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Abstract. Unsupervised video anomaly detection (UVAD) aims to de-
tect abnormal events in videos without any annotations. It remains chal-
lenging because anomalies are rare, diverse, and usually not well-defined.
Existing UVAD methods are purely data-driven and perform unsuper-
vised learning by identifying various abnormal patterns in videos. Since
these methods largely rely on the feature representation and data distri-
bution, they can only learn salient anomalies that are substantially differ-
ent from normal events but ignore the less distinct ones. To address this
challenge, this paper pursues a different approach that leverages data-
irrelevant prior knowledge about normal and abnormal events for UVAD.
We first propose a new normality prior for UVAD, suggesting that the
start and end of a video are predominantly normal. We then propose
normality propagation, which propagates normal knowledge based on re-
lationships between video snippets to estimate the normal magnitudes of
unlabeled snippets. Finally, unsupervised learning of abnormal detection
is performed based on the propagated labels and a new loss re-weighting
method. These components are complementary to normality propagation
and mitigate the negative impact of incorrectly propagated labels. Ex-
tensive experiments on the ShanghaiTech and UCF-Crime benchmarks
demonstrate the superior performance of our method. The code is avail-
able at https://github.com/shyern/LANP-UVAD.git.
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1 Introduction

Video anomaly detection aims to detect abnormal events in video sequences along
the temporal dimension. This task is essential for intelligent surveillance [55] and
crime detection [5]. Most existing methods are trained with partial supervision
that requires manual annotations. For instance, one-class methods [23,40,41] use
normal videos as the training set, while weakly-supervised methods [5, 33, 36]
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Fig. 1: Two examples of abnormal videos on ShanghaiTech [20]. The
gray barcode is the ground truth. The line charts are anomaly scores
of three methods [1, 46, 47]. The instances in the orange boxes are
easily predicted incorrectly. This is because these methods are data-
driven and highly rely on feature representation and data distribu-
tion, often struggling to capture less salient anomalies.
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rely on video-level annotations during training. In contrast, unsupervised video
anomaly detection (UVAD) methods [28,37,46,47] attempt to detect anomalies
without any annotations. It remains challenging because abnormal events in
UVAD are rare, diverse, and usually not well-defined.

Existing UVAD methods [1, 28, 35, 37, 38, 46, 47] are based on self-training
or reconstruction. Reconstruction-based methods [37, 38, 46] learn normal pat-
terns from all training videos by gradually filtering out anomalies with large
reconstruction errors. Self-training methods [1, 27, 35, 47] first generate pseudo-
labels, which are then used as supervision for training, achieving state-of-the-art
performance recently.

All current UVAD methods are purely data-driven, performing unsupervised
learning by identifying abnormal patterns in videos. However, these methods
heavily rely on the feature representation and data distribution, often struggling
to capture less salient anomalies. In reconstruction-based methods [37, 38, 46],
where normal and abnormal patterns are easily memorized by the autoencoder,
imperceptible abnormal events may be easily overlooked. Self-training methods
use data-driven strategies to generate pseudo-labels. For instance, GCL identifies
anomalies based on local contrast in video snippets. They focus on high-contrast
anomalies, potentially leading to the problem of anomalies attenuation, i.e.,
overlooking less salient anomalies with low contrast. Al et al . [1] separate normal
and anomalies by clustering over the entire dataset, making it challenging to
distinguish them without pre-defined normal events. This challenge is illustrated
in Figure 1, showing results from previous representative methods [1,46,47]. We
can see that results from different methods vary significantly, and they can easily
miss less salient anomalies.

In essence, UVAD is highly ill-posed. There still lacks a common definition
of “what an anomaly is” in the community, and simply relying on data to detect
anomalies is prone to failure. We tackle this problem from a different perspective.
Unlike previous methods driven by data, our idea is to leverage data-irrelevant
prior knowledge about normal and abnormal events to aid in identifying anoma-
lies. By characterizing what normal and abnormal events look like beyond the
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data, this prior knowledge helps address ambiguities between normal and ab-
normal events that cannot be resolved from a purely data-driven perspective,
leading to more effective anomaly detection.

