] fuse features
from pre-trained external models, such as CLIP [56] and DINO [4], to improve the
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consistency of model predictions. Other related works [10,13,23,30,51,52,75,77]
leverage in addition generative adversarial techniques for improved performance,
but they rely on a powerful 2D generative model and a more complex training
procedure. This paper follows the analysis-by-synthesis paradigm for learning
3D reconstruction with only silhouette mask annotations. Previous methods in
this paradigm suffer from critical limitations in both shape reconstruction and
texture generation, as described in Sec. 1. This paper introduces the Analysis-
by-Synthesis Transformer, a novel Transformer architecture specially designed to
address these limitations in a unified framework through effective pixel-to-shape
and pixel-to-texture modeling.

2.3 Transformers for 3D Reconstruction

Transformers [63] have shown promise in various computer vision tasks includ-
ing object detection [3], image enhancement [76], semantic segmentation [65,79],
and vision-language modeling [37, 60]. Recent works have adapted Transformer
architectures for 3D reconstruction. Wang et al . [64] treat multi-view 3D re-
construction as a sequence prediction problem using a Transformer for view
relationship modeling. Shi et al . [58] employ a Transformer encoder for feature
extraction and a decoder for voxel prediction. Peng et al . [53] combine a 3D
ConvNet with a Transformer decoder for voxel-based reconstruction. Bozic et
al . [2] use a Transformer to fuse multi-view data into a volumetric grid, which is
decoded into a 3D scene. Unlike these approaches that use Transformers as an
alternative to ConvNets, our method specifically overcomes limitations in pixel-
to-shape and pixel-to-texture modeling in the analysis-by-synthesis paradigm for
self-supervised 3D reconstruction.

3 Method

This paper introduces the Analysis-by-Synthesis Transformer for single-view
3D reconstruction. It is a novel Transformer architecture specially designed
to address the limitations in shape reconstruction and texture generation of
the analysis-by-synthesis paradigm (Sec. 1) through effective pixel-to-shape and
pixel-to-texture modeling. We focus on a problem setting commonly used in this
paradigm. During training, we have an image dataset that covers the object
category of interest, e.g ., cars, chairs, and tables. The only annotations are the
2D silhouette masks. During inference, the input is a new image of an object
instance; the output includes a textured mesh and the camera pose.

Our proposed network architecture is illustrated in Fig. 2. The input is a
single-view image I. Following the camera multiplex [18], the network generates
multiple hypotheses of the object pose (including scale, translation, and rota-
tion) and their probability distribution. The Shape Transformer and the Texture
Transformer reconstruct the object mesh and texture, respectively. The network
also predicts an object saliency map. On one hand, it will be used to guide the
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Fig. 2: An overview of our proposed Analysis-by-Synthesis Transformer. The Shape
Transformer employs a set of learnable shape queries to fetch pixel-level features re-
lated to each vertex from the image for high-quality mesh reconstruction. The Texture
Transformer utilizes a set of learnable texture queries to gather texture information
relevant to the corresponding UV map pixels from the image in a non-local manner,
thereby eliminating the incorrect inductive bias of translation equivariance from tex-
ture generation. Both the Shape and Texture Transformers are guided by a saliency
map, focusing on object pixels, and they predict the shape and texture from coarse to
fine.

.

attention mechanism in the Transformers. On the other hand, learning it un-
der silhouette mask supervision helps the backbone acquire more discriminative
features, thereby benefiting 3D reconstruction.

In the rest of this section, we describe the Shape Transformer and the Tex-
ture Transformer in Sec. 3.1 and Sec. 3.2, respectively, and describe the learning
method in Sec. 3.3. The detailed network architecture can be found in the sup-
plementary material.

3.1 Shape Transformer

Following the previous analysis-by-synthesis paradigm [25,29,39,47], the Shape
Transformer reconstructs the object mesh by deforming a predefined ellipsoid
mesh. But different from previous methods, the Shape Transformer models the
deformation as two complementary processes. First, it utilizes a global shape
code inferred from the entire image to capture the overall object shape. Second,
it utilizes a set of learnable shape queries to fetch pixel-level features related to
each vertex for high-quality mesh reconstruction.

