Modeling and Analysis of Collaborative Virtual Environments by

Using Extended Fuzzy-Timing Petri Nets

Y. Zhou, T. Murata, and T. DeFanti

Department of Electrical Engineering and Computer Science
Univerdty of Illinoisat Chicago
Chicago, Illinois 60607-7053 USA
{yzhoul, murata, tom} @eecs.uic.edu

Abstract. Virtual Redlity (VR) systems (such as the CAVE™") generate images in real-
time on the basis of the viewer’s view in the virtual world, so that the viewer sees a three-
dimensiona view of a given scene. The concurrency and real-time features in virtua
environments systems make them difficult to design, implement and test. Collaborative
Virtuad Environments (CVES) make this more complicated by adding network
considerations into their designs. CVEs demand high Quality-of-Service (QoS)
requirements on the network to maintain natural and real-time interactions among users.
By using formal methods to model CVEs and anayze their real-time behavior, we can
evauate the network effects on CVESs and the performance of CVESs. To model temporal
uncertainties in CVEs, we propose an extension of Fuzzy-Timing Petri Nets (EFTN) in
this paper. We give our EFTN models for the CAVE, the TCP protocol and the NICE
(Narrative Immersive Constructionist/Collaborative Environments) project and we analyze
the network effects on the NICE and the dynamic performance of NICE.

1 Introduction

Virtua Redity (VR) can be defined as interactive computer graphics that provide viewer-

centered perspective, large field of view and stereo. The CAVE™: (Cave Automatic Virtual

1 CAVE™ isaregistered trademark of the Regents of the University of Illinois

Environment) ([4], [15], [16]) is a virtud redity environment designed and implemented at the
Electronic Visuaization Laboratory at the University of Illinois at Chicago. The CAVE, as shown
in Fig. 1, is a surround screen, projection based virtual reality environment system. The actua
environment is a 10x10x10 foot cube, where images are rear-projected in stereo on 3 walls (front
wall, left wall, and right wall), and down-projected onto the floor. (The floor can be considered as
floor wall. So there are 4 walls tota.) The 4 walls display computer generated stereo images of
the virtual world in real-time based on the position and orientation of the user’s head and hand in
the CAVE. The viewer wears LCD shutter glasses to mediate the stereo images. The viewer's
head and hand position and orientation are tracked through sensors on the shutter glasses and on
the ‘wand’ (the CAVE input device). And the viewer can grab and move objects in the virtual

world with the wand.

Fig.1 A picture of the Cave Automatic Virtual Environment (CAVE)

Because of the concurrency and real-time features in virtual environments systems, it is
difficult to design, implement and test VRs. Callaborative Virtual Environments (CVE) make this
more complicated by adding network considerations. CVEs allow people in remote virtual
environments to learn from each other, work together on designing systems, or perform a

complex group task together over networks.

The Narrative Immersive Constructionist/Collaborative Environments (NICE) project
([2], [3]) at the Electronic Visualization Laboratory at the University of Illinois at Chicago, is a
collaborative learning environment: a virtual garden, where children can do gardening and

learning cooperatively. In the NICE, children located in distributed virtual environments (e.g.,

CAVEsS), can take care of a virtual garden together in the center of a virtual island. The children,
represented by avatars, collaboratively plant, grow, and pick vegetables and flowers. They make
sure that the plants have sufficient water, sunlight, and space to grow, and they keep hungry

animals away from sneaking in the garden and eat the plants.

Fig. 2. (a) Jm (an avatar) is handing a flower to Eddie (another avatar); (b) A child isinteracting with an
avatar in the CAVE.

NICE uses a central server to simulate the garden and maintain consistency across all the
participating virtual environments, and a repeater to broadcast all avatar state information. Each
virtual environment (VE) sends the local avatar information (the local tracker data) to the repeater
by using UDP, and sends the information about the local child's world-changing activities to the
central garden by using TCP. The central server receives the world-changing messages from each
client, updates the world state and sends the new world information (the information about the
garden) to each client by using TCP so that all clients can share the same world information.
Meanwhile, the repeater receives each avatar’s sate information and broadcasts them to all other
clients by using UDP. It isvery important to draw remote entities in real-time in each VE so that

the user will not notice any difference between the local and remote entities in the environment.

CVEs demand high Quality-of-Service (Qo0S) requirements on the network to maintain
natural and real-time interactions among users. QoS refers to the reguirements on network
latencies and jitters (the variability in network latency). By using formal methods to model CVEs
and analyze their real-time behavior, we can evaluate the network effects on CVEs and the

performance of CVESs. Petri Nets have rigorous analysis capability and have been shown useful

for assuring the reliability and correctness of concurrent systems. In order to model and analyze
real-time systems, various timed extensions of Petri Nets have been proposed. However, many
real-time systems have temporal uncertainty. For example, the time duration of rendering an
image for awall in CAVE varies on the complexity of the geometric objects in the image, and the
network delaysin CVEs vary over alarge range. To deal with temporal uncertainties in real-time
systems, Murata [7] proposed Fuzzy-Timing High-Level Petri Nets (FTHNs) to model time
explicitly in terms of fuzzy set theory. FTHNs model temporal uncertainties in real-time systems,
and provides possibility distributions of events. So FTHNs can capture all temporal uncertainties
in CVEs and they would be suitable models for CVEs.

This paper is organized as follows: Section 2 reviews Fuzzy-Timing Petri Nets and
proposes an extension of Fuzzy-Timing Petri Nets (EFTN); Section 3 gives our EFTN models for
the CAVE; Section 4 analyzes the dynamic behavior of our EFTN model of the CAVE; Section
5 proposes our EFTN models for the NICE; Section 6 gives the Design/CPN implementation of
EFTN models for the NICE; Section 7 discusses the simulation results of EFTN models for the

TCP protocol and the NICE; Section 8 concludes the paper and gives our future research plan.

2 Fuzzy-Timing Petri Nets and Extended Fuzzy-Timing Petri Nets

The main features of Fuzzy-Timing High-Level Petri Nets (FTHNS) are the following four fuzzy
set theoretic functions of time called fuzzy timestamp, fuzzy enabling time, fuzzy occurrence time
and fuzzy delay. A fuzzy timestamp T11(1) is associated with each token and each place, and 1(1) is
a fuzzy time function or possibility distribution giving the numerical estimate of the possibility
that a particular token arrives at time T in a particular place. In FTHNS, arcs (t, p) from transitions

t to places p are associated with fuzzy delays dtp(T)- For simplicity, trapezoidal or triangular

possibility distributions specified by the 4-tuple (Tu, o, T&, Tu) as shown in Fig. 3, are used to

represent fuzzy time functions.

m Th W™ T !

Fig. 3 Trapezoida possibility distribution
The formal definition of FTHNs and the method to compute and update fuzzy enabling
time and fuzzy occurrence time when a transition firing occurs, aregivenin[7]. A Fuzzy-timing
Petri Net (FTN) [11] modd is an unfolded version of the fuzzy-timing high-level Petri Net
(FTHN). We extend FTN by integrating FTN with Merlin's Time Petri Net [5]. We define an
Extended Fuzzy-Timing Petri Net (EFTN) model asa 6-tuple (P, T, A, D, FT, CT), where: (P, T,

A, D, FT) isaFuzzy Timing Petri Net, with the default value of dtp(T) being (0,0,0,0); CT: T -

Q" x Q"x (Q" O) is amapping from the transition set T to firing intervals with possibility: i.e.,
each transition is associated with a firing interval p[a,], where the default interval is 1[0, 0] (a
transition definitely fires as soon as it is enabled). If a transition t is enabled at time instant T, t
may not fire beforetime instant T + a, and t must fire before or at time instant T + 3. Possibility p
0[0,1]. pis 1if transition t is not in conflict with any other transition. p can be less than 1 when
we want to assign different chances to transitions in structural conflict. For example, if transition
tl and transition t2 are in structural conflict, t1 fires with 99% chance and t2 fires with 1%
chance, we assign p; = 0.99 and p; = 0.01. A transition firing itself is an atomic event and takes
zerotime. (CT istaken from Merlin's Time Petri Net [5].)