What is good prior knowledge for UVAD? It should be both informative
and of high quality. We draw inspiration from the area of saliency detection [7,
16, 17, 45]. Concretely, inspired by the boundary prior [7, 45] commonly used
in traditional saliency detection methods, we introduce a normality prior, that
is, the start and end of a video are mostly normal. It is more robust than the
center prior [14, 19] for anomalies because anomalies can be located far away
from the temporal center but rarely touch the temporal boundary. We validate
the normality prior on several datasets, as shown in Figure 2, which shows that
compared to random selection, using our normality prior to select normal snip-
pets is significantly more accurate. A more detailed experimental discussion is
presented in Section 4.3.

How should the prior knowledge be used? A straightforward method is to
directly compare other snippets with the normal prior, i.e., start and end snip-
pets of a video. However, since normal frames vary over time, the similarities
between the normal prior and distant normal frames can be very large. They can
be easily mislabeled without considering the temporal and semantic consistency
of video snippets. In this paper, we propose Normality Propagation, which aims
to propagate the normal information based on relationships between video snip-
pets to estimate the normal magnitudes of unlabeled snippets, which represent
the normal degree they received. Different from traditional label propagation in
semi-supervised learning, our normality propagation features several innovations:
1) To overcome the limitation of no labeled snippets, we propose to use the nor-
mality prior to specify normal snippets. 2) We propose a temporally-modulated
feature-based similarity matrix to model pairwise similarities. 3) We apply the
propagation in a more efficient way, i.e., over snippets in a video instead of the
whole dataset used in traditional label propagation. We then perform unsuper-
vised learning of abnormal detection based on the propagated labels and a new
loss re-weighting method. They are complementary to normality propagation
and mitigate the negative impact of incorrectly propagated labels.

The main contributions are summarized as follows:

– Unlike previous UVAD methods that are purely data-driven, we propose to
use the data-irrelevant normality prior to identify abnormal events. To the
best of our knowledge, such prior has never been studied before in the area
of UVAD.

– We introduce normality propagation to effectively propagate the normality
prior to unlabeled snippets for pseudo label generation.

– We perform unsupervised learning of abnormal detection based on the prop-
agated labels and a new loss re-weighting method. They are complementary
to normality propagation and mitigate the negative impact of incorrectly
propagated labels.

– Extensive experiments on ShanghaiTech [20] and UCF-Crime [33] demon-
strate the effectiveness of the proposed method.
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2 Related Work

The literature on video anomaly detection (VAD) is rich. We mostly restrict
the discussion to approaches for unsupervised video anomaly detection, label
propagation, self-training and pseudo labeling.

2.1 Unsupervised Video Anomaly Detection

Video Anomaly Detection (VAD) aims to detect abnormal events in video se-
quences. Full-supervised methods [18, 39] tackle this task with precise annota-
tions. Most existing methods are trained in partial supervision that needs man-
ual annotations. For instance, one-class methods [6,9,20,22,23,29,34,40,41,54]
use only normal videos to train the detection model, weakly-supervised meth-
ods [5,24,25,31–33,36,42,49,51,55] need video-level annotations during training.
In contrast, unsupervised methods [28, 37, 38, 46, 47] attempt to detect anoma-
lies without any manual annotations, which are laborious, expensive, and prone
to large variations. It remains challenging because abnormal events in UVAD
are rare, diverse, and usually not well-defined. In the current work, we explore
unsupervised mode for video anomaly detection.