Global Shape Modeling. Let {vi ∈ R3 : i = 1, . . . , N} be the vertices
of a predefined ellipsoid mesh, where N is the number of vertices. An encoder
network first extracts a global shape code zglobal-sh ∈ RD from the image, where
D is the code dimension. Then, the overall object shape is modeled as a neural
parametric surface as below:
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v̂i = MLP(vi, z
global-sh;Θglobal-sh), i = 1, . . . , N (1)

where v̂i ∈ R3 is a new vertex, and Θglobal-sh is the parameters.
Local Shape Modeling. We model a set of learnable shape queries: Q̄sh

=
[q̄sh

i ∈ RD : i = 1, . . . , N ], each corresponding to a mesh vertex. We extract a
feature map F im ∈ RH×W×D from the image through a ConvNet, where H,
W , and D denote the height, width, and feature dimension, respectively. For
convenience, we reshape the image feature map as F̄

im ∈ RHW×D. The shape
queries and the image feature map are fed into a Transformer decoder including
two multi-head attention (MHA) units:

Q̂
sh

= MHA(Q = Q̄
sh
,K = F̄

im
,V = F̄

im
,M = S;Θsh-im) (2)

Qsh = MHA(Q = Q̂
sh
,K = Q̂

sh
,V = Q̂

sh
,M = 1;Θsh-sh) (3)

where Q, K, and V denote the query, key, and value matrices, respectively,
M denotes the attention mask, S is the predicted object saliency map, 1 is
an all-one matrix, and Θsh-im and Θsh-sh are parameters. Following the standard
Transformer [63], we use the scaled dot product attention and augment the image
feature map with pixel-wise positional embeddings. Using the saliency map as
the attention mask in Eq. (2) guides the vertex queries to focus on the object
pixels. The detailed formulation of MHA can be found in the supplementary
material.

The updated shape queries Qsh = [qsh
i ∈ RD : i = 1, . . . , N ] deform their

corresponding mesh vertices through:

vi = v̂i + MLP(v̂i, q
sh
i ;Θlocal-sh), i = 1, . . . , N (4)

where vi ∈ R3 is a vertex of the reconstructed object mesh by our model, and
Θlocal-sh is parameters.

Discussion. Eq. (1) uses a single global shape code summarized from the
entire image to deform all vertices jointly. Therefore, the global shape model is
suitable for capturing the overall object shape. In contrast, Eq. (4) deforms each
vertex separately using a specific local shape code, i.e., qsh

i . Therefore, the local
shape model will be able to characterize more subtle deformations. The global
and local shape models are complementary.

Modeling these local shape codes necessitates extraction of pixel-level fea-
tures related to each vertex from the image. This is, however, challenging as
which image pixels correspond to each vertex is unknown and a large portion of
vertices are invisible in the image. Pixel2Mesh [66] projects each vertex to the
image space to pool vertex-relevant local features, but it necessitates an accurate
camera pose to ensure correct 3D-to-2D projection, as well as shape supervision
to guide coarse mesh generation. Additionally, this perceptual feature pooling
process is easily disrupted by occluded vertices. In contrast, by taking the vertex
queries as the query, and the image feature map as the key and value in an MHA,
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Eq. (2) automatically fetches pixel-level features related to each vertex from the
image feature map without explicit projection. Furthermore, Eq. (3) models the
relational interactions among the vertex queries through self-attention, which
helps infer occluded vertices.

Existing methods in the analysis-by-synthesis paradigm typically only set a
few hundred vertices, which we also follow in the experiments. To be scalable to
a significantly larger number of vertices, we can divide the template mesh into
small patches and use a shape query to deform vertices within a patch instead
of a single vertex.

3.2 Texture Transformer

Texture reconstruction is an essential aspect of the analysis-by-synthesis paradigm.
Previous methods employ a ConvNet to predict a UV map from an input image.
This is inferior as the ConvNet is equivariant to the translation transformation
but the UV map is not translation equivariant w.r.t. the input image. As a re-
sult, these methods often produce blurry texture. To close this gap, the Texture
Transformer utilizes a set of learnable texture queries to gather texture informa-
tion relevant to the corresponding UV map pixels from the image in a non-local
manner, thereby eliminating the incorrect inductive bias of translation equivari-
ance. Inspired by the Shape Transformer, the Texture Transformer generates the
UV map in a coarse-to-fine manner through global and refined texture modeling.
Though the global model generates inferior texture, we find it beneficial to the
training process.