Now, in EFTN, the fuzzy enabling time g(t) of transition t is computed by (1) =
latest{ T5(1), i = 1, 2, ..., n}, where latest is the operator that constructs the “latest-arrival/lowest-

possibility distribution” from n distributions ([7], [11]), as shown in Fig. 4(a).

TR(T)
1
/ \ .
05 /

: y : >
: 0 1 3 4 5 7 T

-y

Fig. 4 (8) latest{ 1t (1), Ti(1)} shown by heavy line; (b) earliest{e (1), (1)} isshown by the heavy line.

When there are m transitions enabled with their fuzzy enabling times, g(t), i=1, 2, ..., t, ..., m,
and CT(t) = p[a;, Bi], we compute the fuzzy occurrence time o(t) of transition t whose fuzzy
enabling time g(t), as follows: o(t) = min{e(t) O py(o, o B, By, earliest{g(t) O pi (o, o, B;,

B

FTHNSs provide additional information on partial ordered events in terms of their degrees
of possibilities, instead of transforming them into a total ordering. The computations involved in
FTHNSs are basically repeated additions and comparisons of real numbers and are necessary only
for certain finite firing sequences, and need not generate the entire state space. Thus these
computations can be done very fast and thus FTHNSs are suited for estimating the performance of

time-critical systems.

D
)

T

(@ (b)
Fig.5(a) [E, F] = [E, o) n (-0, F] istrapezoid,,., shown by the heavy line, and [E, F] n rrisaso
trapezoid,,, shown by the shaded area. (b) The part of 1, where 1 < fis shown by =, the part of 1, where
T = fisshown by

3 EFTN models for the CAVE

The CAVE has the following three main subsystems [4]: (Fig. 7 shows our EFTN model for the

CAVE. A timed Petri Net modd of the CAVE can befound in [6].)

 Tracker subsystem: which obtains data about the position of the viewer’s head and hand. Since
the viewer wears a head tracker and holds a wand where sensors are located, his position is
detected by the tracker operating at 96 HZ sampling frequency. A tracking sample is obtained

every 10.4 ms when the monitor signal arises.

« Main subsystem: which creates images to be displayed on the walls of the CAVE. There are
four graphic pipelines working concurrently. Each of them is used to render the image on one
wall. The CAVE implementation uses double buffering between the main subsystem and the

display subsystem. While the main subsystem is writing into one buffer, the display subsystem

reads from the other buffer. The buffer swapping is synchronized by a monitor signal at 46 HZ
frequency. Once images for al 4 walls have been rendered, a buffer swapping takes place at
the leading edge of the next coming monitor signal if the display subsystem is also ready to

swap buffers.

* Image display subsystem: which draws the images on the four walls. When the drawings of 4

images are all finished, the display subsystem is ready to swap buffers.

4 The Analysis of EFTN models for the CAVE

* Reduction Rulesfor EFTN

In order to analyze EFTN models, we illustrate two reduction rules ([1], [13]) for EFTNs in this
section. Our reduction rules can reduce the size of EFTN models and preserve safeness, deadlock
and timing properties of EFTN. Applying the two rules shown in Fig. 8 to our EFTN model for
the CAVE inFig. 7, resultsin areduced EFTN model as shown in Fig. 9.

« Behavior of EFTN models for the CAVE:

In Fig. 9, transitions Swap_and_draw and Swap_Signal passed are in conflict. Assume that
transition Generate_Monitor_signal fires at time tand it isimmediately followed by the firing of
transition Swap_and_draw, then the next round of image rendering begins with the firing of
transition use_data_render. In that round, the 1st monitor signa coming at 20.8 ms will be
passed since the image rendering delay is latest(D, .y 1on(T)r Diove 1e{T)r Drencis rign(T)s Drencir oor(T) =
(25.0,37.4,50.0,62.4) ms > 20.8 ms. When the 2nd monitor signal comes at 41.6 ms, the possibility
that transition Swap_and_draw firesinstead of Swap_Signal_passed, is computed as follows:

possibility((10 latest(Drender front(T), Drender 16t(T)s Drender right(T), Drender fioor(T)) C{ 0,0,0,0))
< (mO (41.6,41.6,41.6,41.6) (€ 4, €4, €4, 4)))
= possibility((110 (25.0,37.4,50.0,62.4) [{ 0,0,0,0)) < (0 (41.6,41.6,41.6,41.6)(0.2,0.2,0.2,0.2)))
= possibility((25.0,37.4,50.0,62.4) < (41.8,41.8,41.8,41.8))
= shaded_area/area _trapizoidal (25.0,37.4,50.0,62.4) = 0.424, as shown in Fig. 6.

If transition Swap_Signal_passed fires, the display subsystem will not begin to draw any new
image until the 3rd monitor signal comes. In that case, transition Swap_and_draw can certainly
fire when the 3rd monitor signal comes at 624 ms, since the image rendering delay is
(25.0,37.4,50.0,62.4) ms < 62.4 ms.

A
1

T
250 374 418 500 62.4>

Fig. 6 Possibility of transition Swap_and_draw firesinstead of Swap_Signal_passed

The possibility that transition Swap_and_draw fires instead of Swap_Signal_passed when the
2nd monitor signal comes at 41.6 ms, determines that the delay that the user’s movement being
reflected on the walls is around 104 ms or around 125 ms: possibility(delay = 104 ms) = 0.424,
and possibility(delay = 125 ms) = 0.576.

We use Desigr/CPN [14] to simulate our EFTN model for the CAVE. As shown in Fig.
12, a timestamp origt is attached to each token generated by firing transition
Head Wand_Input. When transition DrawComplete fires, the current time and the original
timestamp (ori gt) of the token will be recorded into a file. We can calculate the delay by
reading the file after the simulation. Our simulation result shows that, the delay is around 104 ms
for 1339 times (42.33%), and around 125 ms for 1824 times (57.67%) in total of 3163 times
transition DrawComplete firing we recorded. The simulation result is consistent with our

possibility analysis.

5 EFTN models for the NICE

The main distributed components of the NICE consist of a garden simulation server, an avatar
repeater for avatar state information, and NICE clients ([2], [3]). A NICE client uses an unreliable

protocol (UDP) to send avatar information (local tracker data) to the avatar repeater and areliable

socket connection (TCP protocol) to send loca avatar’s world-changing messages to the server.
The avatar repeater broadcasts avatar state information by using UDP. The NICE server supports
the garden simulation, updates the world (graden) once receiving an avatar's world-changing
message, and broadcasts the new world state information to all clients by using TCP.

The Information Request Broker (IRB) is the core of all client and server applications in
the NICE. An IRB is an autonomous repository of persistent data that is accessible by a variety of
networking interfaces. A key is a handle to a storage location in an IRB's database. Keys are
uniquely identified across all IRBs. A local key can initiate and accept multiple linkages to and
from other remote IRBs. Any modifications that are made to one key will automatically be

propagated to all the other linked keys ([2], [3]).

The garden server is an IRB with two main keys: an incoming message key and an
outgoing message key. If the local avatar has any action changing the garden (e.g., plant a treg),
the local VE will send a message from the local OUT Key to the server’s IN key by using TCP.
Then the garden server updates the world state and sends the new world state information to each
client’s IN key via the server’s OUT keys by using TCP. The garden world evolves itsdf as the
plant grows, the weather changes, and animals appear. So the server sends each client the new

world state information by using TCP once it updates.