Existing UVAD methods [28,37,38,46,47] can be categorized into reconstruc-
tion based methods and self-training based methods. These methods are purely
data-driven, performing unsupervised learning by identifying abnormal patterns
in videos. Reconstruction-based methods [37,38,46] learn normal patterns from
all training videos by gradually filtering out anomalies with large reconstruction
errors. For instance, Yu et al . [46] design a novel self-paced refinement scheme
to remove anomalies with the reconstruction model. Tur et al . [37] leverage the
reconstruction capability of diffusion models to detect anomalies with larger re-
construction errors. They [38] further employ conditional diffusion models to
improve detection performance conditioned on compact motion representations.
However, as normal and abnormal patterns are easily memorized by the autoen-
coder, they easily overlook imperceptible abnormal events.

Self-training-based methods [1, 35, 47] have achieved good performance re-
cently. They generate pseudo labels first, then use pseudo labels as self-supervision.
Pseudo labels are generated relying on data-driven strategies. For instance, Za-
heer [47] propose a generative cooperative learning method. It identifies anoma-
lies based on the local contrast in video snippets i.e., the difference between con-
secutive snippets. They may label the boundaries of abnormal events well but
can attenuate interior anomalies. Al et al . [1] cluster over the entire dataset to de-
tect anomalies belonging to a smaller cluster. Normal and abnormal videos may
appear in the same scene, but it is hard to separate them without a pre-defined
normal. Thakare et al . [35] use OneClassSVM and iForest to find anomalies that
lie outside the constructed hypersphere. However, previous UVAD methods are
driven by data. They largely rely on feature representation and data distribution.
Thus they easily overlook less salient anomalies. Our idea is to leverage prior
knowledge about normal events that are irrelevant to the data to help identify
anomalies.
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2.2 Label propagation

Variants of label propagation [56] have been applied to various computer vision
tasks, including learning with noisy labels [11, 26], few-shot learning [3, 21, 30],
and semi-supervised learning [10,57]. Method [11] for learning with noisy labels
proposes a neighbour consistency regularization loss that encourages examples
with similar feature representations to have similar predictions. Multi-Objective
Interpolation Training (MOIT) [26] identifies and refines noisy examples using
neighbours’ predictions. Liu et al . [21] consider label propagation with stochastic
gradient descent for episodic few-shot learning. For semi-supervised learning,
Iscen et al . [10] use label propagation to obtain labels for unsupervised data
based on their neighbours in the feature space. Label propagation is not directly
applicable to UVAD as both the initial labels and the similarity matrix are
unavailable. We propose normality propagation to address these challenges. On
the one hand, we propose the data-irrelevant normality prior to specifying the
initial labels. On the other hand, we design a temporally-modulated similarity
matrix to effectively propagate the normality prior across the video.

2.3 Self-training and Pseudo labeling

Self-training is a simple but effective technique used in unsupervised learn-
ing [12,13,52,53], semi-supervised learning [10,43], and weakly-supervised video
anomaly detection [5, 55]. It initializes pseudo labels first, then uses labels pre-
dicted by the model as self-supervision. Zhang et al . [52] first generate saliency
pseudo labels by using contrast-based SOD methods [4,44], then designed a noise
modelling module to deal with noises in saliency cues. The unsupervised person
re-identification method [53] generates pseudo labels based on clustering results,
then refines pseudo labels with clustering consensus over training epochs and
temporal ensembling techniques. Lee et al . [10] uses the current network to infer
pseudo labels of unlabeled data, and then re-trains the model on both labeled
and unlabeled data. Zhong et al . [55] propose an alternate training framework for
weakly supervised VAD, which generates frame-level pseudo labels for abnormal
videos according to an action classifier [2]. In this work, we use self-training as an
approach for UVAD. Our method differs from all prior work in that we propose
a normality prior and introduce normality propagation, which effectively propa-
gates the normality prior to unlabeled snippets for pseudo label generation. We
also introduce a loss re-weighting strategy for robust abnormal detection.