Global Texture Modeling. The mesh texture is represented as a UV map
of height H ′ and width W ′: T ∈ RH′×W ′×3. An encoder network first extracts
a global texture code zglobal-tx from the image. Then, the coarse UV map T̂ is
generated by:

T̂ = MLP(zglobal-tx;Θglobal-tx) (5)

where Θglobal-tx is the parameters.
Refined Texture Modeling. We model a set of learnable texture queries:

Q̄
tx

= [q̄tx
i ∈ RD : i = 1, . . . ,H ′W ′], each corresponding to a pixel in the UV

map. These texture queries are fed into a Transformer decoder including two
multi-head attention units:

Q̂
tx

= MHA(Q = Q̄
tx
,K = F̄

im
,V = F̄

im
,M = S;Θtx-im) (6)

Qtx = MHA(Q = Q̂
tx
,K = Q̂

tx
,V = Q̂

tx
,M = 1;Θtx-tx) (7)

where Qtx = [qtx
i ∈ RD : i = 1, . . . ,H ′W ′] is the updated texture queries and

also the texture codes of UV map pixels, and Θtx-im and Θtx-tx are parameters.
Then, each texture code is used to predict the RGB values of the correspond-

ing pixel in the UV map:

ti = t̂i + MLP(qtx
i ;Θlocal-tx), i = 1, . . . ,H ′W ′ (8)



Analysis-by-Synthesis Transformer for Single-View 3D Reconstruction 9

Table 1: Quantitative results on CUB-200-2011. MeshInv [77] and HybridInv [52]
are test-time optimization methods that optimize the shape for N steps at test time
by inverting a generator; they are significantly slower than direct prediction methods.
CMR and DIB-R use camera pose annotations in addition to silhouette masks; Unicorn
eliminates mask supervision through background modeling.

Methods Mask IoU (%, ↑) SSIM (%, ↑) PCK (%, ↑)

MeshInv (N = 200) [77] 75.2 - -
HybridInv (N = 0) [52] 73.9 - -
HybridInv (N = 30) [52] 84.4 - -

CMR [29] 73.8 44.6 28.5
CSM [35] - - 48.0
DIB-R [7] 75.7 - -
UMR [39] 73.4 71.3 58.2
IMR [61] - - 53.5

UCMR [18] 63.7 - -
SMR [25] 80.6 83.2 62.2

Unicorn [47] 71.4 63.5 49.0
MagicPony [71] - - 55.5

AST (Ours) 81.6 86.0 64.7

where ti ∈ R3 and t̂i ∈ R3 are the ith pixel in the refined UV map and coarse
UV map, respectively, and Θlocal-tx is parameters. Eq. (8) can be implemented
efficiently using convolutional layers.

The Shape and Texture Transformers share similar Transformer decoders but
differ in the shape/texture query modeling and mesh/UV map reconstruction.
Eq. (6) enables texture queries to gather texture features from the image in a
non-local manner. Eq. (7) allows those texture queries to exchange information
with each other to effectively recover occluded texture. Altogether, the Texture
Transformer will be more suitable for UV map prediction than a ConvNet.

3.3 Learning

Our learning objective largely follows previous methods in the analysis-by-synthesis
paradigm [18, 25, 29, 39, 43, 47]. It includes a rendering loss, a saliency loss, and
a regularization loss.

We employ a differentiable renderer [43] to render an image Ĩ and a silhouette
mask S̃ from the predicted pose, mesh, and UV map. The pose corresponds to
the camera-multiplex hypothesis with the highest probability. The rendering loss
is formulated as:

ℓREN = ∥I − Ĩ∥22 + λPER∥ϕ(I)− ϕ(Ĩ)∥22, (9)

where ϕ is the relu3_3 [28] layer of a pre-trained VGG16 [59], and λPER is a
scalar hyperparameter set to 10.

We compare the predicted object saliency map S and the annotated silhou-
ette mask Sgt through a binary cross entropy loss and a mask intersection-over-
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Fig. 3: Qualitative results on CUB-200-2011.

union (IoU) loss. The saliency loss is formulated as:

ℓSAL = ℓBCE(Sgt,S) + ℓIOU(Sgt,S), (10)

Following prior works [18, 43, 47], we adopt a regularization loss ℓREG which
consists of a normal consistency loss [7], a Laplacian smoothing loss [7], a cross-
instance consistency loss [47], and a uniformity regularization [21] on the multi-
plex pose hypotheses. The final objective is formulated as:

ℓ = ℓREN + λSALℓSAL + λREGℓREG (11)

where λSAL and λREG are balancing weights. Our learning objective supervises
both global and local shape/texture predictions. The detailed formulations of
our loss function can be found in the supplementary material.

4 Experiments

4.1 Datasets

We evaluate our single-view 3D reconstruction method on CUB-200-2011 and
ShapeNet datasets.

CUB-200-2011 [68] is one of the most widely used datasets for 3D recon-
struction, featuring approximately 11,788 images across 200 bird species cat-
egories. We follow the community guideline to divide the dataset into 5,994
training images and 5,794 testing images.