The avatar repeater has a key for each client to hold its avatar-state information. When
clientl updates the local screen (swapping-buffer happens), avatarl's state information will be
sent from clientl to the avatarl-state key on the repeater by using UDP. Another client (e.g.

avatar2) will get the state of avatarl by subscribing to the avatarl-state key on the repesater.

In Fig. 10, we give the EFTN mode for the garden server, avatar repeater and
communication interface of two existing NICE clients communicating with each other, the
repeater and the garden server. Each client sends local avatar’s tracker information to the repeater

by using UDP and the repeater broadcasts it to all other clients also by using UDP. UDP is a

10

simple unreliable transport layer protocol. By using UDP, the sender just sends out the Protocol
Data Unit (PDU) and never retransmits. So we use a transition UDP with fuzzy delay Dypp(t) =
(50,100,150,200) ms to represent UDP channel in Fig. 10, and we assume the data loss rate of

UDP s 1%.

Each TCP transition in Fig. 10 is an abstract of a subnet for TCP protocol. TCP is a
reliable and ordered transport layer protocol. One Protocol Data Unit (PDU)’s loss will delay all
subsequent PDUs. No subsequent PDU can be delivered to the application layer until that PDU is
successfully received. The Design/CPN implementation of our EFTN model for TCP protocol is

shown in Fig. 21. And we explain our TCP model in Section 6.

In the NICE, a local VE (e.g., CAVE) will need local avatar state information, remote
avatars state information, and world state information to render images. The EFTN modd for a
CAVE in the NICE as a distributed component is shown in Fig. 11. When an avatar wants to
change the world, it usualy takes him about 1 second (possibility distribution
(800,1000,1200,1500) ms) to complete his action. During an avatar’s world-changing action, all
of his tracker data used for updating local screen, will be sent to the server by using TCP. An
avatar may change the world for 2~3 times per minute and the local screen may be updated for
16~24 times per second (16 times/sec if the image rendering delay < 41.6 ms each time, 24
times/sec if the image rendering delay isin theinterval (41.6, 62.4) ms each time). So, we assume
0.2% of the tracker data used for updating local screen may indicate that local avatar wants to
change the garden. (In Fig. 11, when the avatar is not already in an world-changing action, place
ChangeWorldOrNot has two output transitions, the possibility of firing transition Change is
0.002, and the possibility of firing Not_Change is 0.998.) After we put the communication
interface and internal structure of distributed CAVEs together, we can analyze the network effects

on the NICE and the dynamic performance of the NICE.

11

@Button_l nput
sl el)

(e, €1, €1, €1)
Button_Press

Dheadwarﬁfloﬁlra*er T)
Tracker DataCome
Generate_Monitor_signal
Monitor_signal

Tacke® Monitor
Tragker_Obtain Data [€3,€3]
Signal_passed

Data ready

convert_and_transfer (10.4,10.4,10.4,10.4)

Tracker_Got_Data
TrackerdataCome

Ready_render ‘@ Data

w o
Ready _render .

begin_render

begin_render_froptwal
begin_render_floor

render_front begin_render_rightwall

render_right

Drenda_frum(T)

render_floor
D render_| efl(T) -

D render_ri ghl(T)

D render_fl uur(T)

complete re completgérender_floor

der_frontwall complete render_leftwall complete render_rightwall

Generate_Monitor_signal

SwapMB8nitor

(20.8,20.8,20.8,20.8)
Swap_Signal_passed

drawing_completed

ready toswap (@

Fig.7 An EFTN model for the CAVE, where the timestamps of tokens arriving in Head, Wand,
Button_Input, TrackerMonitor and SwapMonitor at initial state are T,,(T) = (D) = Thuon ma(D = (0,0,0,0),
T ascemonior 1) = (10.4,10.4,10.4,10.4) ms, and TL,.0n(T) = (20.8,20.8,20.8,20.8) ms. The delay for Head
and Wand data arriving at the Tracker iS D, 10 el 1) = (50,50,50,50) ms. The delay for converting and
trangferring tracker data to the Unix workstation is D,(t) = (10,10,10,10) ms. D_.. ;ox(T)s Diager (D),
D e (D) @10 D, 0o(T) are the fuzzy delays of rendering images for front wall, left wall, right wall, and
the floor. Assume D, 1o(T) = (25.0,37.4,50.0,62.4) ms, and D, (1) = Dooyer ign(1) = Do 10T =
(10,20,30,35) ms, since the image on the front wall is usually more complicated than the ones on other
walls. The delay for drawing images on each wall is D, 1ou(T) = Dyay1a(T) = Dyan gl = Dy 10ar(T) =
(2,2,2,2) ms, and €3 = €4 = 0.2 ms (a short time period that a monitor signal lasts).

12

Ne - W

dal(t) latest{dal(t), dan(t)}

- th

(b)

Fig. 8 (a) Post-fusion (post-fuse transition tawith thl, ..., tbn); (b) Paralld fusion of places.

o)HeadWandButton

(€1, €1, €1, €1) Generate_Monitor_signal

HeadWand_I nput Monitor_signal
D headwand to_tracker! (T)

Tracker DataCom

©

Tragker_Obtain_Data

Tacke® Monitor
[€3,£3]

Signal_passed (10.4,10.4,10.4,10.4)

convert_and_transfer Data ready
TrackerdataCome
Tracker_Got_Data

Ready_render

use_data render

I atest(Drer\der_tront(T) 1 Drenderileﬁ(-[) 1 enderiright(-[) 3 Drenderifloor(-[))

complete_render_4walls Generate_Monitor_signal

Swap_signa Swaplonitor

[0.0] l
Iateg(Ddrawjront(T) Ddrawileft(-[)1Ddrawiright(-[)1Ddraw7floor(-[)) [84184] (20-81 20. 8120- 8120-8)
Swap_Signal_passed

Swap_and_draw

complete_draw_4walls

drawing_completed

Flg 9 The reduced EI_—rN mOdeI’ Where Iatea(Drmderifront(T)’ Drenderflefl(T) 1 Drmderfright(T)’ Drenderffloor(T)) =
latest((25.0,37.4,50.0,62.4), (10,20,30,35), (10,20,30,35), (10,20,30,35)) = (25.0,37.4,50.0,62.4) ms, and
Iatea(DdraNJront(T)’ DdraNileft(T)’ DdraNJight(T)’ DdraNiroor(T)) = (2’2’2’2) ms.

13

NICE Client 1

NICE Garden server

ouT TCP

world_change

O

Changed

world_evolve
Time_to_evolve
Dev(T)
Ev-Timer

NICE avatar Repeater

0.99[0,0]

ICE Client 2

ouT TCP UDP [«

0.01[0,0]

Los
send_avatar2- state .01[0,0]

go! wmérl_sae

01[0,0]
ost

J
‘/Dw UDP DUDP(T)
Q 099000 9

receive avatarl_stéte

Dt_avatar2_state

broadcast

send_to_avatar2

Dsend_to_a/atarl

broadcast

Fig. 10 An EFTN model for 2 existing NICE clients communicating with each other, the repeater and the
server, where the delay of UDP channel isD, (1) = (50,100,150,200) ms, the world evolvesin the interval

D,,(1) = (10,60,180,300) sec.