3 Method

Problem Statement. In Unsupervised Video Anomaly Detection (UVAD),
both normal and abnormal videos are included in the training set, while annota-
tions are not provided. Assume that we have a set of N training videos, and each
video is divided into a series of non-overlapping snippets. The goal of UVAD is to
learn a snippet-level anomaly classifier fθ(·) that predicts the anomaly score of
the snippet. A higher score indicates the snippet is more likely to be abnormal.
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Fig. 3: Overview of our method. We first use the normality prior to specify that the
start and end of a video are normal. Then we propose a new normality propaga-
tion method to propagate the normal information based on the temporally-modulated
feature-based similarity for estimating normal magnitudes. After that, We perform un-
supervised learning of abnormal detection based on the propagated labels and a new
loss re-weighting method.

Overview. As previous methods are purely data-driven, they heavily rely on
feature representation and data distribution, thereby often struggling to capture
less distinct anomalies. To address this challenge, our key idea is to leverage data-
irrelevant prior knowledge about normal/abnormal events to aid in identifying
anomalies in videos. By characterizing what normal and abnormal events look
like beyond the data, this prior knowledge helps address ambiguities between
normal and abnormal events that cannot be resolved from a purely data-driven
perspective, leading to more effective anomaly detection. Figure 3 illustrates an
overview of our method. We first describe the normality prior in natural videos,
and use it to specify normal snippets in a video. Then we propose normality
propagation to propagate normal knowledge based on the temporally-modulated
feature-based similarity matrix to estimate the normal magnitudes of unlabeled
snippets. After propagation, unsupervised learning of abnormal detection is per-
formed based on the propagated labels and a new re-weighting method.

Feature Extraction. Following [33,47], we utilize a fixed-weight backbone
network to extract features for each snippet. Formally, we denote features in a
video as X ∈ RD×L, where L and D are the number of video snippets of a video
and the feature dimension.

3.1 Normality Prior in Our Method

We propose to use a prior about normal events in natural videos, namely nor-
mality prior. Such prior has never been studied in previous methods, but it can
help address challenges faced by purely data-driven methods.

Our normality prior is that the start and end of a video are mostly normal. It
is inspired by the boundary prior [7,16,17,45] widely used in traditional saliency
detection methods: the image boundary is mostly background. The boundary
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prior is more general that the center prior [14,19] to identify anomalies because
anomalies can be located far away from the temporal center, but they rarely
touch the temporal boundary. This prior is validated on several anomaly detec-
tion datasets, as statistical analysis in Figure 2 and experimental discussion in
Section 4.3.

3.2 Normality Propagation

Normality propagation aims to effectively propagate the normality prior to the
unlabeled snippets for pseudo label generation. Given features of a video with
L snippets X, we propagate normal knowledge over video snippets based on
pairwise similarities for estimating their normal magnitudes z, which represent
the normal degree they received.

As normal videos contain normal snippets only, we only specify the first and
end snippets in a video as normal and do not mark any abnormal ones. We first
define a label vector y ∈ RL with yi = 1 if i = 1 or i = L and yi = 0 otherwise.
Clearly, y is consistent with the initial normal magnitudes of video snippets.

Considering that normal and abnormal events are temporally consistent, and
they are similar by themselves but frames between them vary greatly, we pro-
pose a temporally-modulated feature-based similarity matrix to model pairwise
similarities, as shown in Figure 4. We define a matrix W ∈ RL×L to describe the
proximity of snippets in the feature space and temporal domain. We construct
W by computing the snippets’ feature space similarities and then modulating
them by their respective temporal positions. Specifically, we define a similarity
matrix Wf computed in the feature-space as:

Wf
i,j =

{
exp

(
−∥xi−xj∥2

2σ2

)
, if i ̸= j

0, otherwise,
(1)

where xi denotes the i-th snippet feature in a video, σ = 0.1 is a hyper-parameter
to control the strength of the similarity. A similar matrix Wt is defined in the
time-space, and elements are computed from the time stamps. For L snippets,
the time stamps are defined as t = {1, 2, · · · , L}, and each element in Wt is
computed as:

Wt
i,j =

{
exp

(
− |ti−tj |

L

)
, if i ̸= j

0, otherwise,
(2)

where ti denotes the i-th snippet time stamp in a video. We then compute
temporally-modulated feature-based similarity matrix W as:

Wi,j = Wf
i,j ·W

t
i,j . (3)

Wi,j therefore specifies the temporally weighted similarity between snippets i
and j. Its symmetrically normalized counterpart S = D−1/2WD−1/2, in which
D is a diagonal matrix with its (i, i)-element equal to the sum of the i-th row of
W.
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Normality propagation is to let every snippet iteratively spread its normal
knowledge to its neighbours until a global stable state is achieved, that is, iterate
z(n+ 1) = αSz(n) + (1− α)y until convergence, where α is a hyper-parameter
in the range (0, 1), n is the index of an iteration, and z(0) = y. The iterative
process converges to a simple solution: z∗ = (1−α)(I−αS)−1y, which is clearly
equivalent to

z∗ = (I− αS)−1y, (4)

where I is the identity matrix. z∗ can be efficiently obtained by using the con-
jugate gradient from the linear system (I− αS)z∗ = y. Derivations refer to the
supplementary material.

It is interesting to observe that the vector z∗ as defined by Eq.(4) is equivalent
to the solver of the following objective function:

Q(z) = αzTSz+ (1− α)(z− y)T (z− y), (5)

The first term encourages similar snippets to get the same predictions, while
the second term attempts to maintain predictions for the specified normal ex-
amples [56].

The optimized normal magnitudes of snippets in a video z∗ indicate different
degrees of normal knowledge that they received from the normality prior and
their neighbours. A higher value means that this snippet is more likely to be
normal, and vice versa.

Discussion. The normality prior specifies normal snippets effectively. By
characterizing what normal events look like beyond the data, this prior knowl-
edge helps address ambiguities between normal and abnormal events that cannot
be resolved from reconstruction-based methods [37,38,46] and the global cluster-
based methods [1]. Besides, normality propagation leverages the normality prior
in a more effective way than directly comparing the video snippets with the nor-
mal prior. It estimates the normal magnitudes of each snippet not only based on
the labeled normal snippets but also takes into account their neighbours’ normal
magnitudes. Thus normal snippets that are far away from specified ones will be
affected by their normal neighbours and then can be labeled correctly. Besides,
the previous “anomalies attenuation” problem is significantly alleviated because
anomalies in a video are usually different from normal. In addition, normality
propagation is a transductive method. It is easy to implement, fast and suitable
for generating pseudo labels for UVDA.
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3.3 Unsupervised Learning of Abnormal Detection

We perform unsupervised learning of abnormal detection based on the propa-
gated labels and a new loss re-weighting method. They are complementary to
normality propagation and mitigate the negative impact of incorrectly propa-
gated labels.

Pseudo Labeling. We generate pseudo-labels based on normal magnitudes.
Video-level pseudo labels are generated first, and then snippet-level pseudo labels
are generated. Specifically, we select Nnor videos that have lower video scores
than normal videos, where the video score is defined as the standard deviation
of normal magnitudes of snippets in a video. Standard deviations of abnormal
videos will be large as the abnormal video contains both normal and abnormal
snippets. After that, we select snippets that have lower r% normality scores in
the abnormal video as abnormal snippets. Finally, we formulate the pseudo label
of the t-th snippet in the i-th video as

ŷit =

{
1, if i ∈ Iabn ∧ t ∈ Iabn

i

0, otherwise,
(6)

where Iabn is the set of indexes of abnormal videos, Iabn
i is the set of indexes of

abnormal snippets in the i-th video.
Loss Re-weighting. Because a few videos may not follow the normality

prior and the normality propagation is imperfect, we will have incorrect pseudo
labels. We propose a loss re-weighting strategy to mitigate the negative impact of
the noisy pseudo labels. As shown in Figure 5, we first select Nhnor high-confident
normal videos and use the mean feature of each selected video to construct the
normal list M = {m0,m1, · · · ,mNhnor}. We then estimate additional abnormal
scores based on the global normal list. For a snippet xq, its additional score is
defined as

dq = min
mi∈M

1− ⟨xq,mi⟩, (7)

where ⟨·, ·⟩ is the cosine similarity between two vectors. The additional abnormal
score estimates the probability of a snippet being abnormal in a global view. It
is complementary to the pseudo labels generated by normality propagation in a
local view. Then, the reliability is measured by the discrepancy between pseudo
labels and additional normal-based anomaly scores. We further formulate the
loss weight of the snippet xq as

wq = exp (−|dq − ŷq|) . (8)