ShapeNet [5] is a collaborative, large-scale dataset of richly-annotated syn-
thetic 3D shape. We render each 3D object from ShapeNet into 64 × 64 images
from 24 distinct angles and split the images into a training set, validation set
and test set following the community guideline.
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Fig. 4: Shape reconstruction obtained by our approach on CUB-200-2011 from 6 dif-
ferent viewpoints.

4.2 Evaluation Metrics

On CUB-200-2011, we use Mask IoU and PCK to measure the accuracy of 3D re-
construction, and SSIM for assessing texture synthesis quality. For ShapeNet, we
measure the Chamfer-L1 distance (with ICP alignment) between reconstructed
and ground truth meshes. Mask IoU calculates the intersection over union
between generated and actual silhouette masks, assessing the accuracy of 2D
projections. Percent of Correct Keypoints (PCK) [35] evaluates the preci-
sion of keypoint localization, with higher PCK reflecting better 3D reconstruc-
tion accuracy. The Structural Similarity Index (SSIM) [67] measures the
similarity between two images by considering structural information, texture,
luminance, and contrast. Chamfer-L1 distance [46] combines accuracy (aver-
age distance from points on the generated mesh to nearest points on the ground
truth) and completeness (average distance from points on the ground truth to
nearest points on the generated mesh). Following [47], we use Iterative Closest
Point (ICP) [1] to align predicted shapes for fair comparisons.

4.3 Implementation Details

Following prior studies [25, 29, 39, 47], we start with a spherical mesh of 642
vertices and 1280 faces, scaling it into an ellipsoid with a fixed anisotropic factor
of 0.6. Our setup uses 64 × 64 resolution for both image and texture maps across
the ShapeNet and CUB-200-2011 datasets. We utilize the Soft Rasterizer [43]
for differentiable rendering and a U-Net architecture [57] with six encoder and
four decoder layers with channels of [16, 16, 32, 64, 128, 256] and [256 256,
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Input AST (Ours) Unicorn

Fig. 5: Qualitative results on ShapeNet.

Table 2: Chamfer-L1 distance and Structural Similarity (SSIM) evaluation on
ShapeNet. DVR uses camera pose annotations in addition to silhouette masks; Unicorn
eliminates mask supervision through background modeling.

Chamfer-L1 ↓ Table Car Chair Airplane Bench Cabinet Display Lamp Phone Rifle Sofa Speaker Vessel

DVR [48] 0.303 0.203 0.371 0.114 0.255 0.254 0.257 0.363 0.191 0.130 0.321 0.312 0.180
Unicorn [47] 0.243 0.168 0.253 0.110 0.159 0.154 0.220 0.523 0.127 0.097 0.203 0.235 0.173
AST (Ours) 0.218 0.159 0.245 0.109 0.164 0.132 0.217 0.356 0.096 0.089 0.193 0.244 0.160

SSIM (%, ↑) Table Car Chair Airplane Bench Cabinet Display Lamp Phone Rifle Sofa Speaker Vessel

Unicorn [47] 82.3 87.2 80.4 87.2 83.1 83.8 80.4 79.8 88.5 90.7 80.9 76.5 89.5
AST (Ours) 87.0 89.2 86.4 94.1 88.1 87.9 87.6 90.6 92.4 89.6 85.5 83.7 92.0

128, 128], respectively. The feature map output is 64 × 64 × 128. A Resnet-18
extracts pose and global shape/texture codes, with six pose hypotheses. Each
Transformer (Shape and Texture) operates with a single decoder layer. We apply
various loss weights: rendering and cross-instance consistency at 1, and saliency,
normal consistency, Laplacian smoothing, and uniformity regularization at 0.01,
0.01, 0.01, and 0.05, respectively. The Shape Transformer uses 642 queries, while
the Texture Transformer employs 1024 to create a 32 × 32 texture map, upscaled
to 64 × 64. Training occurs on a Nvidia V100 GPU using Adam [32] at a learning
rate of 1× 10−4.

4.4 Evaluation on CUB

We present a quantitative comparison on the CUB-200-2011 dataset using met-
rics like Mask IoU, PCK for shape reconstruction, and SSIM for texture quality,
as shown in Tab. 1. Our method surpasses previous state-of-the-art models in
all metrics, demonstrating superior shape accuracy and texture realism. Qualita-
tively, as shown in Fig. 3, our approach outperforms methods like Unicorn [47],
which compromises results due to its background modeling approach. UMR [39]
and SMR [25] miss finer shape details and realistic textures, respectively, while
HybridInv [52] offers competitive results but requires inefficient test-time opti-
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mization. The input image size is 64 × 64. For better visual appeal, we display the
original size as 256 × 256. Overall, our method effectively handles the inherent
variability in natural images, producing precise and realistic 3D reconstructions,
more reconstruction results are provided in in the supplementary material.