14

eadWandButton

(e1 1 €1, 1) Generate_Monitor_signal .
Head Wand Input Tacker_Monitor
- - Monitor_signal

D heajwanditoitramer(-[)
Tracker DataCom

Signal_passed (10.4,10.4,10.4,10.4) ingWorldChangeAction

ChangeWorldOrNg

send_avatarl_state
Tragker_Obtain Data
convert_and transfer Data ready Tracker_Data No

TrackerdataCome

O)

IN

receive_World_state

Dconvert(T)

Tracker_Got_Data WorldData

emoteData Got_new_avatar2_daa

Ready_render receive_avatar2_state

Se_data render
| aleSt(Drender_front(T), Drender_| eft(T), ender_ri ght(T), Drender_ti oor(T))

complete_render_4walls Generate_Monitor_sigral

. Swi onitor
[00] Swap_and_draw Swap_signal ¥

| aIGSt(Ddrawifront(T) Ddrawj eft(T)y Ddra\wﬁﬂ ght(T)r Ddralw,ﬂ OOY(T))

[e4.64] (20.8,20.8,20.8,20.8)

conmplete_draw_4walls Swap_Signal_passed

drawing_completed

Fig. 11 TheEFTN model for aCAVE in NICE asadistributed component

6 Design/CPN implementation

6.1 Global Declaration Node and Fuzzy Time Function

Fig. 15 shows the global declaration node of the Desig’/CPN implementation for our
EFTN models of the NICE. To use Design/CPN for implementing our EFTN models, we need a
funct i on to generate fuzzy delays in trapezoidal possibility distributions. Given a fuzzy delay
D(1) = (a,b,c,d), weuseafuncti on FUZZY(a, b, ¢, d) to generate a delay value in trapezoidal
possibility distribution (ab,c,d). In functi on FUZZY(a, b, c, d), arandom value at i ne in
the interval [a,d] is generated first. Since the possibility is 1 in the interval [b,c], at i me will be
picked up as the delay valueif at i ne isin the interval [b,c]. If ati ne isin the interval [a,b) or

(c,d], we compute the possibility D(at i ne) in the trapezoidal distribution and generate a random

15

valuein (0,1). at i me can be picked up as the delay value only if D(at i ne) = the random value

in (0,1). Repeat the procedure until a delay value can be picked up.

6.2 Design/CPN implementation of EFTN models for the NICE

Fig. 12 shows Design/CPN implementation of our EFTN model for a CAVE as a
distributed component in the NICE. And Fig. 13 shows Design/CPN implementation for the
EFTN model of garden server and communication interface between two NICE clients and the
server.

We want to analyze remote avatar’s display behavior on local screen and the response
time from the time that a client sends out a world_changing message from its OUT key to the
time that the client receives the world_changed response from the server via the IN key. So, in
Fig. 12, a timestamp origt is attached to each token generated by firing transition
Head Wand_Input. The token (tracker data) will carry the timestamp ori gt when it is used to
draw images on the local screen and it is sent to the avatar repeater and broadcasted to all other
clients. A VE (e.g., CAVE) as a distributed component in NICE, will need local avatar state
information, remote avatars state information, and world state information to render images. So,
in Fig. 12, transition DrawComplete fires by using a token carrying local tracker data's original
timestamp (ori gt) and remote tracker data’s origin time (ori gt k). By recording ori gt,
ori gt k, and the timestamp that transition DrawComplete fires, remote avatar’s display behavior
can be clearly evaluated. Section 7 will give the detail of the analysis.

Similarly, in order to analyze the response time for a client’s world_changing message,
we attach a timestamp sendt to each token sent to the client’s OUT key (e.g., places 10ut, 20ut)
when the transition Sendlt fires. And we record the input token's timestamp sendt, transition
ReceiveWorldEvent's firing time, and the ID of the world changing event’'s initiator

(world_changing avatar’s D), when transition ReceiveWorldEvent fires. As we'll see in Section

16

7, the characteristic and bottleneck of the response time via the TCP channd can been easily

captured.

6.3 Design/CPN implementation of an EFTN model for TCP Protocol

The Transmission Control Protocol (TCP) is ardliable and ordered transport layer protocol. The
data transmission in TCP is basically a sliding window mechanism, where the window size is
advertised by the receiver. Fig. 14 shows a Design/CPN implementation of an EFTN model for

TCP protocol. Thefeatures of TCP modeled in Fig. 14 are asfollows:

¢ Window size advertised by the receiver: assuming that the receiver’s window size is 64K
initially and that each data unit is 1024 byte, for simplicity, we initialize receiver’s window
size as 64. An ACK message sent by the receiver is composed of a sequence number, the
sequence number of next data unit that the receiver is expecting, and receiver’'s available
window size. The receiver’s available window size tells the sender how many bytes the
receiver can accept.

¢ Congestion window: the sender uses 2 windows to determine how many bytes it can send.
Oneistherecever advertised window, and the other is the congestion window that the sender
uses to detect network congestion. If the number of bytes stored in the sender’ s buffer waiting
for ACK < min (recei ver_adverti sed_w ndow, congestion_w ndow), the sender
can keep on transmitting new coming data. Otherwise, no new data can be transmitted.

¢+ Slow start and Congest Avoidance: the sender’s congestion window is initialized as 1 data
unit. The sender has a parameter: t hreshol d, initialized as 64. Once a data unit in the
sender buffer is time out before the sender receives an ACK message for it, the sender sets:
congesti on_w ndow =1 and t hreshol d = max (1, 0.5*(min(congesti on_w ndow,
recei ver_w ndow))). Once a data unit in the sender buffer has been acknowledged, the

sender will grow the congestion window. At that time, if congestion_w ndow <

17

t hreshol d, then the sender is in the slow start mode and congestion_w ndow =
congest i on_w ndow+ 1; if congestion_w ndow> threshol d, then the sender is in
the congest avoidance mode and congesti on_w ndow = congesti on_w ndow + (1 /

congest i on_w ndow).

Delayed ACK: the receiver will not send an ACK right after a data unit is received. An ACK
corresponding to a data unit i will wait for 200 ms before being sent. However, if the ACK for
data unit i+1 comes when ACK for i is waiting, the receiver will cancel ACK for i and send
A for i+1 immediately. Also, when an out-of-order data unit arrives, the receiver will
discard the data unit and send an ACK immediately to tel the sender which data unit the
receiver is expecting.

Retransmission timer and persistence timer: when a data unit is sent, a retransmission timer is
started. If the retransmission timer expires before the data unit is acknowledged, the sender
will resend that data unit. Most TCP implementations use r et ransm ssi on ti meout =
RTT + 4 * D where RTT isthe best estimate of round-trip time and Dis the estimation of
standard deviation. The retransmission timer should be dynamically updated. But for
simplicity, we set it to 550 ms in our model. The persistence timer is used to prevent the
following deadlock: the receiver advertised the receiver window as 0, so the sender will stop
transmitting and wait for the receiver to update the receiver window. Later, the receiver
advertises a larger available window size. However, this ACK message is lost on the way.
Then the sender and receiver will wait for each other. To prevent this deadlock, the persistent
timer will be starter once the receiver advertised the window as 0. If the persistent timer
expires and the receiver window is still 0, the sender will send the receiver a probe. Once the
probe reaches the receiver, the receiver will immediately send an ACK with the current

receiver-window size.