The loss re-weighting strategy penalizes pseudo-labels with high discrepancy to
guide the learning through reliable pseudo-labels.

After pseudo labels and their loss weights are generated, we train a classifi-
cation model with the weighted binary cross-entropy loss as

L =
1

|X |
∑
xi∈X

−wiŷi log(si)− wi(1− ŷi) log(1− si), (9)
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where X is the set of video snippets in a mini-batch, si = fθ(xi) is the anomaly
prediction of the i-th snippet.

4 Experiment

In this section, we first provide experimental details, then draw comparisons
with the existing UVAD methods, and finally study different components of our
method.

4.1 Experimental details

Evaluation Datasets. We evaluate our method on two popular video anomaly
detection datasets: ShanghaiTech [20] and UCF-Crime [33].

ShanghaiTech [20] is a popular dataset used in video anomaly detection.
It contains 437 campus surveillance videos (330 normal videos, 107 abnormal
videos) with different locations spanning and camera angles. Recent UVAD
methods follow the data organization of [55] but do not use annotations in the
training set. Specifically, the training set contains 63 abnormal videos and 175
normal videos, and the testing set contains 44 abnormal videos and 155 normal
videos.

UCF-Crime [33] is a large-scale video anomaly detection dataset. It consists
of 1900 real-world surveillance videos (950 normal videos, 950 abnormal videos)
with 13 different types of realistic abnormal events. It is a complex dataset due
to videos containing diverse backgrounds and durations. Recent UVAD methods
follow the data organization of [33] but without using training video labels.
Specifically, the training split has 810 abnormal and 800 normal videos, while
the testing split has 140 abnormal and 150 normal videos.

Evaluation Metrics. Following prior work [37, 47], we use the frame-level
area under the ROC curve (AUC) for evaluation and comparisons. Lager AUC
values indicate better performance.

Implementation Details. We use two backbones, i.e., ResNext3d [8] and
I3D [2], to extract features for each snippet receptively. Our detection model is
composed of a temporal convolution and two linear layers. During our training
procedure, each mini-batch consists of 30 randomly selected videos, and each
video is sampled into 32 snippets. We train the model for 300 epochs with the
RMSprop optimizer using a learning rate of 0.0001 and a momentum of 0.6. We
set α = 0.99 for normality propagation, Nnor as the number of normal videos in
the training set, and the abnormal ratio r% = 40%. Besides, we set the number
of high confident normal videos Nhnor = h ∗Nnor, and h = 0.1.

4.2 Comparison with State-of-the-art Methods

In Table 1, we compare the proposed method with existing unsupervised video
anomaly detection methods [37, 38, 47] on two different datasets, i.e., Shang-
haiTech [20] and UCF-Crime [33]. Selected weakly-supervised and one-class
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Table 1: Comparison with state-of-the-art methods in AUC (%) on ShanghaiTech and
UCF-Crime. We divide the methods into weakly-supervised, one-class, and unsuper-
vised. Best results are in bold. We implemented [46] and [1] and computed their AUC
scores.

