# **MAGUS: Memory-Throughput-Based Uncore Frequency Scaling on Heterogeneous Systems**

Zhong Zheng, Seyfal Sultanov, Michael E. Papka, Zhiling Lan

### **Motivation & Illustrative Example**

Prior uncore frequency tuning studies have primarily focused on conventional HPC workloads running on CPU-only systems. As HPC advances toward heterogeneous computing, integrating diverse GPU workloads on heterogeneous CPU-GPU systems, it becomes imperative to revisit and enhance uncore scaling. Our investigation reveals that uncore frequency scales down only when CPU power approaches its TDP (Thermal Design Power) --- a rare scenario in GPU-dominant applications --- resulting in unnecessary power waste in modern computing systems.

#### **UNet Training Example**

- A heterogeneous system with
  Intel Xeon CPU–A100 GPU
  node
- CPU core frequency and GPU
  clock speed are dynamically
  adjusted by default
- Uncore frequency remains at its maximum







- Reducing the uncore frequency results in (i) an 82-watt reduction in CPU power, from 200 watts (blue curve on the left) to 120 watts (blue curve on the right).
- An increase in runtime, from 47 seconds (left) to 57 seconds (right).

### **Experimental Setup**

#### Heterogeneous systems

- Intel+A100: A Chameleon Cloud [ 37 ] system featuring two Intel(R) Xeon(R) Platinum 8380 processors paired with a single NVIDIA A100-40GB GPU.
- ✤ Intel+4A100: It has the same architecture and software environment as the first, except it is equipped with 4x NVIDIA A100-80GB GPUs interconnected via PCIe.
- Intel+Max1550: It features the Intel(R) Xeon(R) CPU Max 9462, a Sapphire Rapids architecture processor comprising 8x compute tiles Intel(R) Data Center GPU Max 1550 based on the Ponte Vecchio architecture.

#### **Benchmarks & Applications**

- ✤ GPU benchmark suite Altis: Level 1 & Level 2 applications
- \* ECP Proxy Apps: miniGAN, CRADL, Laghos, SW4lite
- \* AI-enabled applications: GROMACS, LAMMPS
- \* MLPerf training Benchmarks: UNet, Bert, Resnet50

#### **Evaluation Metrics**

**\* Performance loss**: percentage increase in execution time compared to the baseline

| 5: 0           | erse in derivative < dec_intreshvid then | 4:            | return True  |
|----------------|------------------------------------------|---------------|--------------|
| 6:             | return -1                                | 5.            | else         |
| 7:             | else                                     | J.            | noturn Falso |
| 8:             | return 0                                 | 6:            |              |
| 9:             | end if                                   | 7:            | end if       |
| 10: <b>end</b> | function                                 | 8: <b>e</b> 1 | nd function  |
|                |                                          |               |              |

# **Overheads**

| System          | Power Ove | erhead (%) | Invocation Overhead (s) |       |
|-----------------|-----------|------------|-------------------------|-------|
|                 | MAGUS     | UPS        | MAGUS                   | UPS   |
| Intel + A100    | 1.1%      | 4.9%       | 0.1s                    | 0.3s  |
| Intel + Max1550 | 1.16%     | 7.9%       | 0.1s                    | 0.31s |

### **Sensitivity Analysis**

- Pareto frontiers of energy consumption and runtime under different threshold configurations.
- The red circled Pareto frontier represents the common threshold set observed across all applications tested in our experiments.



### **Prediction Accuracy**

Table 1: Jaccard similarity for memory throughput trend

| Application          | Jaccard | Application | Jaccard |
|----------------------|---------|-------------|---------|
| bfs                  | 0.99    | gemm        | 0.71    |
| pathfinder           | 0.98    | sort        | 0.96    |
| cfd                  | 0.94    | cfd_double  | 0.63    |
| fdtd2d               | 0.40    | kmeans      | 0.97    |
| lavamd               | 0.92    | nw          | 0.98    |
| particlefilter_float | 0.67    | raytracing  | 0.87    |
| where                | 0.94    | Laghos      | 0.99    |
| miniGAN              | 0.98    | sw4lite     | 0.87    |

# Power saving: CPU package + DRAM power saving Energy saving: CPU package + DRAM + GPU energy saving

| UNet       | 0.99 | Resnet50 | 0.96 |
|------------|------|----------|------|
| bert_large | 0.84 | lammps   | 0.99 |
| gromacs    | 0.99 | tars     |      |

### **End-to-End Performance**