18

‘pus

(((r114001U) So\omo_uﬁw
W\ v Wi\ v dusy Burisexau y
W3\ v 16110 Buiisayau

W1\ v 16110 Bu |i)sayau o
¢ j991u)Indino)
)

‘pus
(((ssuodsaup |1om) 1IN0 850 |2)

((

U\, v p1 Buriiseyau
W1\. v AU 118A 1999 Bu 111sexau
.1\, v Ipuas Builisexau
‘asuodsa ip [1owm) Ind 1o)

8'0z2+®d

3

meiq
ul
11499 1u, puadde uado = 1|14001U [eA (PIM*36110°%316110)
(Jau1l = dusal |ea 3
RIS
uo 1108 @
S(pm X136 140 3116 110 ‘'uy) Indu °

dems
Apeay £

Me.q v.ivaiv
a1a|dwo

0'Z+@(PIM}3B110*%11B110)

MeIgpuy
dems

(pPim>}3B110*¥116110)

Tp+@2
Japuay
@ vivanv

" v_ (€'29'6°67 € LE'6 VZ)AZZNA+D (MM 16110 4116110)
Lasuodsa ip |Jaw, puadde uado = ssuodsaip [iom [eA 802+02 1opuay @
_)
()au 11 = au119n 19991 ﬂ_m\ﬂ Japuay Apeay
uo 1108 Opbuosy) 3
((p1ipuss ‘pn) indu
\ [

a

Oondhion) eieat

ZanI20a.T

DAY

(16110 u)

w:w>mﬁ_ho\5
DAY

(prpuas‘pm)

(16uo0'u)

alelaualb
Q) Apeayy

Kidwsa as|o

SM,T uayl
20°0 => (0'0T"0:Q)[e2IPURINGD 4!
uonay
abueydvuels

paysiui4 uonayabueyo
uonay prombuiing

uabpne

5 uonovabueyd
PI/OMUIION

InoawiL
uonoy

Iejeny[es0
ENNCLEN

lajsuel]
HaAuU0D

elRQUIEIJO
19xoel]
[o0<16110]

(Qau)y, 5
uo 119e 0T+@?
‘16110’
ind 1no uonng
pueHpuem

lient

icec

f EFTN model for aN

10N O

Fig. 12 Design/CPN implementat

19

|
|
|
|
|
|
|
|
a.ooooom,o,.
|
|
|
|
|
I
I
|
I

\\\\\\\\\\\\\\\\\\\\\\\\\\ q
uo |1oe edan

Ez%ﬂ&

2dan

(0°002°0°0ST'0°00T‘0°09)AZZNA+®

. ,4 2zdoL

1
I
I
I
I
I
I
I
I
I
2 I
I
I
I
I
I
I
I
I
I
I
I
I
I

du
1dan

|

|

|

|

|
Jejeleny

TieRAY
w>_mrmh

|
|
|
|
! !
Jaxoel.
, N_Mﬁﬂ , (0°002°0°0ST'0°00T'0°08)AZZN4+®
7 iseopeolg 7
! !
W , L#T2d0L zlereaypuss E | aL
|

, LAy TzdoL [
| olpyss |
, las I
! |
| noz
| 1ualD IOIN
| am
| JENECITR
| TieleAY

1seopeolg |
|
I

ANIDIYIT

| Joreaday Jereny

0°00Z ‘0°0ST'0°00T'0°0S)AZZN4+®

9#HCTdOL

¢TdoL

Tleleaypuss

[
e Sake) [reon | foos
uo!
\35 Tdan s

Eﬁm .f,.,.
. 0'002 ‘0°0ST'0'00T'0'08)AZZN+
prom | (Pribuotpm) () ® |
,

puss

16 110 3nd Ino

00008T ‘0'00009 "0'0000T)AZZNI»@?°

aL
|
#11dOL| [sH minot “ﬂ

pribuouy) @ TTdOL ﬁ, am

pm am TualD 32IN
19MI9S uspre |

20

Tc

j000101d 4D 1 04 jepow N 143 Jo uonesue dwi NdOubisea #T ‘B4

1

DataFrom
E In(_Application DATA

P
n+l
Attach
TCPHead @ INTXDATA
(n.p)
(n.p)
INT WIN

o o
Application

DATA

1
o s
o - = INT
aw if CPN'randreal(0.0, 10.0) < 9.9
then 1'(n,p,ptype) a
aw+1 [aw<min(wr, floor(wc))] else empty an
INTYDATAXTYPE INTXDATAXTYPE | @+l
wr Send (n.0.D)@+20.0 Transmit N ax-1
Packet Packet i
n+1@+20.01 (n.p.ptype)
wait INT @+FUZZY(10.0,60.0,110.0, 160.0)
(n.p.pYQe)
we p@-+wait-20,0 PPIE*200 ,
1.0 REALWIN 5500 [a(r[:;ya?seo: 2
(n=uw+ Receive
andalso PDU
h »| Resend | @+FUZZY(10.0,60.0,110.0, 160.0) (@nuw+14n@+20.0
- Transmit nuw+1,aw) &
q pif(floor(we/ 2.0), wr div 2)) Acknow.
[n<b] (@nnv) (n.p)@+20.0
INTSORTIXW INTXDATA
GetOut Receiver
Buffer . eal(0.0, 10.0) < 9.9 Buffer
(b,bw)
(b.bw Get (nw) (an, if+1, aw-1) @+5.0 K
B @n,uw+1, aw
PDU New INTXINTXWIN @+29.0 (K+l
ACKed A INT NextTo
m (Dlvrj:')x IN oW (w@s70 1
Win gy win fani<an] v E INT
Receiver ACK e
A w Receive e
w o=th] Acknow. INTXINTXWIN
Linear (annw)
K >| Congest (nw) €
we [an<=ani] NoMore
Network DelayTimer
1oh Start
" ;
we+(L.0fwe) Persistent e@+200.0 an,nw
p.P)@+9.0
(an,n,w)
Delay
Timeout Delayed
E ACK
(an,n,w)
wr amn.W)
end NOACK
DelayedACK Tosend
[wr<>0] [wr=0]
Sender wr
Receiver

TCP Protocol

color INT = int tined;
color WN = int;
col or STAWP = real tined;

col or AVATARI D = | NT;

color WD = product INT * STAMP * AVATARI D
color WOL = list WD ;

col or DATA = WD ;

color TYPE = with D| P ;

col or | NTxDATA = product | NT * DATA

col or | NTXDATAXTYPE = product | NT * DATA * TYPE;
col or INTXINTXWN = product INT * INT * WN;

color INTXWN = product |INT * WN;

color E=wth e tined;

color TD = product |INT * STAMP;

col or ALLDATA = product STAWMP * |INT * STAWP * WDL;
color REALWN = real tined;

var n, nO : |NT;

var p,str : DATA

var aw, w,wo,k, w, th, bw: WN;
var we : REALW N,

var b, uw, an,ani, anO : |NT;

var ptype: TYPE;

var wkl : WDL;

var wait, pt : TIME

var id : AVATARI D;

var ad : ALLDATA;

var td : TD,

var origt, origtk, oldt, origw, sendt : STAWP;
var tn, tk : |NT;

var wd : | NT;

var ws, wk : WD;

fun FUZzZY(a: real,b: real,c: real,d: real) =
| et
val atine = CPN randreal (a,d);
in
(if atime >= b andalso atinme <= c¢
then atine
else if (atine <b)
then if (a<b)
then if ((atinme-a)/(b-a) >= CPN randreal (0.0, 1.0)) then atine
el se FUZZY(a, b, c, d)
else if (atine = a) then a
el se FUZzZY(a, b, c,d)
el se
if (d>c)
then if ((atime-c)/(c-d)+1.0 >=
CPN randreal (0.0, 1.0)) then atine
el se FUZzY(a, b, c, d)
else if (atime = c) then c
el se FUZzZY(a, b, c, d)
)

end;

Fig. 15 Globa Declaration nodein Design/CPN implementation

22

7 Simulation Results

7.1 Remote Avatar’s Display Behavior on Local Screen

(tn,origt)
A dld

(tn,origt)

(tk,origtk)

™
(0,0.0)