Method Features ShanghaiTech UCF-Crime

W
ea

kl
y-

su
pe

rv
is

ed

Sultani et al . [33] C3D - 75.41
CLAWS [49] C3D 89.67 83.03
CLAWS Net+ [50] C3D 90.12 83.37
MIST [5] C3D 93.13 81.40
RTFM [36] C3D 91.51 83.28
MIST [5] I3D 94.83 82.30
RTFM [36] I3D 97.21 84.30
Zhang et al . [51] I3D - 86.22
CLAWS [49] ResNext - 82.61
CLAWS Net+ [50] ResNext 91.46 84.16
Zaheer et al . [47] ResNext 86.21 79.84

O
ne

-c
la

ss

Lu et al . [23] - 68.00 65.51
BODS [40] I3D - 68.26
GODS [40] I3D - 70.46
OGNet [48] ResNext 69.90 69.47
Zaheer et al . [47] ResNext 79.62 74.20

U
ns

up
er

vi
se

d

DyAnNet [35] I3D - 79.76
C2FPL [1] I3D - 80.65
Ours I3D 88.32 80.02
Kim et al . [15] ResNext 56.47 52.00
LBR-SPR [46] ResNext 77.12 57.18
GCL [47] ResNext 78.93 71.04
Tur et al . [37] ResNext 68.88 62.91
Tur et al . [38] ResNext 66.36 63.52
C2FPL [1] ResNext 67.36 74.71
Ours ResNext 86.46 76.64

methods [36,40,48,51] are presented for reference. We reimplement LBR-SPR [46]
on our dataset splits and C2FPL [1] on ResNext features for fair comparisons.
As we can see, our method outperforms almost all previous methods on differ-
ent features. We establish a new state-of-the-art on ShanghaiTech with 86.46%
AUC and UCF-Crime with 76.64% AUC with ResNext as the backbone. We also
achieve comparable performance using I3D as the backbone.

In addition, Unsupervised methods [1,37,47] still perform inferior to weakly-
supervised ones [5, 33] because no annotations are provided in UVAD. But our
method achieves better performance than one-class methods [40, 50], verifying
the effectiveness of the unsupervised setting in video anomaly detection.

4.3 Ablation Study and Analysis

We conduct a series of ablation studies to understand better how the proposed
method works, where we use ResNext [8] as the backbone to extract features.

Validation of Normality Prior. In this experiment, we validate the nor-
mality prior to the experimental performance. Table 2 shows the precision and
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Table 2: Precision (%) and Recall (%) of pseudo labels generated by normality prop-
agation with Random, Data-driven Prior, and Normality Prior as labeled normal snip-
pets, as well as corresponding testing performance (AUC %).

ShanghaiTech UCF-Crime
Precision Recall TestAUC Precision Recall TestAUC

Random 17.90 29.27 81.69 13.28 42.41 60.33
Data-driven Prior 19.74 24.64 83.59 15.19 48.23 68.51
Normality Prior 34.39 42.92 85.96 20.37 54.28 75.99

Table 3: Ablation study of normality propagation. T, F, and T&F mean Temporal-
based, Feature-based, and Temporally-modulated Feature-based pairwise similarities.
The metric is AUC (%).

Pairwise Similarity ShanghaiTech UCF-Crime

Direct Comparison - 72.33 71.22

Normality Propagation
T 79.62 57.99
F 79.73 63.01

T&F 85.96 75.99

recall of pseudo labels generated by using normality propagation with random,
the data-driven prior, and the normality prior as labeled normal snippets. It
also shows the corresponding testing performance. As we can see, specified nor-
mal snippets with the normality prior generate better pseudo labels and testing
performance. It is more informative than data-driven prior because the latter
often favors simple, similar normal snippets, e.g., assuming snippets exhibiting
minimal contrast are considered normal. We also validate its robustness beyond
these standard benchmarks in the supplementary material.

Ablation Study of Normality Propagation. How to use the normality
prior is very important. We compare different strategies for generating pseudo
labels using the specified normal snippets, including making direct comparisons
with specified normal snippets, normality propagation with temporal-based (T),
feature-based (F), and temporally-modulated feature-based (T&F) pairwise sim-
ilarities. The testing performances are presented in Table 3. Direct comparison
has inferior performance than normality propagation with T&F. This is because
direct comparison overlooks relationships between unlabeled snippets. In addi-
tion, our T&F pairwise similarity outperforms T or F pairwise similarity that
only uses the similarity in the time-space or feature-space because we take into
account temporal and feature similarities simultaneously. In summary, the pro-
posed normality propagation effectively propagates the normality prior to unla-
beled snippets based on the T&F pairwise similarities matrix. It mostly benefits
from knowledge in labeled normal snippets as well as temporal and semantic
consistency in unlabeled snippets to generate pseudo labels.