4.5 Evaluation on ShapeNet

We compare our approach with DVR [48], and Unicorn [47]. DVR relies on ad-
ditional annotations like camera and keypoints along with silhouette masks for
supervision, whereas Unicorn operates unsupervised, avoiding mask annotations
through background modeling. In our quantitative evaluation (Tab. 2), we use
Chamfer-L1 distance to assess shape dissimilarity and SSIM to evaluate texture
quality. Results show our model outperforming Unicorn, particularly in complex
shapes such as tables, and surpassing DVR which utilize extensive annotations.
We excluded SMR from our comparison due to irreproducible results, also ob-
served by Monnier et al . [47]; Similarly, we were unable to fully reproduce the
Unicorn results in the cabinet, sofa, speaker, and vessel categories, so we have
replaced them with our own reproduced results. Our model significantly excels
in texture realism, evidenced by superior SSIM scores over Unicorn. Qualitative
comparisons in Fig. 5 reveal our model’s enhanced handling of subtle texture
details, like the gray roof of the car and table legs, showcasing greater realism
than Unicorn. Overall, our method provides more accurate shapes and realistic
textures compared to previous models.

Table 3: Evaluation on OmniOb-
ject3D using Chamfer-L1 and SSIM.

Methods Banana
Chamfer-L1 ↓ SSIM (%, ↑)

Unicorn [47] 0.375 81.7
Ours 0.272 85.8

4.6 Additional Results

We also conducted experiments on a new
large-scale real-world dataset, OmniOb-
ject3D [73]. We selected the banana cat-
egory and evaluated the Chamfer-L1 dis-
tance and SSIM, comparing our method
with Unicorn [47]. As shown in Tab. 3,
the experimental results show that our
method maintains superior performance
on this latest dataset.

4.7 Ablation Study

We conducted an ablation study to assess the impact of each module by sepa-
rately removing the Shape Transformer (ST) and Texture Transformer (TT) and
measuring Mask IoU, SSIM, and PCK on the CUB-200-2011 dataset. The results,
detailed in Tab. 4, confirm that both ST and TT are crucial. The study shows
that improvements in shape accuracy and texture quality are interdependent, fa-
cilitated by enhanced texture maps aiding accurate shape learning through image
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Table 4: Ablation study on CUB-200-2011.

Methods Mask IoU (%, ↑) SSIM (%, ↑) PCK (%, ↑)

Ours w/o ST 74.6 77.8 59.2
Ours w/o TT 75.3 65.3 55.5

Ours 81.6 86.0 64.7

Table 5: Ablation study on ShapeNet using
Chamfer-L1 and SSIM.

Methods Table Car Chair Airplane
Chamfer-L1 ↓

Ours w/o ST 0.314 0.172 0.282 0.111
Ours w/o TT 0.240 0.161 0.262 0.109

Ours 0.218 0.159 0.245 0.109

Methods Table Car Chair Airplane
SSIM (%, ↑)

Ours w/o ST 86.6 88.9 85.9 92.4
Ours w/o TT 83.4 86.3 83.1 91.9

Ours 87.0 89.2 86.4 94.1

rendering loss backpropagation. Vi-
sual results in Fig. 3 demonstrate
degraded performance when ei-
ther ST or TT is removed. For
ShapeNet, removing ST results in
a notable decrease in Chamfer-
L1 distance performance, particu-
larly for complex objects like chairs
and tables, highlighting ST’s role
in refining shape. While removing
TT has a lesser impact on shape
metrics, it significantly deteriorates
texture quality, as shown in Tab. 5
with further visual ablation results
available in the supplementary ma-
terial.

5 Conclusion

This paper introduces a novel Analysis-by-Synthesis Transformer for single-view
3D reconstruction. It addresses the limitations of existing analysis-by-synthesis
methods in shape reconstruction and texture generation through effective pixel-
to-shape and pixel-to-texture modeling. Extensive experiments on the CUB-
200-2011 and ShapeNet datasets demonstrate that our approach enhances re-
construction accuracy and texture quality, surpassing previous state-of-the-art
methods.

Limitations: A limitation of our method is that it can only reconstruct
meshes of a fixed topology that is homeomorphic to a sphere and cannot handle
concave shapes. This is a common limitation shared by all analysis-by-synthesis
methods that perform shape reconstruction by deforming a sphere mesh, includ-
ing CMR [29], UCMR [18], SMR [25], and Unicorn [47]. In future work, we will
integrate the proposed Analysis-by-Synthesis Transformer and the mesh topol-
ogy modification network [49] for more flexible 3D reconstruction.
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