Fig. 16 Theremote avatar data receiving without using the filter
Unreiable protocols (e.g. UDPs) are used for the transmission of avatar state information (remote
tracker data). That is because 1) The loss of one tracker data is usually followed shortly
afterwards by newer ones; and 2) Unrediable protocols have a lower latency and utilize lower
bandwidth than reliable protocols. However, UDP protocal is unordered. Using unordered remote
tracker data will make the remote avatar jump back and forth on the local screen. Originally, a
NICE client uses remote avatar tracker data in their arriving order. Fig. 16 shows how the
transition ReceiveAvatar2 works in the original design. Fig. 17 shows the time of avatar2's
original movement and the time that movement is displayed on NICE clientl’'s screen in the
original design. We can see that the remote avatar’s display may jump back and forth. To avoid
the jumping back behavior, the NICE currently uses a filter to accept remote avatar data in
increasing order. As shown in Fig. 12, the transition ReceiveAvatar2 works as a filter. Fig. 18
shows the display behavior using the filter. Now the jumping back phenomenon is eliminated.
However, one early arriving remote avatar tracker data will make the filter discard all remote
tracker data that are sent before, but received later than that early arriving data. From Fig. 18, we
can see that the display of the remote avatar is not very smooth. Fig. 19 shows the distribution of

the delay from the time that a remote avatar has a movement to the time that remote tracker

23

information is displayed on local screens. And Fig. 20 shows the distribution of the time that

remote tracker data lags behind the local data.

To display the remote avatar’ s movement more smoothly, we can use a buffer to store the
incoming remote avatar state information sent after the last one used for local display. And we
use the remote avatar’s state information in smooth gap. Fig. 21 shows the improved strategy
using a buffer for remote avatar tracker data. Once a new remote tracker data comes, if its
sequence number is greater than the last one's used for rendering images, the functi on
inserttd (as shown in Fig. 22) inserts the new data into the buffer and keeps the list of
sequence numbers of the remote tracker data in ascending order in the buffer. When it is time to
render new images, we pick up the remote tracker data in the middle of the list from the buffer.
Fig. 23 shows that the display of the remote avatar is much smoother using the improved strategy

than using thefilter.

5700 s
5200 -}X.r
4700 J}""
4200
3700 J{'f
3200 f
2700 ”'f
2200 /
1700 f
1200 /',»"’/

700

K

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Time [ms] that avatar2's original movement

clientl's screen

Time [ms] that avatar2's movement displayed on NICE

200

Fig. 17 The damulated display behavior of aremote avatar on the local screen without using the filter

24

Time [ms] that avatar2's movement displayed on NICE
clientl's screen

Fig. 18 The simulated display behavior of aremote avatar on the local screen with using the filter

5700

5200

4700

4200

3700

3200

2700

2200

1700

1200

700

e

200

0

500

1000

1500

Time [ms] that avatar2's original movement

2000

2500 3000 3500

4000

4500

5000 5500

90

80

~
o

2]
o

2]
o

N
o

Frequency

w
o

N
o

10

|

A

I =]

250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480

Delay time [ms]

Fig. 19 The digribution of the delay from the time that a remote user has a movement to the time that
movement is displayed on the local screen in simulation.

25

130 —

120 M —
110
100
90
80

Frequency

40
30

10

70
60

! m

Fig. 20 Thedistribution of the time that remote avatar’ s display lags behind loca avatar in simulation

=

150 170 190 210 230 250 270 290 310 330 350 370
Lag time [ms]

(tn,origt)

Receive
A dld

I if th > tk

Remote ™\then inserttd((tn,origt), tdl)
TOL Avatar)
(tk,origtk)

tdl

390

resttd| tdi
e
FindNext (tk.origtk)
To use
C D
td
e \
TD"Remote ™ (9,0.0) \
AvatarData \
\
tk,origtk) . A\ _
input (tdl, tk, origtk);
. output (td, resttdl);
tk,origtk) action
| et
Render val nexttd = findclose((tk,origtk),tdl)

In

end;

((nexttd, removel esstn(nexttd, tdl)))

Fig. 21 Improved strategy: use a buffer for remote avatar state information

26

color TD = product | NT * STAW
color TDL = list TD
var td, tdl : TD
var tdl, resttdl, tdll : TDL
fun md(nunber: int) = if nunber nod 2 = 0 then nunber div 2
el se nunber div 2 +1
fun greater((tn,_): TD, (tk,_): TD) =if tn >tk then true else false
fun muchgreater((tn,_): TD, (tk,_): TD) = if tn > (tk+2) then true else false
fun findclose(td, tdl) =
| et
val nunbertd = length(tdl)
in

(if nunbertd = 0 then td
else if (nunbertd = 1) andal so muchgreater(hd(tdl),td) then td

else nth(tdl, md(nunbertd) - 1)
end
fun removel esstn(_, nil) = ni
| removel esstn(td, tdl :: tdll) =if greater(td,tdl) then renovelesstn(td, tdl1)

else tdl1 ;
fun inserttd(td, nil) = [td]
| inserttd(td, tdl ::tdl1) = if greater(tdl,td) then td::tdl::tdl1
else tdl::inserttd(td, tdl1)

Fig. 22 Definition of functions used in improved strategy for remote avatar state information

5700 t
L
o ///
Z 5200
c
= o~
z
3 4200
@
Z < 3700 ’“"“"
= c 37
S 5 3200
2 Pl
E 2 2700
35 Ar",/
55
8 2200 ‘a"‘f,
>
©
= 1700 /
=
% 1200
E J/J
© 700
£
£ kg

200 T T T T T T T T T T

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Time [ms] that avatar2's original movement

Fig. 23 The damulated display behavior of aremote avatar on the local screen with using buffer

27

7.2 Test of TCP protocol

We tested our model for TCP protocol by giving a data unit to the TCP sender for
transmission every 50 ms, and every 100 ms, respectively, and recording the delay from the time
that the data unit is passed to the TCP sender to the time that the TCP recever ddivers the data
unit to the application. Our simulation result is consistent with the experimental results in [9],

which is obtained by monitoring the network delay on internet.

¢ Case l: givethe TCP sender adata unit every 50 ms:

160

140

120

100

Frequency
o]
o

(2]
o

I
o

20

S L1 TTTT IR ITTT! | | P
50 110 170 230 290 350 410 470 530 590 650 710 770 830 890

Delay times [ms]

Fig. 24(a) Delay distribution for data unit coming every 50 ms

1000

900

800

700 %

600

F
}
500 i
400 i
it
i

e, 3

Delay time [ms]

300

i
i
i
i

T
1

200

100 3

0 T e
1 38 75 112 149 186 223 260 297 334 371 408 445 482 519 556 593 630 667 704 741 778
Data unit sequence number

Fig. 24 (b) History chart for each data unit (for data unit coming every 50 ms)

28

Asshown in Fig. 24 , it is obvious that the TCP has a slow start and one data unit’s long delay
will delay all subsequent data units after it starts. TCP's reliable and ordered behavior greatly

increases the average network latency and jitter.

¢ Case 2: givethe TCP sender adata unit every 100 ms:

150
140 H
130 1
120 BInIR
110 HHH
100 HHH
90 HHH
80 HHH
70 HHHH
60 HHHAH
50 HHHAH
40 HHHAH
30 HHHAH

20 HHHHH
10 +—HHHHHHH
0 DI:IDEIDEID 0000 =cf0ocdfododolso@

29

Fig. 25 (a) shows that decreasing the traffic to 1 data unit every 100 ms makes the delay
distribution very similar to UDP's delay distribution (50,100,150, 200) ms. However, Fig. 25 (b)
shows that 1 data unit’'s long delay (because of loss and retransmit), still greatly delays the

subsequent data units. Also the slow start till exists.