Ablation Study on Loss Re-weighting. In this experiment, we validate
the effectiveness of the proposed loss re-weighting strategy. The results are shown
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Table 4: Ablation study on the effective-
ness of the loss re-weighting (LR) in our
method.

ShanghaiTech UCF-Crime

Ours w/o LR 85.96 75.99
Ours 86.46 76.64

Table 5: Ablation study on different
values of high confident normal videos,
where we set different h.

0.1 0.3 0.5

ShanghaiTech 86.46 86.18 86.24
UCF-Crime 76.64 76.63 76.42

Ground-truth OursGCL C2FPL LBR-SPR

01_0177 (ShanghaiTech)

Normal_Videos063 (UCF-Crime)

Explosion021 (UCF-Crime)

Explosion013 (UCF-Crime)

Fig. 6: Qualitative results. Curves represent the predicted anomaly scores. The grey
background corresponds to the ground truth. The white and black arrows denote the
locations of normal and abnormal frames displayed on the left.

in Table 4. As we can see, our method with normality propagation achieves good
performance over two datasets. By adding the normal-based loss re-weight, we
obtain better performance. This is because it provides the global normal infor-
mation for re-weighting pseudo labels, which is complementary to the normality
propagation that generates pseudo labels in a local view. This also verified that
our loss re-weighting strategy can mitigate the negative effects of incorrectly
propagated labels.

Ablation Study of hyperparameters. The number of highly confident
normal videos Nhnor is an important hyperparameter in our normal-based loss
re-weighting. We set it as h∗Nnor, and Nnor is set as the number of normal videos
of the corresponding dataset. Here we test its sensitivity on two datasets. Results
are presented in Table 5. Our method consistently achieves AUC higher than 86%
on ShanghaiTech and 76% on UCF-Crime. Thus, our method is insensitive to
Nhnor. More experimental results refer to the supplementary material.
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Normal_Videos882

Ground-truth OursGCL C2FPL LBR-SPR

Fig. 7: A failure case on UCF-Crime.

4.4 Qualitative Analysis

Figure 6 shows some examples of detection results of our method and three
previous representative methods, i.e., one reconstruction-based method LBR-
SPR [46], and two self-training methods GCL [47] and C2FPL [1]. Our method
can detect the abnormal event well and predict abnormal scores of the normal
frames very close to zero. In abnormal examples of Explosion013 (UCF-Crime)
and 01_0177 (ShanghaiTech), compared with other data-driven methods, our
method locates anomalies more accurately. This is because our method uses
the normality prior effectively. It helps address ambiguities between normal and
abnormal events that cannot be resolved from a purely data-driven perspective,
leading to more effective anomaly detection.

Limitation. As our method is built on the semantic consistency of normal
events, inevitably, it fails when there are multiple types of normal events in a
video, as shown in Figure 7 shows a typical failure case: A normal video captured
from different angles. Nevertheless, our method performs well in most videos, as
shown in Figure 6. In the future, we will explore combining with other methods
that focus on detecting anomalies in multiple scenes to overcome this limitation.

5 Conclusion

Unlike existing methods driven by data, this paper leverages data-irrelevant prior
knowledge for UVAD. We first propose a new normality prior, suggesting that the
start and end of a video are predominantly normal. We then introduce normality
propagation, which propagates normal knowledge based on relationships between
video snippets to estimate normal magnitudes of unlabeled snippets. Finally, we
perform unsupervised learning of abnormal detection based on the propagated
labels and a new loss re-weighting method. Extensive experiments indicate that
our method outperforms existing state-of-the-art methods.
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