7.3 Response Time via TCP channel

By using the method described in Section 6, we can analyze the response time for a

client’sworld_changing message.

—e— Avatarl —= Avatar2

1350

1250 %
\

o f
I ﬁtk\\ H
- B T
- \

250

7‘5‘

/I‘
%

Delay [ms] until clientl received the response from
the server

150 T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Time [ms] that a client sends aworld-changing message to the server

Fig. 26 History chart of the response time (from time that a message is sent out by client1 (or client2) to
time that client1 get the broadcasted response from server via TCP channel) in simulation.

Fig. 26 shows the history chart recorded at clientl's site for the NICE with 2 clients.
Avatarl has 3 world-changing actions starting around 125, 4763, and 10338 ms, respectively.
Avatar2 has 3 world-changing actions starting around 2371, 4326, and 11003 ms, respectively.
Each action takes around 1000 ms. We can see the effects of TCP's slow start. Also, avatarl and

avatar2 tried twice to change the world at the same time, one after 4763 ms, the other after 11003

30

ms. For the first time (after 4763 ms), a long delay happens on the TCP channel from client2’s
OUT key to the server’s IN key. If two data are sent from clientl and client2 to the server at the
same time and client2’'s data arrives much later than clientl’s, each one of client2' subsequent
data arrives at the server later than clientl’s corresponding data (the data sent from clientl at
almost the same time as client2). Then the response for each of cleint2’s data will be behind the
response for clientl’s corresponding data, in the queue of responses from the server to clientl. So
the response for each of client2's data, arrives at clientl’s IN key later than the response for

clientl’s corresponding data.

For the second time (after 11003 ms), long delays happen on the TCP channel from the
server’s OUT key to clientl’s IN key after 11200 ms. The response for both of clientl and

client2's data are ddlayed.

To create more traffic on TCP channéls, we run the simulation for 5 clients. Fig. 27
shows the history chart recorded at client1’s site for the NICE with 5 clients. More obviously than
in the case of 2 clients, the response times for all avatars' world-changing activities have the same
trend at clientl's site, if it happens that all avatars want to change the world at the same moment
(eg., arround 78000 msin Fig. 27.) A data lost on the TCP channel from the server’s OUT key to
aclient’s IN key will not only cause long delay for clientl receiving response for one avatar's
world-changing activity, but also postpone clientl receiving response for all avatar’ world-
changing activities. The TCP channel from the server's OUT key to a client’s IN key may get
congested when the number of clients is increased and all avatars happen to try changing the

world at the same time. In this situation, it becomes a bottleneck.

31

‘ —*—Avatarl —= Avatar2 —&— Avatar3 —*- Avatar4 —o— Avatar5

&
1600

1400

—0— 00— ¢
—
/

1200 \

1000 -+

800 - é 3
L

X

m I SE
¥l Rl

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000

fai=
/

Delay [ms] from the message sent out to clientl
received the response from the server

200

Time [ms] that a client sends a world-changing message to the server

Fig. 27 History chart of the response time for the NICE with 5 clients

8 Conclusion and Future Work

CVEs demand high requirements on network delays and jitters, so that remotely distributed users’
collaboration will not be disturbed. By using reduction, simulation, or occurrence graph on our

EFTN model, the network effects on CVES can be easily evaluated.

Our EFTN models for the CAVE and NICE and the analysis of our EFTN models for the
NICE, indicate that EFTNs are powerful to specify and verify VRs. EFTNs can capture the
temporal uncertainties in CVEs. By simulating our EFTN models, we can analyze the network
effects on CVEs and the dynamic performance of CVEs.

In Section 4, we show a simple example of possibility analysis of our EFTN model for
the CAVE. EFTN models can give information on partial ordered events in terms of their degrees
of possibilities. The possibility analysis is based on mode checking on transition firing sequences
[11] or occurrence graphs. The possibility analysis of our EFTN models for CVESs is to be

included in our future paper.

32

The simulation indicates that TCP's reliable and ordered behavior greatly increases the
average network latency and jitter. Thus, it is desirable to design a new transport layer protocol
which is suitable for transmitting world state information with shorter latency and lower jitter
than TCP. We plan to propose new protocols, model and analyze theirs performance and effects

on CVEsin our future paper.

ACKNOWLEDGEMENTS

We sincerely thank Robert Kenyon for explaining CVESs, Jason Leigh and David Pape for
clarifying CVE implementation details, Andrew Johnson and Dan Sandin for discussing problems
that exist in CVEs, and all members of the Electronic Visualization Laboratory for providing

valuable comments on our work.

References

[1] E. Juan, J. P. Tsai, T. Murata, and Y. Zhou, “Reduction Methods for Real-Time Systems Using Delay
Time Petri Nets,” Technical report, EECS Dept., University of Illinois, Chicago, March, 1999.

[2] M. Roussos, A. Johnson, T. Moher, J. Leigh, C. Vasilakis, C. Barnes, “Learning and Building Together
in an Immersive Virtua World,” To appear in Presence vol. 8, no. 3, June, 1999.
[3] A. Johnson, M. Roussos, J. Leigh, C. Barnes, C. Vasilakis, T. Moher, “The NICE Project: Learning

Together in a Virtual World,” in the proceedings of VRAIS '98, Atlanta, Georgia, Mar 14-18, 1998, Pp
176-183.

[4] D. Pape, “CAVE user’s guide,” Electronic Visuaization Laboratory, University of Illinois at Chicago,
Dec. 1996.

[5] P. Merlin, “ A study of the Recoverahility of Computer Systems,” Ph.D thesis, Computer Science Dept.,
Univerdty of California, Irvine, 1974.

[6] R. Mascarenhas, D. Karumuri, U. Buy, and R. Kenyon, " Modeling and analysis of a virtual redlity
system with time Petri nets,” Procs. 19th Int. Conf. on Software Engineering, pp. 33-42, April 1998,
Kyoto, Japan.

[7] T. Murata, "Tempora Uncertainty and Fuzzy-Timing High-Level Petri Nets," Invited paper at the 17th
International Conference on Application and Theory of Petri Nets, Osaka, Japan,, LNCS Vol. 1091, pp.
11-28, Springer-Verlag, New Y ork, June 1996.

[8] T. Murata, "Petri Nets Properties, Analysis and Applications,” Proceedings of the IEEE, Val. 77, No 4,
April, 1989, pp. 541-580.

33

[9] K. Park, and R. Kenyon, “Effects of Network Characteristics on Human Performance in a Collaborative
Virtual Environment,” Proceedings of IEEE VR "99 , Houston TX, March 13-17, 1999.

[10] T. Murata, T. Suzuki and S. Shatz, "Fuzzy-Timing High-Level Petri Nets (FTHNs) for Time-Critical
Systems” in J. Cardoso and H. Camargo (editors) "Fuzziness in Petri Nets' Vol. 22 in the series
"Studies in Fuzziness and Soft Computing” by Springer-Verlag, New Y ork, pp. 88-114, 1999.

[11] Y. Zhou and T. Murata, “Petri Net Model with Fuzzy-Timing and Fuzzy-Metric Temporal Logic,” to
appear in the special issue on fuzzy Petri nets: concepts and intelligent system modeling, International
Journal of Intelligent Systems, 1998.

[12] Y. Zhou and T. Murata, “Fuzzy-Timing Petri Net Model for Distributed Multimedia Synchronization,”
in the Procs. of the 1998 IEEE International Conference on Systems, Man, and Cybernetics (SMC’ 98),
LaJolla, Cdlif., Oct. 12-14, 1998.

[13] Y. Zhou, T. Murata, and J. Tsal, “Reduction Methods for Real-Time Systems Using Fuzzy Timing
Petri Nets,” Technical report, EECS Dept., University of 1llinois, Chicago, 1999.

[14] K. Jensen, and Design/CPN group, “Desig/CPN Online” Department of Computer Science,
Univerdty of Aarhus, Denmark . Online: http://www.dai mi.au.dk/designCPN/.

[15] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Virtual Reality: The Design and Implementation of
the CAVE,” in Proceedings of SIGGRAPH '93 Computer Graphics Conference, ACM SIGGRAPH,
August 1993, pp. 135-142.

[16] T. A. DeFanti, D. J. Sandin, and C. Cruz-Neira, “A "Room' with a "View',” |EEE Spectrum, October
1993, pp. 30-33.

Table of Contents

L INEFOOUCTION. ...tttk bbbt b e bt b e ns 1
2 Fuzzy-Timing Petri Nets and Extended Fuzzy-Timing Petri N€ets........cccocvveevvee e v, 4
3 EFTN MOdESTOr the CAVE.o e 7
4 The Analysisof EFTN modelsfor the CAVEoooiiiiii e 8
5 EFTN MOAESTOr theNICEooiiiiiiee e 9
6 Design/CPN implemMentalionccveeiiiie it et s e e s e s tee e e reeenes 15
6.1 Global Declaration Node and Fuzzy Time FUNCLiON............coeeviieicee e 15
6.2 Design/CPN implementation of EFTN modelsfor the NICE...........cccccooveeieeiiiee v, 16
6.3 Design/CPN implementation of an EFTN model for TCP Protocdl............cccovveneeeee. 17
7 SIMUIBLION RESUILS. ..ottt ne s 23
7.1 Remote Avatar’s Display Behavior on Local SCreenccceevcveecieevciee v 23
A2 =< A0 B IO o o (o (0w o I 28
7.3 Response TIMeViaTCP Channelcoociiiiie i 30
8 Conclusion and FULUIE WOIKccuiiiiriiiiiiieesie et 32
ACKNOWLEDGEMENTS ...ttt ettt et et e e nbae e s nbee e snreaens 33
REFEIEICES ...ttt h ettt b ettt n e 33

35

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.

Table of Figures

1. A picture of the Cave Automatic Virtual Environment (CAVE).......ccccevveeicveevcieeeennen. 2

2. (@) Jim (an avatar) is handing a flower to Eddie (another avatar); (b) A child is interacting
With @n avatar INTHE CAVE.oo ittt re e 3

3. Trapezoidal possibility distribULION...........coiiiiiiii e 5

4 (a) latest{m(T), ™x(1)} shown by heavy line (b) earliest{ (1), e(1)} is shown by the
L0152 Y Y 1 SRR 6

5(@) [E, F] = [E, +o) n (-c0, F] istrapezoidsnco shown by the heavy line, and [E, F] n 1% is
also trapezoideucp shown by the shaded area. (b) The part of T wheret < fisshownby
the part of Tk Where T = fiSShOWN DY 1L ...ei e 7

6. Possibility of transition Swap_and_draw fires instead of Swap_Signal_passed............... 9

7. An EFTN modé for the CAVE, where the timestamps of tokens arriving in Head, Wand,
Button_Input, TrackerMonitor and SwapMonitor at initial state are Thea(t) = Tiwand(T) =
T[BLrtton_Input(T) = (O,O,O,O), nTra:ka'Monitor(T) = (104,104,104,104), and T[SNapMonitor(T) =
(20.8,20.8,20.8,20.8). The delay for Head and Wand data arriving at the Tracker is
Dheadwand 1o tracker(T) = (50,50,50,50) ms. The delay for converting and transferring tracker
data to the Unix workstation iS Deonvert(T) = (10,10,10,10) mS. Drender front(T), Drender tert(T),
Drender right(T), @d Drender fioor(T) are the fuzzy delays of rendering images for front wall, |eft
wall, right wall, and the floor. Assume Dienger fron(t) = (25.0,37.4,50.0,62.4) ms, and
Drmder_left(T) = Drmder_right(T) = Drender_floor(T) = (10’20’30’35) ms, Since the |mage on the front
wall is usually more complicated than the ones on other walls. The delay for drawing images
on each wall is DdraN_front(T) = DdraN_Ieft(T) = DdraN_right(T) = DdraN_roor(T) = (2,2,2,2) ms, and €3
= €4 = 0.2 ms (a short time period that a monitor signal 1asts).cccccevvvriiiiienienieennne 12

8 (a) Post-fusion (post-fuse transition ta with tbl, ..., tbn); (b) Parallel fusion of places...... 13

9. The rajucaj EFTN model, Whe'e Ia-teSt(Drender_front(T), Drmder_left(T)) Drender_right(T),
Drencer floor(T)) = latest((25.0,37.4,50.0,62.4), (10,20,30,35), (10,20,30,35), (10,20,30,35)) =
(250,374,500,624) ms, and IateSt(DdraN_front(T), DdraN_Ieft(T), DdraN_right(T), DdraN_roor(T)) =
(2,2,2,2) IS, cvoeveeeeeeeeeeeeeeee e e eeeeeeee e e e eeeseereese e eee s ee e s ereee s ee e st eee et eeseee e s eeeeesareeereees 13

10. An EFTN model for 2 existing NICE clients communicating with each other, the repeater
and the server, where the delay of UDP channel is Dypp(t) = (50,100,150,200) ms, the

world evolves in theinterval Dgy(T) = (10,60,180,300) SEC.ccveeeuveeveeirieireeireesieesreeirens 14
11. The EFTN modd for aCAVE in NICE asadistributed componentccceceveeenee. 15
12 Design/CPN implementation of EFTN modd for aNiceclientccccccoveviieeinennee, 19
13 Design/CPN implementation of EFTN model for the garden server, avatar repeater and
COMMUNICALTION TNEEITACEee ettt 20
14 Design/CPN implementation of EFTN modé for TCP protocolcccccveeciveecieeenee, 21
15 Global Declaration node in Design/CPN implementation............ccccocveevieeicieeeccvee e, 22
16 Theremote avatar datareceiving without using thefilterccocevvv i, 23

36

Fig

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

17 Thesimulated display behavior of a remote avatar on the local screen without using the

L] L= USSP 24
18 The simulated display behavior of a remote avatar on the local screen with using the
L] L= PSP 25
19 Thedistribution of the delay from the time that a remote user has a movement to the
time that movement is displayed on the local screen in simulation.ccccceeeeeeeicieeeneen. 25

20 The distribution of the time that remote avatar's display lags behind local avatar in
(S 100101 F= 1o o [PPSR 26
21 Improved strategy: use a buffer for remote avatar state informationccccuvee.ee. 26

22 Definition of functions used in improved strategy for remote avatar state information.. 27
23 Thesimulated display behavior of aremote avatar on the local screen with using buffer

... 27
24(a) Dday distribution for data unit coming every 50 ms.......ccccccceeeieeeiiiecviee e 28
24 (b) History chart for each data unit (for data unit coming every 50 ms)cccoceeeveene 28
25 (a) Dday distribution for data unit coming every 100 MS........cccoceevveeiiieeesiee e e 29
25 (b) History chart for each data unit (for data unit coming every 100 ms)cccccuvee.. 29

26 History chart of the response time (from time that a message is sent out by clientl (or
client2) to time that clientl get the broadcasted response from server via TCP channel) in
(S 10101 F= 1o o SRR 30

27 History chart of theresponsetimefor the NICE with 5 clients.........cccoeeeeeicieccieenee, 32

37

